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ABSTRACT

Adversarial perturbations cause a shift in the salient features of an image, which
often results in misclassification. Previous work has suggested that these salient
features could be used as a defense, arguing that with saliency tools we could
successfully detect adversarial examples. While the idea itself is appealing, we
show that prior work which used gradient-based saliency tools is ineffective as an
adversarial defense – it fails to beat a simple baseline which uses the same model
but with the saliency map removed. To remedy this, we demonstrate that learnt
saliency models can capture the shifts in saliency due to adversarial perturbations,
while also having a low computational cost. This allows saliency models to be
used effectively as a real-time defense. Further, using the learnt saliency model,
we propose a novel defense: a CNN that distinguishes between adversarial images
and natural images using salient pixels as its input. On MNIST, CIFAR-10, and
ASSIRA, our defense improves on using the saliency map alone, and can detect
various adversarial attacks. Lastly, we show that even when trained on weak de-
fenses, we can detect adversarial images generated by strong attacks such as C&W
and DeepFool.

1 INTRODUCTION

Adversarial examples highlight a crucial difference between human vision and computer image pro-
cessing. Often computers fail to understand the relevant characteristics of an image for classification
(Ribeiro et al., 2016) or fail to generalize locally, i.e., misclassify examples close to the training data
(Szegedy et al., 2013). Attacks exploit this property by altering pixels the classifier heavily relies
on – pixels which are irrelevant to humans for object recognition. As a consequence, adversarial
perturbations fool classifiers while the correct class remains clear to humans.

Saliency maps identify the pixels an image classifier uses for its prediction; as such, they can be
used as a tool to understand why a classifier is fooled. Building on this concept, researchers have
shown qualitatively that adversarial perturbations cause a shift in the saliency of classifiers (Fong &
Vedaldi, 2017; Gu & Tresp, 2019). Figure 1 shows examples of a natural image and corresponding
adversarial images, each above their respective saliency maps. The saliency maps corresponding to
adversarial images show perceptible differences to that of the original image, even though adversar-
ial images themselves often seem unperturbed. For the original image, the saliency map shows that
the classifier focuses on the four (and a couple of random pixels on the left). We observe that for
the adversarial images, the classifier starts focusing more on irrelevant aspects of the left side of the
image.

There is ample research into different techniques for finding saliency maps (see e.g. Zeiler & Fergus,
2014; Springenberg et al., 2014; Bach et al., 2015; Ribeiro et al., 2016; Shrikumar et al., 2017;
Selvaraju et al., 2017; Zintgraf et al., 2017; Fong & Vedaldi, 2017). However, not all saliency
maps are equally informative (Fong & Vedaldi, 2017). For example, the Jacobian1 can be used to
determine the saliency of a pixel in the classification of the image (Papernot et al., 2016b; Zhang
et al., 2018). As the Jacobian is often used to generate adversarial examples, intuitively, we expect
that it can be used effectively to detect adversarial perturbations. Zhang et al. (2018) propose a
defense to this effect: they determine whether an input is adversarial, given the Jacobian-based

1i.e. the forward derivative of the classifier with respect to the input image
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Figure 1: Example of the saliency maps of natural and adversarial images for the MNIST dataset.
The top is the input image and the bottom shows the corresponding saliency map. In the second
row, lighter colours correspond to higher saliency (black corresponds to a saliency of 0, the lowest
possible value). The classifier predicts (from left to right) the images as: 4, 9, 9 , 8, 9, 9. Note
the stark difference between the saliency masks of the original image and those of the adversarial
examples.

saliency map concatenated with the image. However, as shown qualitatively by Gu & Tresp (2019),
gradients are not always able to capture differences between adversarial images and natural images
(for an example see Figures 7 and 8 in Appendix D).2 Here we inspect the proposed Jacobian-based
approach and show that only the concatenated input affects the technique’s performance in detecting
adversarial examples, with the Jacobian having no effect.

While gradients may not be informative for detection, saliency should be an effective tool for detect-
ing adversarial images. In our analysis, we use more powerful model-based saliency techniques and
show that the magnitude of the shift of the saliency map due to adversarial perturbations often ex-
ceeds the L2 distance between the saliency maps of different natural images. Building on this result,
we consider two different possible effects adversarial perturbations might have on the classifier:

1. They might cause the classifier to focus on the wrong pixel locations

2. They might change the pixel values of salient pixels

Based on these hypotheses, we employ two CNN classifier architectures to detect adversarial im-
ages. Claim (1) can be captured by shifts in saliency maps, as previously considered by Fong &
Vedaldi (2017). In this work, we extend on their analysis3 by proving the defensive capability of
our model-based saliency against difficult black-box attacks, such as C&W and DeepFool4, as well
as white-box adversarial attacks. By considering claim (2), we demonstrate that incorporating pixel
values improves the performance of the classifier when shifts in saliency maps do not suffice to cap-
ture adversarial perturbations. We also show that our salient-pixel based defense generalizes well
(detecting stronger attacks when trained on weaker attacks) and is more robust than the saliency
map defense against white-box attacks. Lastly, we demonstrate that saliency can be used to detect
adversarial examples generated by small perturbations, contrary to other defenses, which exhibit
threshold behavior: i.e., when the adversarial perturbation is too small, other defenses (specifically
Gong et al., 2017; Zhang et al., 2018) are unable to detect the adversarial images.

