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ABSTRACT

Bilinear pooling has achieved an impressive improvement over classical average
and max pooling in many computer vision tasks. Recent studies discover that
matrix normalization is vital for improving the performance of bilinear pooling
since it effectively suppresses the burstiness. Nevertheless, exiting matrix normal-
ization methods such as matrix square-root and logarithm are based on singular
value decomposition (SVD), which is not well suited in the GPU platform, lim-
iting its efficiency in training and inference. To boost the efficiency in the GPU
platform, recent methods rely on Newton-Schulz (NS) iteration to approximate
the matrix square-root. Despite that NS iteration is well supported by GPU, it
takes O(KD3) computation complexity, where D is the dimension of each local
feature andK is the number of iterations, which is still expensive. Meanwhile, NS
iteration is applicable only to full bilinear matrix. In contrast, a compact bilinear
feature obtained from tensor sketch or random projection has broken the matrix
structure, cannot be normalized by NS iteration. To overcome these limitations,
we propose a rank-1 update normalization (RUN), which reduces the computa-
tional cost from O(KD3) to O(KDN), where N is the number of local features
per image. Moreover, it supports the normalization on compact bilinear features.
Meanwhile, the proposed RUN is differentiable, and thus it is feasible to plug it
in a convolutional neural network as a layer to support an end-to-end training.
Comprehensive experiments on four public benchmarks show that, for the full bi-
linear pooling, the proposed RUN achieves comparable accuracies with a 330×
speedup over NS iteration. For the compact bilinear pooling, our RUN achieves
comparable accuracies with a 5400× speedup over the SVD-based normalization.

1 INTRODUCTION

In the past decade, convolutional neural network (CNN) has achieved a great success in many com-
puter vision tasks ranging from image recognition (He et al. (2016)), object detection (Ren et al.
(2015)), semantic segmentation (Long et al. (2015)) to action recognition (Simonyan & Zisserman
(2014a)). Despite CNN architecture has evolved significantly, it still inherits the basic architecture
from the pioneering work, AlexNet (Krizhevsky et al. (2012)). To be specific, it consists of three
parts: a feature extractor, an aggregation module and a classifier, as visualized in Figure 1. The
feature extractor normally consists of a series of convolution, pooling, batch normalization and non-
linear rectification layers. It generates a feature map F of W ×H ×D size, where W and H are
the width and height of the feature map and D is the depth of the feature map, i.e., the number
of channels. To enhance the performance of a CNN, many efforts have been devoted to boosting
effectiveness of the feature extractor. For instance, GoogLeNet (Szegedy et al. (2014)) proposes an
Inception module, which fuses feature maps from different scales and encodes richer visual infor-
mation than the vanilla CNN. ResNet (He et al. (2016)) adopts a residual architecture based identity
mapping, which overcomes the performance degeneration as network goes deep. It has achieved
record-breaking performance in many tasks. DenseNet (Huang et al. (2017)) extends the residual
module to a densely-connected module, achieving a better performance.

The aggregation module converts the feature map F generated by the feature extractor into a holis-
tic feature vector f ∈ Rd. The early work such as AlexNet and VGGNet (Simonyan & Zisserman
(2014b)) implements the aggregate module by a fully-connected layer. To be specific, they unfold
the three-dimensional feature map F into one dimension vector vec(F) ∈ RWHD and obtain a
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Figure 1: The basic architecture of a convolutional neural network (CNN). It consists of tree parts,
a feature extractor, an aggregate module and a classifier.

(a) CUB (b) Airplane (c) MIT (d) DTD

Figure 2: The scatter plots of singular values of bilinear matrices on some typical computer vision
datasets: CUB (Welinder et al. (2010)), Airplane (Maji et al. (2013)), MIT (Quattoni & Torralba
(2009)) and DTD (Cimpoi et al. (2014)). The indices of singular values are along x axis and scaled
magnitudes of singular values are on y axis. For the ease of illustration, each magnitude is divided
by its corresponding largest singular value and the scaled magnitudes are in the range of [0, 1]. We
plot the first 100 singular values of all samples on each dataset.

global vector f = Wvec(F) + b ∈ Rd, where W ∈ Rd×WHD and b ∈ Rd are parameters of a
fully-connected layer. In contrast, some more advanced architectures such as Inception and ResNet
implement the aggregation module by a global average pooling, where they conduct average pooling
along the width and height dimensions, and generate a holistic vector f ∈ RD. Compared with a
fully-connected layer, the global average pooling is more robust to spatial transforms. To obtain a
more effective holistic feature, NetVLAD (Arandjelovic et al. (2016)) incorporates VLAD (Jegou
et al. (2011)) into the convolutional neural network. Similarly, Miech et al. (2017) integrates the
Fisher vector into the neural network and proposes a learnable pooling. In parallel, bilinear convo-
lutional neural network (Lin et al. (2015)) implements the aggregation module by a bilinear pooling
operation, which encodes the second-order information. It achieves a better performance than aver-
age pooling and max pooling in many computer vision tasks, such as fine-grained recognition (Lin
& Maji (2017)), generic image recognition (Li et al. (2018)) and video classification (Wang et al.
(2017b)).

