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Abstract
A prime challenge in building data driven inference models is the unavailability of statistically sig-
nificant amount of labelled data. Since datasets are typically designed for a specific purpose, and
accordingly are weakly labelled for only a single class instead of being exhaustively annotated.
Despite there being multiple datasets which cumulatively represents a large corpus, their weak la-
belling poses challenge for direct use. In case of retinal images, they have inspired development
of data driven learning based algorithms for segmenting anatomical landmarks like vessels and
optic disc as well as pathologies like microaneurysms, hemorrhages, hard exudates and soft exu-
dates. The aspiration is to learn to segment all such classes using only a single fully convolutional
neural network (FCN), while the challenge being that there is no single training dataset with all
classes annotated. We solve this problem by training a single network using separate weakly la-
belled datasets. Essentially we use an adversarial learning approach in addition to the classically
employed objective of distortion loss minimization for semantic segmentation using FCN, where
the objectives of discriminators are to learn to (a) predict which of the classes are actually present in
the input fundus image, and (b) distinguish between manual annotations vs. segmented results for
each of the classes. The first discriminator works to enforce the network to segment those classes
which are present in the fundus image although may not have been annotated i.e. all retinal images
have vessels while pathology datasets may not have annotated them in the dataset. The second dis-
criminator contributes to making the segmentation result as realistic as possible. We experimentally
demonstrate using weakly labelled datasets of DRIVE containing only annotations of vessels and
IDRiD containing annotations for lesions and optic disc. Our method using a single FCN achieves
competitive results over prior art for either vessel or optic disk or pathology segmentation on these
datasets.
Keywords: Adversarial learning, convolutional neural networks, multitask learning, semantic seg-
mentation, retinal image analysis.

1. Introduction

The precise segmentation of retinal anatomies and pathologies serves as an important tool for diag-
nosis and evaluation of various metabolic and ophthalmic disorders such as diabetes, hypertension,
glaucoma and choroidal neovascularization, etc. (Bowling, 2015). Experts can analyze changes
in vascular morphology by segmenting the retinal vessels. Vessel and optic disk segmentation fol-
lowed by localization of fovea region by Haddouche et al. (2010) is the first step for the quantitative
analysis of retinal images which is helpful for diabetic retinopathy (DR) screening and diagnosis
(Teng et al., 2002). DR is the leading cause of blindness in the working-age population. Screening
for DR and monitoring disease progression, especially in the early asymptomatic stages, is effective
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for preventing visual loss and reducing costs for health systems (Nentwich and Ulbig, 2015). The
most common signs of DR are red lesions symptomatic of microaneurysms, hemorrhages and bright
lesions symptomatic of exudates. However, it is tedious and time consuming to segment retinal dis-
eases or anatomies manually, especially in fundus images. Thus ability to automatically and reliably
segment all structures is a long-standing problem since decades.

One of the major challenges in this task is the absence of a single dataset which contains ex-
haustive pixel level semantic annotation of all parts of the retina. However this task of creating such
a dataset being a highly taxing job, we propose to employ multiple readily available datasets which
have reliable annotations for some of the classes, with no necessity of any single dataset having all
given classes annotated and there also not being common classes annotated across different datasets.
This paper proposes a single model that can learn from separate datasets to predict all classes in a
given retinal image. We address this problem by utilizing multiple adversaries for addressing it as a
multitask approach. The convolutional neural network for semantic segmentation tries to generate
segmentation maps which visually resemble the ground truth. Two discriminators are used; one
for distinguishing between manual vs. segmented maps and the other for determining which of the
various classes are present in the fundus image. The first discriminator contributes to making the
segmentation result as realistic as possible, thus learning to capture the finer details. The second
discriminator works to enforce the model to learn to segment for all classes which are present and
are not just limited to those which are annotated in a particular image. Results show the superior
performance of the proposed method over several existing methods of vessel segmentation in terms
of sensitivity, specificity and classification accuracy. The method reduces over-segmentation i.e.
the presence of false positives as compared to previous state-of-the-art. Comparison with the results
from the leaderboard in the Diabetic Retinopathy Segmentation and grading challenge 1 show that
proposed method achieves better area under Precision vs Sensitivity curve for the different lesions
and surpasses Jaccard Index scores for Optic Disk segmentation.