2 SALIENCY AND ADVERSARIAL EXAMPLES

Saliency maps and adversarial perturbations have similar mathematical formulations and deriva-
tions. Both are computed by investigating the relation between the values of pixels and the classi-
fication score. Adversarial examples are found by deriving the minimal perturbations required to
change the classification of an image. Saliency is computed by finding the pixels used by the model

2Similarly, Fong & Vedaldi (2017) show that gradient-based heat maps are less effective than other saliency
methods in detecting adversarial perturbations generated using BIM (Kurakin et al., 2016).

3Their main contribution is that saliency maps generated by different techniques are not equally effective in
capturing changes due to adversarial perturbations (produced using BIM (Kurakin et al., 2016).

4These attacks generate smaller L2 perturbations, making them more difficult to detect. The perturbation
size used by Fong & Vedaldi (2017) can likely still be detected by a simple classifier that trains on images.
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to determine the class of an object (Simonyan et al., 2013). Saliency maps can be found by consider-
ing the smallest part of an image that is sufficient for a correct classification, known as the smallest
sufficient region (SSR), or whose removal is sufficient for an incorrect classification, known as the
smallest destroying region (SDR) (Dabkowski & Gal, 2017; Fong & Vedaldi, 2017). Observe that
the latter definition of saliency is very close to that of adversarial examples.

Mathematically, both saliency maps and adversarial perturbations can be derived in a similar fashion.
Consider adversarial examples. The general formulation of an adversarial attack can be summarized
as follows:

minr||r||k
s.t. f(x+ r) = y′ 6= y

x+ r ∈ [0, 1]m
(1)

where x is the natural image, r is the adversarial perturbation, y is the correct class, and y′ is an
incorrect class. Due to the non-linearity of NNs, solving the above problem requires non-linear
optimization. Therefore, in practice several different approaches to solving the above formulation
have been implemented. For example, Goodfellow et al. (2014) set r = εsign( δf(x)δx ). Similarly,
saliency can be computed using the forward derivative δf(x)

δx (Papernot et al., 2016b; Zhang et al.,
2018).

Previous research has already started investigating the relation between saliency and adversarial
examples. This includes:

Using saliency to attack Researchers have devised adversarial attacks that use saliency (Papernot
et al., 2016b; Yu et al., 2018). The key idea is to use saliency to determine the pixel that is most
sensitive to perturbation iteratively. The main benefit is that fewer pixels are perturbed – often
perturbing as few as 4% of the pixels suffices to change the classification of the image (Papernot
et al., 2016b).

Using saliency to defend Fong & Vedaldi (2017) introduce a method that detects adversarial per-
turbations by using heat-map visualizations of the predicted class. However, in their analysis, they
only use BIM (Kurakin et al., 2016), which is easily detected. Further, Zhang et al. (2018) hypoth-
esize that there is a mismatch between the saliency of a classification model and the adversarial
example. They propose a defense against adversarial attacks by training a classifier on images con-
catenated with their saliency map, which is computed by calculating the Jacobian of the classifier
with respect to the image x, i.e., sx = ∇xf(x). Zhang et al. (2018) find that their method obtains a
high accuracy (often near 100%) when detecting adversarial images generated by FGSM, MIM, and
C&W attacks on MNIST, CIFAR-10, and 10-ImageNet. However, Gu & Tresp (2019) contradict
these results, and demonstrate that the gradients show imperceptible differences due to adversarial
perturbations (see Figures 7 and 8 in Appendix D).

Adversarial robustness and interpretability of models Fong & Vedaldi (2017) and Gu & Tresp
(2019)5 show that saliency maps can be used to explain adversary classifications. Both highlight
an important trend: not all techniques used to compute saliency maps show shifts in saliency maps
due to adversarial perturbations. Further, Tsipras et al. (2018) shows that more robust models have
more interpretable saliency masks. Etmann et al. (2019) quantify the relation by investigating the
alignment between the saliency map and the input image.

3 MODEL-BASED SALIENCY FOR THE DETECTION OF ADVERSARIAL
EXAMPLES

In this section, we explain how we construct and evaluate our saliency-based adversarial example
detectors.

5Work done by Gu & Tresp (2019) was in parallel.
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3.1 CLASSIFIER

We train a convolutional neural network image classifier, which we target with black-box attacks; the
architectures are summarized in Appendix A. We use cross-entropy loss and optimize the parameters
using Adam (Kingma & Ba, 2014) with the standard hyperparameters settings.