Method Algorithm Complexity GPU Support CBP Support
O2P SVD O(D3) limited No

G2DeNet SVD O(D3) limited No
MPN-COV Eigen Decomp O(D3) limited No

Improved B-CNN Newton-Schulz O(D3) good in FP No
iQRT-COV Newton-Schulz O(KD3) good No

MoNet SVD O(D3) limited Yes
RUN (Ours) Power Method O(KDN) good Yes

Table 1: Differences between the proposed RUN with O2P (Ionescu et al. (2015)), G2DeNet (Wang
et al. (2017a)), MPN-COV (Lin & Maji (2017)), Improved B-CNN (Lin & Maji (2017)), iQRT-
COV (Li et al. (2018)) and MoNet (Gou et al. (2018)). Here, K is the number of iterations, D is the
local feature dimension and N is the number of local features. Our RUN takes a low computation
complexityO(KDN), is well supported by GPU and well supports compact bilinear pooling (CBP).
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The burstiness (Jégou et al. (2009)) in computer vision was first discussed in the context of the
bag-of-word model. It points out the phenomenon that most regions of an image are assigned to the
same visual word. In such case, the representation of the image is determined by a single visual
word, however, some low-frequency visual words are ignore which might be important. To obtain a
more effective feature, Perronnin et al. (Perronnin et al. (2010)) conduct the element-wise square-
root normalization to balance contributions of different visual words. In the context of bilinear
features, singular vectors correspond to visual words, the burstiness corresponds to the first a few
singular values that are significantly larger than the remaining singular values, as shown in Figure
2. To alleviate this problem, a straightforward way is to normalize singular values. Recent studies
(Li et al. (2017); Lin & Maji (2017)) show that, the normalization on singular values is vital for
achieving high recognition performance. Existing normalization methods such as matrix square-
root normalization (Li et al. (2017)) and matrix logarithm normalization (Ionescu et al. (2015)) rely
on the singular value decomposition (SVD). But SVD is not easily parallelizable and hence not well
suited in the parallel GPU platform. To boost the efficiency in the GPU platform, improved B-
CNN (Lin & Maji (2017)) and i-SQRT (Li et al. (2018)) attempts to approximate the matrix square
root via the Newton-Schulz (NS) iteration (Higham (2008)). Since NS iteration only needs matrix-
matrix product, it is easily parallelizable and well suited in the GPU platform. The NS iteration has
a computation complexity of O(D3K), where D is the number of channels of the last features map
and K is the number of iterations. Since D can be very large, NS iteration is still expensive. In
addition, NS iteration is conducted on the bilinear matrix and cannot normalize compact bilinear
features (Gao et al. (2016)) from tensor sketch or random projection.

To speed up the matrix normalization, we propose a rank-1 update normalization (RUN). The pro-
posed RUN is an iterative algorithm inspired by power method. In each iteration, it only needs two
matrix-vector multiplications, which takes low computation cost and is easily parallelizable and well
suited in the GPU platform. In total, the computation complexity of the proposed RUN isO(KDN).
Here,N = WH is the number of local features per image, which is in a comparable scale withD,K
is the iteration number, which is set as 2 by default on all testing datasets. Therefore, the complexity
of our RUN is considerably lower than the O(D3K) complexity used in NS iteration. Moreover,
our RUN supports the normalization on a compact bilinear feature generated from tensor sketch or
random projection. In addition, the proposed RUN is differentiable, as a result, we can easily plug
it into a neural network to support an end-to-end training. Experiments on four public benchmarks
show the effectiveness and efficiency of our method. Table 1 summarizes differences between our
method and other related work.

2 MATRIX NORMALIZATION AND COMPACT BILINEAR POOLING

Given a feature map F , bilinear pooling reshapes F into a two-dimensional matrix F ∈ RWH×D

and calculates the bilinear matrix by B = F>F. B-CNN (Lin et al. (2015)) implements the bilinear
pooling as a layer of a convolutional neural network to support an end-to-end training. It achieves a
better performance on fine-grained classification than standard AlexNet with a fully-connected layer
as aggregation module. The research on B-CNN proceeds along two main directions: 1) improve
the effectiveness of bilinear pooling through matrix normalization (Lin & Maji (2017); Li et al.
(2017)); 2) improve the efficiency of bilinear feature through compact bilinear pooling (Gao et al.
(2016); Cui et al. (2017)). Our work is related with both directions since we propose a fast matrix
normalization method, and make it compatible with compact bilinear pooling. Below we review
these two directions, respectively.

2.1 MATRIX NORMALIZATION

There are two popular matrix normalization methods, the matrix square-root normalization used in
Improved B-CNN (Lin & Maji (2017)) and the matrix logarithm normalization used in O2P (Ionescu
et al. (2015)). They first conduct singular value decomposition (SVD) on the bilinear matrix B by

B→ UΣU>.