The paper is organized as follows. The existing methods for vessel and lesion segmentation are
analyzed in Section 2. A thorough description of the overall proposed adversarial learning method
and network architectures is presented in Section 3. Section 4 presents details of the experiments,
setup and evaluation criteria. In Section 5, the results are presented and compared to existing meth-
ods. Section 6 concludes the paper.

2. Related Work

The existing segmentation methods can be divided into supervised or unsupervised categories ac-
cording to whether the manual labeled ground truths are used or not.

Azzopardi and Petkov (2013) proposed to use a matched filtering method which convolves a 2-D
kernel with the retinal image where the matched filter response indicates the presence of the feature.
Salazar-Gonzalez et al. (2014) first carried out a preprocessing for the image by adaptive histogram
equalization and robust distance transform, and then segmented retinal vessels with graph cut. Other
methods include the vessel profile analysis (Wang et al., 2007), active contour based segmentation
(Al-Diri et al., 2009), line detection (Ricci and Perfetti, 2007) and cluster based models (Emary
et al., 2014). In case of diabetic retinopathy the first solutions were trained to detect lesions using
manual segmentation for supervised classification (Mookiah et al., 2013). Ali et al. (2013) uses a
statistical atlas for exudate segmentation, while Inoue et al. (2013) uses Eigen value analysis and

1. https://idrid.grand-challenge.org/Home/
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Hessian matrix for microaneurysm segmentation. Most of these models employed a supervised
approach for the specific segmentation task and employed curated datasets suitable only for a given
task in hand, weakly labelling only a few of all the evailable classes in the images.

Supervised learning generally requires annotated data in order to build a predictive model. These
methods can be regarded as a pixel-level binary classification problem. Each pixel belongs to vessel
or non-vessel. There are two parts to segmentation using supervised approaches. One is an ex-
tractor to extract the feature vectors of pixels; the other one is a classifier to map extracted vectors
to the corresponding labels for each pixel. A number of feature extractors like the Gabor filters
(Akram et al., 2014), the Gaussian filter (Zhang et al., 2010) have been used previously. Various
classifiers such as k-NN classifier (Staal et al., 2004), support vector machine (SVM) (Gandhi and
Dhanasekaran, 2013), artificial neural networks (ANN) (Garcı́a et al., 2009), AdaBoost (Lupascu
et al., 2010) etc, have been proposed to deal with the task.

With the advent of deep learning, there have been numerous studies that investigated the ves-
sel segmentation problems using convolutional neural networks (CNNs). Liskowski and Krawiec
(2016) proposed a supervised segmentation architecture that used a deep neural network learned
with a large training dataset which was preprocessed via global contrast normalization, zero-phase
whitening, geometric transformations and gamma corrections. Tan et al. (2017) used a CNN for
segmentation of haemorrhages, exudates and microaneurysms. Fu et al. (2016) regarded the seg-
mentation as a boundary detection problem and they combined the CNN and conditional random
field (CRF) layers into an integrated deep network to achieve their goal.

The effectiveness of the method proposed by Luc et al. (2016) and Ganin et al. (2016) for
semantic segmentation tasks gives rise to the motivation for using a adversarial approach. The next
section describes in detail the proposed multitask adversarial learning method for retinal anatomy
and pathology segmentation while learning the single task from multiple weakly labelled datasets.