3.2 BLACK-BOX ATTACKS

In our analysis, we consider six different adversarial attacks: Fast Gradient Sign Method (FGSM),
Basic Iterative Method (BIM), Momentum Iterative Method (MIM), L2 Carlini & Wagner (2017b)
(C&W), Jacobian-based Saliency Map Approach (JSMA) and DeepFool (DF) (for each attack see
Goodfellow et al., 2014; Kurakin et al., 2016; Dong et al., 2018; Carlini & Wagner, 2017b; Papernot
et al., 2016b; Moosavi-Dezfooli et al., 2016, respectively). We use the implementation as provided
in cleverhans (Papernot et al., 2016a). The hyper-parameters are summarized in Appendix B.

3.3 MODEL-BASED SALIENCY

To generate saliency masks, we adapt the method used by Dabkowski & Gal (2017). Our rea-
son is twofold: the technique computes high-quality saliency masks at a low computational cost.
Dabkowski & Gal (2017) employ a U-Net with a novel loss function that targets SDR, SSR, mask
sparsity, and mask smoothness. We adapt the original loss function to omit the total variational term,
as mask smoothness is not required in our analysis.

Let fs = fs(x, fc(x)) denote the generated map. First, the map average AV (fs) is used to ensure
that the area of the map is small. Second, log(fc(Φ(x, fs))) is included to ensure that the salient
pixels suffice to identify the correct class. Finally, fc(Φ(x, 1 − fs)) is included to ensure that the
classifier can no longer recognize the class if the saliency map is removed. Therefore, our saliency
loss function is:

L(fs) = λ1AV (fs)− log(fc(Φ(x, fs))) + λ2fc(Φ(x, 1− fs))λ3 , (2)

where fc is the softmax probability of the class c, Φ(x, fs) applies mask fs to image x, and λi ≥ 0
are hyper-parameters.

We adapt the PyTorch implementation provided by Dabkowski & Gal (2017)6 and train the saliency
model on standard, non-adversarial images only. For evaluation, we use the same saliency model
for both natural and adversarial images. When generating the saliency maps for our images, we use
the predicted classification for feature selection to prevent an information leak (which would occur
if we use the true label).

3.4 DEFENSE

Our hypothesis is that if an image is adversarial, the classifier likely focuses on the wrong aspects
or the pixels on which it focuses are misleading (due to the perturbed color or intensity) when
classifying an image as adversarial. We consider two different cases by building classifiers for (1)
saliency maps and (2) salient pixels. For both classifiers, we use the same architecture (and hyper-
parameters) as for the black-box image classifiers (as summarized in Appendix A).

3.4.1 SALIENCY MAP: “THE CLASSIFIER FOCUSES ON THE WRONG PIXEL LOCATIONS”

We build a detector based on the saliency maps of images as follows. First, we train a classifier and
generate adversarial images for every natural image in the training dataset. Then we generate the
saliency maps for the clean data {fs(X)} and adversarial images {fs(Xadv)}. We build a binary
detector for the saliency maps, which predicts whether the corresponding image is adversarial or
natural. We abbreviate this defense as SMD (Saliency Map Defense). We do not concatenate the
saliency maps to the input image.

6The code is available at https://github.com/PiotrDabkowski/pytorch-saliency.
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3.4.2 SALIENT PIXEL: “THE PIXEL VALUES ARE WRONG”

We construct a second classifier for the salient pixels. We follow the same steps as outlined in the
previous section, aside from the final step. We define the salient pixels as fs(x) · x, where x is the
image, fs(x) is the saliency map corresponding to x and · denotes the element-wise product. We
abbreviate this defense as SPD (Salient Pixel Defense). Similarly to SMD, we do not concatenate
the saliency maps to the input image.

3.5 BENCHMARKS AND BASELINES

To benchmark our results, we consider two baselines. First, we train a baseline classifier that classi-
fies input as adversarial or natural based on the images alone. This allows us to evaluate the added
benefit of using saliency maps. This method was implemented by Gong et al. (2017). We abbreviate
this defense as ID (Image Defense).

Second, we compare our defense method with the saliency-based defense of Zhang et al. (2018) (see
Section 2). We abbreviate this defense as JSD, for Jacobian-based Saliency map Defense. In our
implementation, we adapt the method of Zhang et al. (2018); we find that if we use fs(x) = ∇xf(x)
as the saliency map it leads to underflow, resulting in a zero matrix. Therefore, instead we take the
derivative with respect to the logits, i.e. fs(x) = ∇xz(x).