Then they conduct normalization on singular values and obtain the normalized bilinear feature by

B̂← Ug(Σ)U>,

where g(Σ) is conducted on singular values in an element-wise manner. Matrix square-root normal-
ization adopts g(Σ) = Σ1/2 and matrix logarithm normalization adopts g(Σ) = log(Σ). However,
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as mentioned before, SVD is not easily parallelizable and not well supported in the GPU platform,
limiting its efficiency in training and inference. Improved B-CNN (Lin & Maji (2017)) and i-SQRT
(Li et al. (2018)) utilize Newton-Schulz (NS) iteration to approximate the matrix square root. Given
a bilinear matrix B, NS initializes Y0 = B and Z0 = I. For each iteration, Zk and Yk is updated
by

Yk =
1

2
Yk−1(3I− Zk−1Yk−1),

Zk =
1

2
(3I− Zk−1Yk−1)Zk−1,

where Yk converges to B1/2. Since it involves only matrix-matrix product, it is easily parallelizable
and well supported in the GPU platform. The computation complexity of each iteration is O(D3),
whereD is the local feature dimension. SinceD is large, computing Newton-Schulz (NS) iteration is
still expensive. In contrast, our method is based on iterations of matrix-vector multiplications, which
are computationally cheaper than the matrix-matrix multiplications used in NS iteration. What’s
more, we will show in next subsection that, the NS iteration is not compatible with existing compact
bilinear pooling methods, whereas ours readily supports normalization on compact bilinear features.

2.2 COMPACT BILINEAR POOLING

The dimension of a bilinear feature isD×D, which is extremely high. On one hand, it is more prone
to over-fitting due to huge number of model parameters in the classifier, especially in the few-shot
learning scenario. On the other hand, in the retrieval application, it is extremely expensive to store
and compare high-dimensional bilinear features. To overcome these drawbacks, CBP (Gao et al.
(2016)) is proposed. It treats the outer product used in bilinear pooling as a kernel embedding, and
seek to approximate the explicit kernel feature map. To be specific, by rearranging the feature map
F to F = [f1, · · · , fWH ]>, the bilinear matrix B is obtained by

B = F>F =

WH∑
i=1

fif
>
i =

WH∑
i=1

h(fi), (1)

where h(fi) = fif
>
i ∈ RD×D is the explicit feature map of the polynomial kernel. CBP seeks for a

low-dimensional projection function φ(fi) ∈ Rd with d� D2 such that

〈φ(x), φ(y)〉 ≈ 〈vec(h(x)), vec(h(y))〉, (2)

where vec(·) is the operation to unfold the 2D matrix to 1D vector. In this case, the approximated
low-dimensional bilinear feature is obtained by B̃ =

∑WH
i=1 φ(fi).

CBP investigates two types of approximation methods: Random Maclaurin (Kar & Karnick (2012))
and Tensor Sketch Pham & Pagh (2013), which are given in Algorithm 1 and Algorithm 2. Since
the compact bilinear feature B̃ has broken the matrix structure, the matrix normalization methods
conducted on the bilinear feature B, such as Newton-Schulz iteration, is no longer feasible for nor-
malizing B̃. To tackle this, MoNet (Gou et al. (2018)) conducts SVD directly on the original feature
F instead of B and then conducts compact bilinear pooling. Nevertheless, as we mentioned, the
SVD is not well supported on GPU platform, limiting the training and inference efficiency. In con-
trast, we will see in the next section that our method only relies on matrix-vector multiplications, and
hence is easily parallelizable and well supported in the GPU platform and supports the normalization
on a compact bilinear feature generated from tensor sketch or random projection.

3 RANK-1 UPDATE NORMALIZATION (RUN)
To overcome the limitations of previous methods, we propose a rank-1 update normalization (RUN).
Below we give the motivation of the proposed RUN and then summarize it in Algorithm 3.

Assuming that, through SVD, the bilinear feature B can be decomposed into B = UΣU>, where
U = [u1, · · · ,uD] is orthogonal and Σ = diag([σ1, · · · , σd]) is diagonal with σ1 ≥ σ1 ≥ σD.
First we initialize a random vector v0 = [v1, ..., vD] ∼ N (0, I). That is {vi}Di=1 are i.i.d. random
variables with standard normal distribution. We perform K steps of power method as follows:

vk = Bvk−1, for k = 1, . . . ,K. (3)
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Algorithm 1 Tensor Sketch
Input: x ∈ Rd

Output: φTS(x) ∈ RD

1: Generate random vectors h1,h2 ∈ Nc and s1, s2 ∈ {+1,−1}c. h1(i) and h2(i) are uniformly
sampled from {1, 2, · · · , D}, s1(i) and s2(i) are uniformly sampled from {+1,−1}.

2: Sketch Ψ(x, h, s) = {(Qx)1, · · · , (Qx)D}, where Q(x)j =
∑

t:h(t)=j s(t)x(t).
3: Compute φTS(x) = FFT−1(FFT(Ψ(x,h1, s1)) � FFT(Ψ(x,h2, s2))), where � denotes

element-wise multiplication.
4: return φTS(x)

Algorithm 2 Random Maclaurin
Input: x ∈ Rd

Output: φRM (x) ∈ RD

1: Generate random matrices W1,W2 ∈ Rd×D with each entry 1 or −1 with equal probability.
2: φRM (x)← 1√

D
(W1x)� (W2x).

3: return φRM (x)

Then the rank-1 matrix is constructed by

RK = BvKv>K/‖vK‖22 (4)

After that, we update the matrix B by subtracting RK :

BK = B− εRK , (5)
where ε ∈ [0, 1] is a small constant. The classic convergence result of power method tells that if
σ1 > σ2, vK will converge to u1 directionally. Therefore, BK converges to B− εσ1u1u

>
1 . That is

lim
K→∞

BK = U diag([σ1(1− ε), σ2, . . . , σD])U>, (6)

i.e., the eigenvalues of B∞ remain unchanged except the largest one, which is decreased by εσ1.
More generally, BK is an estimation of a normalized bilinear matrix. To be specific, it satisfies
following theorem:

Theorem 1 Let BK be obtained via Eq. (3)-(5), where v0 ∼ N (0, I). Then the expectation of BK

is given by
E(BK) = U diag([σ1(1− εα1), · · · , σD(1− εαD))U>, (7)

where 1 ≥ α1 ≥ α2 ≥ · · · ≥ αD.