3. Methodology

In the proposed approach, the challenge of segmentation is formulated as a task of pixel-wise clas-
sification of the retinal images using a fully-convolutional neural network. An adversarial approach
is used for training of the segmentation network as shown in Figure 1. Given an image I of size
3×M×N the problem of segmentation can be formulated as a pixel-wise classification task where
each pixel is assigned a label L ∈ { l1, l2, . . . , lC } such that an output tensor O of size C×M×N
is generated, where C is the number of classes. Each channel of O corresponds to one of the
classes: background, retinal vessels, optic disk, microaneurysms, hemorrhages, hard exudates and
soft exudates. The background is excluded for calculation of segmentation loss and for input to the
discriminators, so as to prevent inconsistency in the form of the model learning optic disk as a part
of background for DRIVE (Staal et al., 2004) images and retinal vessels as background for IDRiD2

images. The input to Discriminator 1 is the retinal image concatenated with the channels of the out-
put segmentation map without the background channel. These channels are randomly shuffled by a
ChannelShuffler(). It provides a one-hot vector n̂1 of length C− 1 in the output which determines
which of the channels were present in the input retinal image. In case of a healthy retinal image
which consists of only retinal vessels and optic disk without any pathology, the target vector would
be n1 = {1,1,0,0,0,0}, while if in a given image the only pathology present is hemorrhage, then
n1 = {1,1,0,1,0,0}.

2. http://dx.doi.org/10.21227/H25W98
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Figure 1: The proposed methodology: Segmentation network outputs a C channel tensor. Discrim-
inator 1 is fed the shuffled segmented maps concatenated with the original image. The
segmented maps are masked with vector m and then concatenated with the groundtruth
maps in random order and fed to Discriminator 2.

The task of Discriminator 2 is to distinguish between manual and segmented maps. The seg-
mented maps are masked with a one-hot vector m = {m1,m2, . . . ,mC}, where mc is 1 if the class
is annotated and 0 otherwise. This masking is done so that when the ground truth of a class is not
present i.e. blank, the output segmented channel of that class is also masked out to avoid uncertainty
in loss measures. Thus, Discriminator 2 will focus only on differentiating between manual vs. seg-
mented maps for the classes that are annotated in a particular image. The manual and segmented
maps are concatenated in random order with probability p from an uniform distribution p∼U(0,1)
and fed in one go. Discriminator 2 provides as a output a one-hot vector n̂2 of length 2 for this task.
Discriminators are trained using Binary Cross Entropy loss function given as

LDi (n̂i,ni) =−
1

CDi

CDi

∑
j=1

(ni, j log(n̂i, j)+(1−ni, j) log(1− n̂i, j)) (1)

where ni = {ni, j}, n̂i = {n̂i, j} are the target and output for the discriminator Di respectively for
i ∈ 1,2 and CDi denotes the length of the output vector of Di. Discriminator 1 corresponds to D1
with CD1 = 6 and Discriminator 2 corresponds to D2 with CD2 = 2.

The basic segmentation loss is also calculated using Binary Cross Entropy loss. During training
of the segmentation network a weighted sum of the segmentation loss and discriminator loss is used.

LSeg-BCE(O,T) =− 1
MN

C−1

∑
k=1

M

∑
i=1

N

∑
j=1

(Ti, j,k log(Oi, j,k)+(1−Ti, j,k) log(1−Oi, j,k)) (2)

LSeg(O,T) = λLSeg−BCE(O,T)+LD1(n̂1,n1)+LD2(n̂2,n2) (3)
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where the trade-off coefficient λ balances two objective functions. T = {Ti, j,k}, O are the target and
output for the segmentation network respectively and C denotes the number of classes.

3.1. Dataset Normalization

Retinal images have irregularities in illumination and noise, thus enhancements are performed on
the fundus images. On every input image I, contrast limited adaptive histogram equalization is
applied to enhance the contrast and also ensure that the images of both the datasets become more
similar to each other, for the model to be able to predict classes which are not annotated. A 3× 3
median filter is then applied to reduce the noise in background of the image. Finally the intensity
values are scaled to [0,1] to obtain the preprocessed image I to be operated upon.