JSD is mathematically related to the other defenses. First, it is more general compared to ID: the
filters of JSD can learn to ignore the Jacobian-based saliency, in which case the two methods are
equivalent. Further, JSD is similar to SMD, as the filters can learn to ignore the image input. In
this case, the only difference between JSD and SMD is that they use different techniques to derive
saliency. However, JSD differs from SPD, as CNN filters cannot multiply one channel by another.

3.6 EVALUATION WITH BLACK-BOX ATTACKS

We follow the evaluation protocol of Zhang et al. (2018) and train each defense to detect adversarial
images generated by a specific attack, thereby generating six different detection models (one for
each black-box attack). To generate the training data, we generate one adversarial example for
every clean image. The training data becomes [X,Xadv], where X denotes the clean data and Xadv

denotes the adversarial data, and the labels are [1n,0n], 1n and 0n are one- and zero-vectors of
length n, respectively. We use the same training procedure and models, as summarized in Appendix
A, and report the accuracy of the classifiers on the test dataset.

We compare the performance of the models on MNIST, CIFAR-10 and ASSIRA (see Burges &
Cortes, 1998; Krizhevsky et al., 2009; Elson et al., 2007, respectively). In addition to the two
frequently used benchmarks, we consider the ASSIRA cats and dogs dataset7 as it contains high-
quality images but is less computationally expensive than ImageNet.8 Further details on the datasets
can be found in Appendix A.

3.7 WHITE-BOX ATTACK

Many defenses hold up against black-box attacks but often are unable to defend against white-box
attacks (Carlini & Wagner, 2017a). For this reason, we generate white-box attacks tailored to the
defense strategy. Our white-box attacks are iterative gradient-based attacks, which target both the
classifier and the defense. Inspired by FGSM, we can target the classifier f as

xadv = Clip(x+ εsign(∇f(xadv))) (3)

and the defense d as
xadv = Clip(x+ εsign(∇d(xadv)), (4)

where Clip clips the pixels to the pre-defined maximum range. Using the above idea, we iterate
between Equations 3 and 4 to generate the white-box attack for ID (the defense based on image

7with the images scaled to 112× 112× 3 for computational reasons.
8In particular, JSMA would have required substantial time; other researchers have omitted this attack on

ImageNet due to the high computational cost that results from the high resolution of the images (Carlini &
Wagner, 2017b).
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classification). We propose similar white-box attacks for the other defenses, as shown in Appendix
C. We limit the number of iterations T to 5, as we find it to be adequate to generate a sufficiently
strong attack and further increasing T does not improve the performance.

Our method is similar to that of Metzen et al. (2017). They propose finding adversarial examples as:

xadv = Clip(xadv + ε(αsign(∇f(xadv)) + (1− α)sign(∇d(xadv))), (5)

where in our case α = 0.5. The key difference is that we iterate between Equations 3 and 4, rather
than applying 3 and 4 simultaneously. We find that this is more effective at targeting the defense,
which is more difficult to fool than the original classifier.

4 DEFENSE RESULTS

We start by assessing the shift in saliency maps generated by adversarial perturbations and then
present the efficacy of the detector against different adversarial attacks. Details, such as attack
success rate, can be found in Appendix B.

4.1 L2 DISTANCES BETWEEN SALIENCY MAPS

We start by quantifying the shift in saliency maps due to adversarial perturbations; we compute the
L2 distance between saliency maps of a natural image and its corresponding adversarial image. As a
baseline, we compare these values with the L2 distance between two different natural images. These
statistics are summarized in Table 5.

For CIFAR-10 and ASSIRA, the L2-norm between the saliency maps of a natural image and its cor-
responding adversarial image is comparable to or larger than the L2 distance between two different
natural images. Using a Mann-Whitney U-test, we prove quantitatively that the shift is significant for
most adversarial attacks on CIFAR-10 and ASSIRA images. This suggests that our saliency-based
method is an effective way of capturing adversarial perturbations.

Table 1: L2 distance between (1) saliency maps of different images (row labelled Different Images)
and (2) the saliency maps of natural images and the adversarial image (generated by the type of attack
specified in the row). The entries correspond to MNIST/CIFAR-10/ASSIRA. The p-value is
derived using the Mann Whitney U-test, where we test whether the sample of L2 distances between
a natural and adversarial image is from the same distribution as different images. We use a non-
parametric test to avoid assuming normality of the data.

STATISTIC
MEAN (100/10−1/10−1) STD (100/10−1/10−1) P-VALUE

DIFFERENT IMAGES 0.13/0.75/0.26 0.03/0.28/0.03
FGSM 0.09/0.83/0.29 0.03/0.27/0.03 0.00/0.00/0.00
BIM 0.08/0.76/0.29 0.03/0.27/0.03 0.00/0.31/0.00
MIM 0.08/0.76/0.29 0.04/0.27/0.03 0.00/0.39/0.00
C & W 0.11/0.80/0.29 0.04/0.27/0.03 0.00/0.00/0.00
DF 0.07/0.81/0.30 0.03/0.27/0.03 0.00/0.00/0.00
JSMA 0.10/0.88/0.29 0.03/0.27/0.03 0.00/0.00/0.00

4.2 BLACK-BOX DEFENSE

Figure 2 summarizes the performance of the defense models trained on a single adversarial attack on
different adversarial attacks; the values and standard deviations can found in Appendix G. The over-
all performance of the model-based saliency defense suggests that saliency can be used to determine
whether an image is adversarial.