Due to limitation of the space, the proof of the Theorem 1 is given in Appendix A. The operation in
the right-hand side of Eq. (7) scales each singular value σi by (1− εαi). As 1 ≥ α1 ≥ α2 ≥ · · · ≥
αD and ε ∈ [0, 1], thus

0 ≤ 1− εα1 ≤ 1− εα2 ≤ · · · ≤ 1− εαD ≤ 1. (8)

It gives a smaller scale factor to a larger singular value, making singular values more balanced.

Since computing BK only requiresK times of matrix-vector multiplications, it only takesO(KD2)
complexity and is well supported in GPU platform. In experiments section, we will show when K
is small, e.g., K = 2, it has achieved excellent performance. Nevertheless, obtaining the above
approximated normalized bilinear feature BK requires the original bilinear matrix B obtained from
bilinear pooling. Thus, it is not applicable to the compact bilinear feature which has broken the
structure of square matrix. To make the proposed fast matrix normalization method compatible with
compact bilinear pooling, we seek to directly conduct normalization on the original feature map
F ∈ RN×D, where N = WH is the number of local features and D is the local feature dimension.
It is based on following iterations:

vk = F>Fvk−1, for k = 1, . . . ,K, (9)
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Algorithm 3 Rank-1 Update Normalization (RUN)
Input: Local features F ∈ RN×D, η,K
Output: Normalized local features FK .
1: Generate v0 = [v1, ..., vD] ∈ RD, where {vi}Di=1 are i.i.d. random variables with normal

distribution.
2: for k ∈ [1,K] do
3: vk = F>Fvk−1

4: FK = F− ηFvKv>
K

‖vK‖22
5: return FK .

where the entries of v0 are i.i.d. random variables with standard normal distribution. Then we
construct the updated feature map FK by

FK = F− ηFvKv>K/‖vK‖22, (10)

where vK are obtained via equation 9 and η ∈ (0, 1] is a constant. The above procedure is sum-
marized in Algorithm 3. Since in each iteration, it only needs two matrix-vector multiplications, in
total, the computational complexity of obtaining FK isO(KDN). Let uF,i and vF,i be the left and
right singular vectors of F corresponding with its ith largest singular value σF,i. If σF,1 6= σF,2,
Fvk and vk will converge directionally to uF,1 and vF,1, respectively. In limit, we have

lim
K→∞

FK = F− ησF,1uF,1v
>
F,1,

whose singular values are the same as that of F, except the largest one, which is decreased by ησ1,F .
In fact, similar to Theorem 1, we have

Theorem 2 Let FK be obtained as in Algorithm 3. Then the expectation of FK can be given by

E(FK) = UF Σ̂FV>F , (11)

where UF , VF are the left and right singular vector matrices of F, respectively, Σ̂F is the diagonal
matrix diag[(σF,1(1−ηβ1), · · · , σF,D(1−ηβD))] with 0 ≤ 1−ηβ1 ≤ 1−ηβ2 ≤ · · · ≤ 1−ηβD ≤ 1.

Its proof is similar to Theorem 1, and thus we will omit it. Using the standard bilinear pooling, the
normalized bilinear matrix feature can be obtained by B̄K = F>KFK . When σF,1 6= σF,2, B̄K

satisfies

lim
K→∞

B̄K = VF diag([σ2
F,1(1− η)2, · · · , σ2

F,D])V>F , (12)

Since VF in Eq. (12) is equal to U in Eq. (6), if we set (1 − ε) in Eq. (12) equal to (1 − η)2 in
Eq. (6), BK and B̄K will converge to the same matrix. But the advantage of updating F as Eq. (10)
rather than updating B as Eq. (5) is that, the former one is compatible with compact bilinear pooling,
which can not be achieved by the latter one. In this case, the compact normalized bilinear feature is
obtained by

b̄K =

N∑
i=1

φ(FK [i, :]), (13)

where FK [i, :] denotes the i-th row of FK and φ is implemented by tensor sketch or random Maclau-
rin, and b̄K ∈ RD is the compact and normalized feature where D � d2.

The proposed RUN is summarized in Algorithm 3. We implement the proposed RUN as a layer of
a CNN. The layer takes the original feature map F as input and outputs the normalized feature map
FK . In the forward path, FK is computed by Eq. (10). Below we derive its backward path. Note
that, despite that one can rely on auto-grad tool in existing deep learning framework such as Pytorch
and TensorFlow to obtain the backward path, we still derive this process in Appendix B for readers to
better understand the proposed algorithm. After obtaining FK , it is feasible to conduct the original
bilinear pooling (BP) or compact bilinear pooling (CBP). Figure 3 illustrates the architecture of the
proposed network.
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Figure 3: The architecture of the proposed convolutional neural network. RUN denotes the proposed
rank-1 update normalization, which takes input the feature map of the last convolutional layer. BP
denotes the bilinear pooling and CBP represents compact bilinear pooling.