Salient Pixel Defense outperforms Saliency Map Defense Overall, SPD (shown in blue) out-
performs the other defenses, suggesting that the salient pixels provide useful information to the
detector. Further, our defense generalizes well: even when trained on a weaker attack, SPD is able
to detect stronger attacks. Both baseline methods, ID and JSD, only generalize well when trained on
a stronger attack. When trained on a weaker attack, they are not able to detect stronger adversarial
attacks.
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Figure 2: From left to right: performance of SPD, SMD, ID and JSD in detecting adversarial ex-
amples when trained on FGSM, BIM, MIM, DF, CW and JSMA. Rows correspond to MNIST,
CIFAR-10 and ASSIRA, respectively.

Jacobian-based Saliency is Uninformative The method introduced by Zhang et al. (2018) does
not perform well – the (Jacobian) saliency mask defense does not improve on an image-based de-
fense.9 A congruent observation was made qualitatively by Gu & Tresp (2019), who show that the
changes in gradient due to adversarial perturbations are imperceptible (for an example, see Figures
7 and 8 in Appendix D). Our quantitative results build on their observation, showing that not all
saliency methods show shifts due to adversarial perturbations.

Worse generalization on JSMA We observe a drop in performance of the models when detecting
JSMA, likely because JSMA is an L0-norm attack, which generates a different type of adversarial
examples. This may suggest that defenses trained on a specific norm, only generalize well to other
attacks generated by a norm that produces similar perturbations. FGSM, BIM, and MIM are L∞-
norm attacks, and C &W and DF are L2-norm attacks. Both generate perturbations that are spread
out over the entire image, contrary to L0 norm attacks, which changes a few pixels using larger
perturbations.

Threshold Behavior Both ID and JSD exhibit threshold behavior: they are unable to detect adver-
sarial examples if the perturbation size is below a given threshold. For example, see the performance
of both defenses on the ASSIRA dataset. There is a strong correlation between detection accuracy
and perturbation size, as measured by L∞ and L2 (see Table 2). ID is able to detect all adversar-
ial images for which the perturbation size is either L2 > 0.027 or L∞ > 0.50, such as FGSM
and JSMA.10 However, the perturbations are much smaller for DF and CW, making these attacks
harder to detect. The threshold appears to occur around L2 = 0.025, as ID can sometimes detect the
FGSM perturbations, generated with this size. This observation is in line with the results of Gong
et al. (2017), who find that ID is highly efficient at detecting adversarial images with perturbations
of ε ≥ 0.03 but unable to detect adversarial perturbations generated using ε = 0.01 (using FGSM
for images scaled between 0 and 1), obtaining an accuracy of 50.0% in the latter case.11

9We observe that JSD performs similarly, although sometimes worse, compared to ID. Theoretically, the
parameter space of ID is a subset of the parameters of JSD. The additional input (the Jacobian) makes the
model more difficult to train. Therefore, the difference in results can be attributed to training: the model is
more difficult to train due to the increased number of parameters and does not learn to ignore the additional
input.

10FGSM is known to generate large perturbations. The perturbations for JSMA are relatively large as the
attack minimizes the L0 norm, thereby perturbing as few pixels as possible, but by a large amount.

11Our perturbations for FGSM are larger than 0.01 to ensure that FGSM is sufficiently strong (see Appendix
B for a summary of the attack success rates).
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Table 2: Perturbation Sizes of Different Attacks. Entries correspond to MNIST/CIFAR-
10/ASSIRA. Entries for which ||r||2 ≥ 0.025 and ||r||∞ ≥ 0.5 are in bold, where r is the adversarial
perturbation. m is the number of pixels in an image.

ATTACK PERTURBATION RATE PERTURBATION SIZE
(L0/m) L2 L∞

FGSM 0.61/0.94/0.99 0.15/0.19/0.025 0.20/0.20/0.025
BIM 0.64/0.82/0.81 0.09/0.06/0.013 0.15/0.15/0.025
MIM 0.62/0.91/0.93 0.10/0.11/0.019 0.15/0.15/0.025
C & W 0.99/1.00/1.00 0.027/0.0017/0.0017 0.32/0.013/0.037
DF 0.61/0.83/0.99 0.062/0.0019/0.0020 0.45/0.013/0.044
JSMA 0.13/0.03/0.03 0.30/0.039/0.013 1.00/0.77/0.50

4.3 WHITE-BOX DEFENSE

Table 3 summarizes the performance of different defenses against our white-box attack. Our white-
box methods are highly effective in fooling the classifier as well as the defenses for MNIST and
ASSIRA, as shown by the before adversarial training results. The white-box attack is unable to fool
the detector for CIFAR-10 successfully.

Next, we perform adversarial training: we iteratively train the detectors against the white-box attack
and allow the white-box attack access to the new defense. The white-box attack no longer suc-
cessfully defeats SPD, which becomes more robust against the attack, whereas SMD is not able to
become robust against the white-box attack.

Table 3: Performance of the different defenses against white-box attacks. Classifier accuracy refers
to the accuracy of the image classification. Defense accuracy refers to the accuracy of the adver-
sarial image detector (i.e. the ability to distinguish adversarial images from natural images). The
entries correspond to MNIST/CIFAR-10/ASSIRA and the values in the parentheses below denote
standard deviations.

MODEL DEFENSE
SMD SPD
Before Adversarial Training

CLASSIFIER 0.0/0.00/0.03 0.0/0.00/0.13
(0.00)/(0.00)/(0.01) (0.00)/(0.00)/(0.01)

DETECTOR 0.05/0.50/0.35 0.18/0.95/0.33
(0.02)/(0.07)/(0.06) (0.10)/(0.01)/(0.01)

After Adversarial Training
CLASSIFIER 0.03/0.00/0.02 0.00/0.00/0.04

(0.03)/(0.00)/(0.00) (0.00)/(0.00)/(0.04)
DETECTOR 0.25/0.44/0.43 0.79/0.93/0.71

(0.20)/(0.00)/(0.07) (0.00)/(0.01)/(0.06)

5 CONCLUSION

In our analysis, we ascertain that the saliency maps of adversarial images differ from those of nat-
ural images. Further, we show that salient pixel based defenses perform better than a saliency map
defense. When trained on a single black-box attack, our method is able to detect adversarial pertur-
bations generated by different and stronger attacks.

We show that gradients are unable to capture shifts in saliency due to adversarial perturbations and
present an alternative adversarial defense using learnt saliency models that is effective against both
black-box and white-box attacks. Building on the work of Gong et al. (2017), we further establish
the notion of threshold behavior, showing that the trend depends on the L2 and L∞- norms of
the perturbations and therefore also prevails when using other methods (JSD) and across different
attacks.

Future work could further investigate the performance of the defense in different applications. For
example, as our method runs in real-time, it could be used to detect adversarial perturbations in
video to counter recent attacks (Li et al., 2018; Jiang et al., 2019).
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A ARCHITECTURES, HYPER-PARAMETERS AND DATA

Figure 3: ASSIRA, CIFAR-10, and MNIST image classifier architecture and hyper-parameters. The
first entry corresponds to the first layer, and the table proceeds chronologically until the last layer.
Parameters f, k, p, s and n represent the number of filters, kernel size, pooling size, stride, number
of filters, respectively. If stride is omitted, it is set to 1. All classifiers have a final softmax activation.

ASSIRA CATS AND DOGS
LAYER PARAMETERS
2 X CONV LAYER f = 64, k = 3
MAXPOOLING p = 2, s = 2
2 X CONV LAYER f = 128, k = 3
MAXPOOLING p = 2, s = 2
2 X CONV LAYER f = 256, k = 3
MAXPOOLING p = 2, s = 2
2 X CONV LAYER f = 512, k = 3
MAXPOOLING p = 2, s = 2
FLATTENING LAYER -
DENSE n = 256
DENSE n = 256
DENSE n = 2

MNIST
LAYER PARAMETERS
2 X CONV LAYER f = 64, k = 8
2 X CONV LAYER f = 128, k = 6
2 X CONV LAYER f = 128, k = 3
FLATTENING LAYER -
DENSE n = 10

CIFAR-10
LAYER PARAMETERS
2 X CONV LAYER f = 32, k = 3
2 X CONV LAYER f = 32, k = 3
MAXPOOLING p = 2, s = 2
2 X CONV LAYER f = 63, k = 3
2 X CONV LAYER f = 63, k = 3
MAXPOOLING p = 2, s = 2
2 X CONV LAYER f = 128, k = 3
2 X CONV LAYER f = 128, k = 3
MAXPOOLING p = 2, s = 2
FLATTENING LAYER -
DENSE n = 128
DENSE n = 10

We apply drop-out before every dense layer. Using a validation set, we experimented with different
drop-out rates between 0.3 and 0.7 and found that the rate δ = 0.6 was optimal. We use a ReLu
activation for the penultimates layers and a softmax activation for the final layer. We train the model
for 10 epochs on batches of size 50.