4 EXPERIMENTS

In this section, we demonstrate the experimental results. We first introduce the testing datasets
and implementation details. Then we show conduct ablation study on two scenarios: 1) RUN with
standard bilinear pooling and 2) RUN with the compact bilinear pooling. After that, the comparisons
with other pooling methods are conducted.

4.1 DATASETS

We conduct experiments on three tasks: 1) fine-grained recognition, 2) scene recognition and 3) tex-
ture recognition. On the fine-grained recognition task, experiments are conducted on CUB (Welinder
et al. (2010)) and Airplane (Maji et al. (2013)) datasets. On the scene recognition task, experiments
are conducted on MIT (Quattoni & Torralba (2009)) dataset. On the texture recognition task, we test
our method on DTD (Cimpoi et al. (2014)) dataset. Table 2 gives a summary.

Fine-grained Scene Texture
CUB Airplane MIT DTD

classes 200 100 67 47
training 5, 994 6, 667 4, 014 1, 880
testing 5, 794 3, 333 1, 339 3, 760

Table 2: Details of four datasets.

4.2 IMPLEMENTATION DETAILS

We use VGG16 (Simonyan & Zisserman (2014b)) as the backbone network to make a fair compari-
son with existing methods. After scaling and cropping, the input size of an input image is 448×48×3
and the size of the feature map is 28 × 28 × 512. After we obtain the bilinear feature, we further
conduct element-wise signed square-root normalization followed by `2-normalization as the original
BCNN (Lin et al. (2015)). We adopt a two-phase training strategy. In the first phase, we only update
the weights of the last fully-connected layer and fix the other layers. The initial learning rate is set
as 0.2 on airplane dataset and 1 on other datasets, and it decreases to 0.1 of the current learning rate
if the validation error does not drop in continuous 5 epochs. We set weight decay as 10−8 in the first
phase. The first phase finishes in 50 epochs. In the second phase, we update the weights of all layers
and the initial learning rate is set as 0.02 on CUB dataset and 0.01 on other datasets, and it decreases
to 0.1 of the current learning rate if the validation error does not drop in continuous 5 epochs. We
set weight decay as 10−5 in the second phase. The second phase finishes in 40 epochs.

4.3 ABLATION STUDY ON ORIGINAL BILINEAR POOLING

In this section, we test RUN using original bilinear pooling. The feature dimension is 512 ∗ 512 =
262K.

Influence of η. η in Eq. (12) controls the strength of suppressing the large singular values. Recall
from Eq. (12) that, the normalized feature B̄K converges to:

VF diag[(1− η)2σ2
F,1, · · · , σ2

F,d]V>F .
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CUB Airplane MIT DTD
first epoch 2.23 1.53 2.38 5.09
last epoch 3.68 1.69 4.53 7.40

Table 3: The average σF,1/σF,2 on four datasets.

η CUB Airplane MIT DTD
0.0 84.1 88.9 79.8 65.6
0.1 84.8 89.3 80.6 66.6
0.2 85.3 89.5 81.0 67.8
0.4 86.0 89.6 80.5 68.3
0.6 86.3 89.8 80.8 68.7
0.8 86.2 89.7 80.7 68.4
1.0 86.4 89.8 80.9 68.3
1.2 86.0 89.8 80.9 68.2
1.5 86.2 89.7 80.5 68.3
2.0 83.9 89.0 79.7 65.7

Table 4: The influence of η on the proposed RUN.

K CUB Airplane MIT DTD
1 85.7 89.7 80.5 68.7
2 86.3 89.8 80.8 68.4
3 86.2 89.8 80.8 68.3
5 86.2 89.9 80.7 68.4
10 86.1 89.9 80.7 68.4

Table 5: The influence of K on the proposed RUN.

From the above equation, we observe that, when η ∈ (2,+∞) ∪ (−∞, 0), the largest value of the
normalized bilinear matrix B̄K is even larger than that of the original bilinear matrix B. Hence a
good value of η should in the range [0, 2]. Ideally, we can select the value of η according to the gap
between σF,1 and σF,2. Since singular values change for different samples or different epochs, we
can compute the σF,1 and σF,2 online for each sample in each epoch. But computing σF,1 and σF,2

will double the time cost compared with using a manually set η which only needs compute σF,1.
An alternative solution is to compute the average σF,1/σF,2 of all samples using the pre-trained
model and then use the average value to guide the choice of the η. But the average value changes in
the training process, the average value computed from the pre-trained model might not be effective
for the whole training process. Table 3 shows the average σF,1/σF,2 of each dataset. Since each
experiment lasts for tens of epochs and it is difficult to report the ratio of each epoch, we just report
the average σF,1/σF,2 in the first epoch and that in the last epoch. From Table 3, we observe that
the average σF,1/σF,2 in the first epoch is different from that in the last epoch.

We further test the influence of η on the classification accuracy. As shown in Table 5, when η =
0, i.e., without RUN, the accuracies are not as good as that when η ∈ [0.4, 1.5]. Note that, on
Airplane dataset, the accuracy drop when η = 0 is not large, it is in accordance with the small
value of σF,1/σF,2 on Airplane dataset in Table 3. In contrast, on DTD dataset, the accuracy drop is
significant, it is also in accordance with the large value of σF,1/σF,2 on DTD dataset in Table 3.

As Table 3 shows that the average value of σF,1/σF,2 varies significantly on four datasets, thus we
might expect that the optimal η are different on four dataset. Surprisingly, as shown in Table 5,
when η ∈ [0.4, 1.5] the performance is stable and not sensitive to the change of η. By default, we
set η = 0.6 on all datasets. Another observation is that, when η = 2.0, its performance is as bad as
that when η = 0.0. The bad performance when η = 2.0 is expected since it leads to the condition
that (1− η)2 = 1. It is equivalent to removing the matrix normalization.

Influence of K. K in Eq. (10) represents the number of iterations in our RUN. The time cost of
the proposed RUN is linear with K. Recall from Eq. (12) that, when K is large, the normalization
focuses only on the largest singular value and keeps the others unchanged. In contrast, if K is not
large, it also normalizes other large singular values besides the largest one. As shown in Table 5, on
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Algorithm FLOPs GPU Time Accuracy
CUB Airplane MIT DTD

SVD 1.88G 6731ms 85.8 88.5 80.6 68.4
NS iteration 4.03G 833ms 85.7 89.6 80.5 68.3

power method (ours) 3.2M 2.5ms 86.3 89.8 80.8 68.4

Table 6: Comparisons with SVD-based method (Lin & Maji (2017)) and Newton-Schulz (NS) iter-
ation (Li et al. (2018)).

Dimension CUB Airplane MIT DTD
RM TS RM TS RM TS RM TS

1, 000 83.1 83.8 88.9 88.5 78.0 76.1 59.9 63.4
2, 000 84.6 83.9 89.8 89.3 78.8 78.2 63.6 66.5
4, 000 84.4 84.8 88.8 90.5 79.9 79.4 67.0 66.9
8, 000 85.0 85.5 89.0 90.5 80.4 80.1 67.5 66.9
10, 000 85.2 85.7 89.1 91.0 80.7 80.5 67.5 67.3

Table 7: The influence of the dimension based on tensor sketch (TS) and random Maclaurin (RM).

DTD dataset, it achieves the best accuracy using only 2 iterations. In contrast, on Airplane dataset, it
achieves the best accuracy with 5 iterations. But using 2 iterations, the accuracy on Airplane dataset
is comparable with that using 5 iterations. By default, we set K = 2 on all datasets.

Time cost evaluation. We compare the time cost in matrix normalization in the GPU platform of
the proposed method with existing methods based on SVD (Lin & Maji (2017)), and Newton-Schulz
(NS) iteration. We conduct experiments based on 4 Nvidia K40 GPU cards and set the batch size
as 32. Note that, in these experiments we conduct the original bilinear pooling rather than compact
bilinear pooling since Newton-Schulz method is not compatible with compact bilinear pooling. As
shown in Table 6, SVD-based method is very slow in the GPU platform. The FLOPs of ours is less
than 0.1% of NS iteration used in Li et al. (2018). Meanwhile, considering the GPU time, the factual
speed-up ratio of ours over NS iteration is beyond 330. The significant reduction in FLOPs and
GPU time is contributed by two factors. Firstly, in each iteration, we only need two matrix-vector
multiplications whereas NS iteration takes three times of matrix-matrix multiplications. Secondly,
ours takes only 2 iterations for a good performance whereas NS iteration takes 5 iterations to achieve
a good performance suggested by Li et al. (2018).

Method Algorithm Dimension FLOPs GPU Time Accuracy
CUB Airplane

MoNet-2 SVD 10, 000 4.21G 13850ms 85.7 86.7
Ours power method 10, 000 3.2M 2.5ms 85.7 91.0

Table 8: Comparisons between ours and MoNet-2 (Gou et al. (2018)).

Method Dimension Norm Time CUB Airplane MIT DTD
Max-pooling 512 0ms 69.6 78.9 50.4 55.1
Sum-pooling 512 0ms 71.7 82.1 58.7 58.2

BCNN 262K 0ms 84.0 84.1 − −
Improved BCNN 262K 6.7s 85.8 88.5 − −

BCNN + Newton-Schulz 262K 833ms 85.7 89.6 80.5 68.3
CBP 8192 0ms 84.0 − 76.2 64.5

LRBP 8192 0ms 84.2 87.3 − 65.8
MoNet-2 10K 13850ms 85.7 86.7 − −
MoNet 10K 13850ms 86.4 89.3 − −

BP + RUN (Ours) 262K 2.5ms 86.3 89.8 80.8 68.4
CBP + RUN (Ours) 10K 2.5ms 85.7 91.0 80.5 67.3

Table 9: Comparisons with other pooling methods. We compare the feature dimension, the time cost
for matrix normalization per batch (Norm Time) and the accuricies on four benchmarks.
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4.4 ABLATION STUDY ON COMPACT BILINEAR POOLING

Influence of the dimension. We adopt two types of CBP, tensor sketch (TS) and random Maclaurin
(RM). We set η = 0.6 and iteration number K = 2, and change the dimension after CBP among
{1K, 2K, 4K, 8K, 10K}. As shown in Table 7, the accuracies generally increase as the dimension
increases. It is expected since the a larger dimension leads to a better approximation for the polyno-
mial kernel. Meanwhile, The accuracies achieved by TS are comparable with that achieved by RM.
By default, we use TS for compact bilinear pooling.