We compare the performance of the models on MNIST, CIFAR-10 and ASSIRA (see Burges &
Cortes, 1998; Krizhevsky et al., 2009; Elson et al., 2007, respectively). For MNIST and CIFAR-10,
we use the standard train and test splits, and for ASSIRA, we use 3, 000 images. We use 10% of the
training data for the validation set, and re-train on the full training dataset once hyper-parameters
were selected.

Further experimentation of ID and JSD architecture We further experiment with the architec-
tures of ID and JSD to determine whether the observed performance was the result of the architec-
ture. In particular, we considered the adjustments as summarized in Table A; however, we found
that the changes did not improve performance.

ARCHITECTURE EXPERIMENTATION
PARAMETER VALUES/ VARIATION
DROPOUT INCLUSION/EXCLUSION
OPTIMIZATION ADAM, SGD, RMS-PROPOGRATION
NO. CONV LAYERS 3− 9
NO. HIDDEN UNITS STARTING AT 32 OR 64, AND DOUBLING OR REMAINING CONSTANT
NO. DENSE LAYERS 1− 3
POOLING LAYERS INCLUSION/EXCLUSION
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B ADVERSARIAL ATTACKS

In this section, we present the black-box adversarial attack hyper-parameters (see Figure 4), the
success rates of the different adversarial attacks (see Table 4) and an example of an adversarial
image generated by the various black-box attacks (see Figure 5).

Figure 4: Adversarial attack hyper-parameters. For the hyper-parameters not listed, the default
values in cleverhans (Papernot et al., 2016a) are used. ε is the maximum perturbation allowed and
εi is the maximum perturbation allowed in an iteration. We use different hyperparameters for the
MNIST and CIFAR-10 to ensure the attack is sufficiently strong.

ASSIRA
Attack Norm Hyper-parameter
FGSM L∞ ε = 0.025
BIM L∞ ε = 0.025, εi = 0.0025
MIM L∞ ε = 0.025, εi = 0.0025
C & W L2 binary search steps = 3
DF L2 max. iterations = 2
JSMA N.A. ε = 0.025

MNIST and CIFAR-10
Attack Norm Hyper-parameter
FGSM L∞ ε = 0.20
BIM L∞ ε = 0.15, εi = 0.015
MIM L∞ ε = 0.15, εi = 0.015
C & W L2 binary search steps = 3
DF L2 max. iterations = 2
JSMA N.A. ε = 0.05

Table 4: Accuracy of Classifier on (1) natural images (corresponding to the row Baseline) and
adversarial images (corresponding to the remaining rows). Entries correspond to MNIST/CIFAR-
10/ASSIRA.

ATTACK ACCURACY
BASELINE 99.12/85.02/92.06
FGSM 19.27/11.11/19.21
BIM 17.07/10.16/9.21
MIM 22.00/10.09/9.21
C & W 6.86/8.99/7.94
DF 0.91/8.80/7.94
JSMA 6.05/1.86/7.94

Original FGSM BIM MIM JSMA C & W DF

Figure 5: Example of an Adversarial Image for the MNIST dataset. From top to bottom: the top row
is the set of images; the bottom row shows the size of the noise added. Gray indicates no change,
whereas white indicates that the image has been made lighter, and black indicates that the image
has been made darker. As MNIST images are gray-scale low-resolution images, the adversarial
perturbations are perceptible to the human eye. Nevertheless, the correct classification of the image
is still clearly 4. However, the classifier predicts (from left to right) the images as: 4, 9, 9 , 8, 9, 9.
Further, we observe that the perturbations of FGSM, BIM, and MIM are more visible than those of
C & W and DF.
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C WHITE-BOX ATTACKS PSEUDO-CODE

Algorithm 1 White-box attack for JSD
1: xadv ← x
2: for t = 0 : T do
3: for j = 1 : n do
4: if xadv does not fool the classifier then
5: xadv ← xadv + εsign(∇f(xadv, y))
6: end if
7: if xadv does not fool the detector then
8: sadv ← ∇f(xadv)
9: [xadv, sadv]← [xadv, sadv] + εsign(∇d([xadv, sadv], y))

10: xadv ← Clip(xadv)
11: end if
12: end for
13: end for
14: return xadv

Algorithm 1 provides the white-box attack for JSD. As mentioned in Section 2, JSD concatenates
the image with its saliency map (computed as the Jacobian) and uses this as an input to the classifier.
Algorithms 2 and 3 provide the white-box attacks for our defenses: SPD and SMD. The function
fs corresponds to generating the saliency map using the method introduced by Dabkowski & Gal
(2017). Their method returns a two-dimensional saliency map. However, as the image is three
dimensions, we expand the last dimension and stack the map to match the number of channels (nc)
of the image. In doing so, we assume that the saliency is constant along depth.