Time cost evaluation. We evaluate the time cost used in matrix normalization for compact bilinear
pooling (CBP). Since the Newton-Schulz iteration cannot be conducted on the original feature F, it
is incompatible with CBP. Thus, we only compare with Monet-2 (Gou et al. (2018)) which conducts
SVD on F. F ∈ R784×512 is in a larger size than B ∈ R512×512. Meanwhile, B is symmetric and
only needs compute its left singular vectors U as well as the singular values Σ. But F is asymmetric
and thus needs compute its right singular vectors VF besides UF and σF . Therefore, the FLOPs of
computing SVD on F shown in Table 8 is larger than the FLOPs of computing SVD on B shown in
Table 6. In contrast, the FLOPs of our RUN used for CBP is as the same as that used for original BP.
As shown in Table 8, achieving comparable or even better accuracies, we reduce the FLOPs from
4.21G to 3.2M. Moreover, we reduce the time cost in the GPU from 13850ms to 2.5ms, i.e., we
achieve a 5540× speedup. Note that, the GPU time cost speedup is larger than the FLOPs reduction
ratio since the proposed RUN better supported than SVD in the GPU platform.

4.5 COMPARISON WITH OTHER POOLING METHODS.

We compare with other pooling methods. First of all, we compare with two baselines, which re-
place the bilinear pooling by max-pooling and sum-pooling, respectively. As shown in Table 9,
the features from max-pooling and sum-pooling are compact, and they do not need the matrix nor-
malization. But accuracies achieved by them are lower than methods based on bilinear features.
We further compare with B-CNN (Lin et al. (2015)). Benefited from bilinear pooling, B-CNN has
achieved good performance but using high-dimensional features. Meanwhile, since there is no ma-
trix normalization, its performance is not as good as ours. We further compare with CBP (Gao et al.
(2016)) and LRBP (Kong & Fowlkes (2017)). CBP uses Tensor Sketch and Random Maclaurin to
reduce the feature dimension, whereas LRBP adopt the low-rank strategy for a compact feature.
Nevertheless, neither CBP nor LRBP adopts matrix normalization. Thus their classification accuries
are not as high as ours as shown in Table 9.

We further compare with Improved BCNN (Lin & Maji (2017)) and BCNN + Newton-Schulz (Lin &
Maji (2017); Li et al. (2018)). To make a fair comparison with BCNN + Newton-Schulz , we directly
use i-SQRT layer released by the authors of Li et al. (2018), and keep all other settings identical.
As shown in Table 9, they achieve high accuracies but generate high-dimension features and take
high cost in matrix normalization. Then we compare with MoNet-2 and MoNet (Gou et al. (2018)).
MoNet-2 achieves high accuracies and generate compact features, but the time cost in the matrix
normalization is extremely high. MoNet improves MoNet by fusing the first-order information,
achieving higher accuracies, but is also slow in matrix normalization. As shown in Table 9, using
CBP, our RUN achieves high accuracies, generates compact features and is very fast. Despite that,
we can also further improve the performance of the proposed RUN by fusing the first-order feature
likewise MoNet, it is not the focus of this paper.

5 CONCLUSION

We propose a fast rank-1 update normalization (RUN) method for addressing the burstiness in bilin-
ear matrix efficiently. Since it only takes several times of matrix-vector multiplications, the proposed
RUN not only takes cheap computation complexity in theory but also is well supported in the GPU
platform in practice. More importantly, the proposed RUN supports normalization on compact bilin-
ear features, which have broken the matrix structure. Meanwhile, RUN is differentiable and hence
can be easily plugged into a convolutional neural network, which supports an end-to-end training.
Our experiments on four datasets show that, combined with original bilinear pooling, we achieve
comparable or even better accuracies with a 330× speedup over Newton-Schulz iteration. More-
over, when using compact bilinear pooling, we achieve comparable or even better accuracies on
four benchmark datasets with a 5540× speedup over the SVD-based method.
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A APPENDIX

In this section, we prove the Theorem 1 in Section 3.

Recall that BK = B− εRK , where

RK = BvKv>K/‖vK‖22, (14)

Using SVD, we factorize
B = UΣU>, (15)

where U is orthonormal containing the singular vectors and Σ = diag(σ1, · · · , σD) is a diagonal
matrix containing singular values. According to Eq. (3), we have

vK = BKv0 = UΣKU>v0 = UΣKa, (16)

where a = U>v0. Plugging Eq. (15) and Eq. (16) into Eq. (14), we have

RK =
UΣK+1aa>ΣKU>

a>Σ2Ka
= UHU>, (17)

where H = (ΣK+1aa>ΣK)/(a>Σ2Ka). As v0 ∼ N (0, I) and UU> = I, thus a ∼ N (0, I).
That is, a’s entries {a1, a2, · · · , ad} are i.i.d random variables with normal distribution. Therefore,
the expectation of each off-diagonal entry of H is 0. That is, E(H) is a diagonal matrix. We rewrite
E(H) = diag(h1, · · · , hD) and

hl = E(σl(alσ
k
l )2/

D∑
i=1

(aiσ
k
i )2) = σlαl, (18)

where

αl = E((alσ
k
l )2/

D∑
i=1

(aiσ
k
i )2) (19)

In this case, proving Theorem 1 is equivalent to proving that αs ≥ αt if s < t. As we know

αs − αt = E
(a2sσ2k

s − a2sσ2k
t∑D

i=1 a
2
iσ

2k
i

)
. (20)
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We define bi = a2i and yi = σ2k
i , then seek to prove

αs − αt = E
(bsys − btyt∑D

i=1 biyi

)
≥ 0, if s < t. (21)

As ys ≥ yt and y1 ≥ y2 · · · ≥ yD, we obtain

bsys − btyt∑D
i=1 biyi

≥ yt
y1

bs − bt∑D
i=1 bi

. (22)

Thus,

E
(bsys − btyt∑D

i=1 biyi

)
≥ yt
y1

E
( bs − bt∑D

i=1 bi

)
. (23)

Since {ai}D1 are i.i.d, {bi}D1 are also i.i.d. Therefore,

E
( bs − bt∑D

i=1 bi

)
= E

( bs∑D
i=1 bi

)
− E

( bt∑D
i=1 bi

)
= 0. (24)

Plugging Eq. (24) into Eq. (23), we obtain

E
(bsys − btyt∑D

i=1 biyi

)
≥ 0. (25)

B APPENDIX

We compute the differentiation of F̄K based on Eq. (10):

dFK = dF− η (dF)vKv>K + F(dvK)v>K + FvK(dv>K)

v>KvK

+ η
(dv>K)vK + v>KdvK

(v>KvK)2
FvKv>K .

(26)

Meanwhile, Eq. (9) leads to

vK = (F>F)Kv0. (27)

Since v0 is a constant vector, based on Eq. (27), we obtain

dvK ≡ K(F>F)K−1[(dF>)F + F>dF]v0,

dv>K ≡ Kv>0 [(dF>)F + F>dF](F>F)K−1,
(28)

Plugging Eq. (28) in Eq. (26), we obtain

dFK =

4∑
i=0

l1i (F)dFr1i (F) +

4∑
j=1

l2j (F)(dF)>r2j (F), (29)

where {l1i (F), r1i (F)}4i=0 and {l2i (F), r2i (F)}4i=1 are

13
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l10(F) = I, r10(F) = I− ηvKv>K/(v
>
KvK),

l11(F) =
−ηKF(F>F)K−1F>

v>KvN
, r21(F) = v0v

>
K ,

l12(F) =
−ηKFvKv>0 F>

v>KvN
, r12(F) = (F>F)K−1,

l13(F) =
ηKv>0 F>

(v>KvK)2
, r13(F) = (F>F)K−1vKFvKv>K ,

l14(F) =
ηKv>K(F>F)K−1F>

(v>KvK)2
, r14(F) = v0FvKv>K ,

l21(F) =
−ηKF(F>F)K−1

v>KvK
, r21(F) = FvKv>K ,

l22(F) =
−ηKFvKv>0

v>KvK
, r22(F) = F(F>F)K−1,

l23(F) =
ηKv>0

(v>KvK)2
, r13(F) = F(F>F)K−1vKFvKv>K ,

l24(F) =
ηKv>K(F>F)K−1

(v>KvK)2
, r24(F) = Fv0FvKv>K .

(30)

According to the definition,

dL ≡ vec(
∂L

∂F
)>vec(dF) ≡ vec(

∂L

∂F̄K
)>vec(dF̄K). (31)

Since trace(AB>) ≡ vec(A)>vec(B), we further obtain

trace(dF>
∂L

∂F
) ≡ trace[dF̄>K

∂L

∂F̄K
] (32)

Plugging Eq. (29) into Eq. (32), we obtain

trace(dF>
∂L

∂F
) ≡ trace

{[ 5∑
i=1

l1i (F)dFr1i (F) +

4∑
j=1

l2j (F)(dF)>r2j (F)
]> ∂L

∂F̄K

}

≡ trace
{
dF>

[ 5∑
i=1

l1i (F)>
∂L

∂F̄K
r1i (F)> +

4∑
j=1

r2j (F)(
∂L

∂F̄K
)>l2j (F)

]}
.

(33)

Compare the LHS and RHS of Eq. (33), we obtain

∂L

∂F
=
[ 5∑
i=1

l1i (F)>
∂L

∂F̄K
r1i (F)> +

4∑
j=1

r2j (F)(
∂L

∂F̄K
)>l2j (F)

]
. (34)

Eq. (34) gives the backward path which takes ∂L/∂FK as input and outputs ∂L/∂F.
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(a) Phase 1 (b) Phase 2

Figure 4: The accuacy changes in the training process.

C APPENDIX

In this section, we plot the accuracy change of the proposed RUN in the whole training process. We
test it on the CUB dataset. We use the proposed RUN with compact bilinear pooling implemented
by tensor sketch and set the feature dimension as 10K. As we mentioned, the training is two-phase.
We plot the accuracy change in each phase in Figure 4.

15


	Introduction
	Matrix Normalization and Compact Bilinear Pooling
	Matrix Normalization
	Compact Bilinear Pooling

	Rank-1 Update Normalization (RUN)
	Experiments
	Datasets
	Implementation Details
	Ablation Study on Original Bilinear Pooling
	Ablation Study on Compact Bilinear Pooling
	Comparison with other pooling methods.

	Conclusion
	Appendix
	Appendix
	Appendix