Algorithm 2 White-box attack for SPD
1: xadv ← x
2: for j = 1 : n do
3: for t = 1 : T do
4: if xadv does not fool the classifier

then
5: xadv ← xadv +εsign(∇f(xadv, y))
6: end if
7: sadv ← fs(xadv)
8: sp(xadv)← xadv · sadv
9: if sp(xadv) does not fool the detector

then
10: r ← εsign(∇d(sp(xadv), y)
11: if nc > 1, repeat r along the last

dimension until it matches nc
12: xadv ← Clip(xadv + r)
13: end if
14: end for
15: end for
16: return xadv

Algorithm 3 White-box attack for SMD
1: xadv ← x
2: for j = 1 : n do
3: for t = 1 : T do
4: if xadv does not fool the classifier

then
5: xadv ← xadv +εsign(∇f(xadv, y))
6: end if
7: sadv ← fs(xadv)
8: if sadv does not fool the detector then
9: r ← εsign(∇d(sadv, y))

10: if nc > 1, repeat r along the last
dimension until it matches nc

11: xadv ← Clip(xadv + r)
12: end if
13: end for
14: end for
15: return xadv
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D SALIENCY MAPS

D.1 MODEL-BASED SALIENCY MAPS

Original FGSM BIM MIM JSMA C & W DF

Figure 6: Example of the saliency maps of natural and adversarial images for the ASSIRA cats and
dogs dataset. The top row shows the input image and the bottom shows the corresponding saliency
map. In the saliency row, lighter colours correspond to higher saliency (black corresponds to a
saliency of 0, the lowest possible value). The classifier predicts dog for the original image and cat
for the adversarial images. Note the stark difference between the saliency masks of the original
image and those of the adversarial examples.

D.2 GRADIENT-BASED SALIENCY MAPS

Original FGSM BIM MIM JSMA C & W DF

Figure 7: Examples of gradient-based saliency maps for MNIST. The first row shows the natural
and adversarial images and the second row shows their respective saliency maps. Although there are
slight deviations between the saliency maps, if the maps were unlabelled, it would be unclear which
maps belong to adversarial examples as opposed to the original image.

Original FGSM BIM MIM JSMA C & W DF

Figure 8: Examples of gradient-based saliency maps for ASSIRA. The first row shows the natu-
ral and adversarial images, and the second row shows their respective saliency maps. There are
no perceptible differences between the saliency map of the original image and adversarial images
generated using MIM, C&W, and DF. Further, we observe that for FGSM and JSMA, the gradients
are all zero-valued. This is a second drawback of using gradients– they are unstable and generate
uninformative saliency maps due to underflow.
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E L2 DISTANCES BETWEEN SALIENCY MAPS CORRESPONDING TO
ADVERSARIAL IMAGES GENERATED BY DIFFERENT ATTACKS

Table 5: MNIST/ASSIRA: L2 distance between saliency maps generated by different adversarial
attacks

BIM MIM C &W DF JSMA
FGSM 0.05/0.07/0.01 0.04/0.07/0.01 0.12/0.07/0.02 0.07/0.08/0.02 0.11/0.07/0.02

(0.03)/(0.03)/(0.01) (0.03)/(0.03)/(0.01) (0.04)/(0.03)/(0.01) (0.03)/(0.03)/(0.01) (0.01)/(0.03)/(0.03)
BIM 0.02/0.03/0.00 0.12/0.05/0.01 0.01/0.05/0.02 0.11/0.07/0.01

(0.02)/(0.02)/(0.00) (0.04)/(0.03)/(0.00) (0.03)/(0.03)/(0.01) (0.03)/(0.03)/(0.00)
MIM 0.12/0.06/0.01 0.06/0.06/0.01 0.11/0.07/0.01

(0.04)/(0.03)/(0.00) (0.03)/(0.03)/(0.01) (0.03)/(0.03)/(0.00)
CW 0.11/0.02/0.00 0.13/0.07/0.00

(0.05)/(0.03)/(0.01) (0.03)/(0.03)/(0.00)
DF 0.10/0.02/0.01

(0.04)/(0.03)/(0.01)

F SINGLE BLACK-BOX ADVERSARIAL ATTACK DETECTOR

Table 6 summarizes the accuracies of the different defenses when training a single detector against
a combination of different types of black-box attacks. All methods perform relatively similarly as
when trained against a single defense, obtaining slightly worse performances than when trained
against a specific adversarial attack. This is useful in practice when it is unclear which adversarial
attack is used.

Table 6: Performance of the different defenses against the combination of all black-box attacks.
The entries are the accuracy of the defense in distinguishing natural and adversarial images for
MNIST/CIFAR-10/ASSIRA. The values in parentheses below denote standard deviations.

DEFENSE
BASELINES OUR METHODS

ID JSD SMD SPD
1.00/0.61/0.50 0.99/0.58/0.50 0.96/1.00/1.00 0.99/1.00/1.00
(0.00)/(0.16)/(0.00) (0.01)/(0.11)/(0.00) (0.03)/(0.00)/(0.00) (0.00)/(0.00)/(0.00)
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