3.2. Network Structure

Inspired by the fully convolutional networks (Long et al., 2015) a CNN architecture with skip con-
nections is used as the segmentation network. The main path follows the typical architecture of the
VGG 16 network (Simonyan and Zisserman, 2015). It consists of the repeated application of 3×3
convolutions with padding for same size, each followed by a rectified linear unit and a 2× 2 max
pooling operation with 2 pixels stride for downsampling to reduce the amount of parameters and
computation. At each downsampling step the number of feature channels are doubled. In order to
concatenate different feature maps through the skip connection, an upsampling of the feature map
followed by a 2× 2 deconvolution (Long et al., 2015) is used, which is initialized with billinear
interpolation filters. This skip-connection is crucial so as to propagate context information to higher
resolution layers for more precise segmentation. After a concatenation, each followed by a rectified
linear unit, a dropout (Srivastava et al., 2014) layer with probability 0.5 is added for regularization
to reduce overfitting. Finally, a sigmoid operation is applied to calculate probability for each class
to obtain the output segmentation map O. Fig.2 illustrates the segmentation network. More decon-
volution layers were not added as they increased computation with no improvement in performance.

The same architecture is used for both the discriminator networks. It consists of five convolution
layers with filter size 4× 4, each followed by LeakyRelu(), Batch normalization layers (Ioffe and
Szegedy, 2015). The first four convolution layers are followed by 3× 3 max pooling operations.
Finally, a sigmoid layer is used to scale the output to probabilities i.e. in the range [0,1].

4. Experiments

4.1. Datasets

The DRIVE dataset (Staal et al., 2004) is used for training and testing for the retinal vessels which
contains 40 images. The IDRiD dataset (Porwal et al., 2018) contains 81 retinal fundus images with
annotations of the optic disk, microaneurysms, haemorrhages, hard exudates and soft exudates.
Both datasets are already divided into two standard splits for training and testing. The IDRiD
images of size 4288× 2848 px were downsampled to 880× 584 px while preserving the aspect
ratio. DRIVE images were zero padded to a size of 880×584 px.
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(a) (b)

Figure 2: (a) The segmentation network architecture; (b) Basic architecture of both the discrimina-
tors: the last convolution layer has output of C−1 channels for Discriminator 1 (D1) and
2 channels for Discriminator 2 (D2)

4.2. Training Setup

As data available for training a deep network is less, to overcome this limitation various augmenta-
tions are used to increase the number of retinal images for gaining better generalization and prevent-
ing overfitting. Images are randomly flipped by probability p generated using a uniform distribution
or rotated by an angle θ chosen from an uniform distribution [−180,180] degrees.

The segmentation network uses the initial layers of VGG network (Simonyan and Zisserman,
2015) and those layers are initialized with the weights of a pretrained VGG model. As the dataset
size is small, this initialization improves the results by a considerable margin. The vanilla FCN
segmentation model is considered as a baseline. Experiments are conducted where both vanilla
segmentation network and the adversarial approach are trained and compared resulting in proposed
network achieving higher IOU score.

Adam optimizer (Kingma and Ba, 2014) with learning rate 10−4 and β = 0.9 is used for training
all the three networks. The trade-off coefficient λ in (3) is set to 10. In every epoch the discrimi-
nators are trained first and then these losses summed with the segmentation loss is backpropagated
through the segmentation network. Early stopping of the training based on the validation loss is
adopted to prevent overfitting.

4.3. Evaluation

Performance evaluation of segmentation is carried out by considering : sensitivity (SE), specificity
(SP), accuracy (ACC), F-score (F1) and Area under the curve (AUC) for vessels, for compari-
son to previous methods. The AUC is calculated as the area under the SE versus (1-SP) plot.
For lesions, the area under precision (PPV) vs sensitivity (SE) curve is computed, while for optic
disk the Jaccard index (IOU) is measured so as to compare with the reported results of the Dia-
betic Retinopathy Segmentation challenge. The code for trying out inference has been released at
https://github.com/oindrilasaha/multitask-retinal-segmentation.
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(a) (b)

Figure 3: (a) Qualitative results: First column shows the retinal image, second column shows the
manual annotation used as ground truth, third column shows the results obtained by the
proposed method for the annotated classes in original dataset, and fourth column shows
prediction of class not annotated but present in the image; (b) Comparison with DeepVes-
sel (Fu et al., 2016)

5. Results

The proposed method is compared with the existing methods for vessel segmentation in Table 1.
SE, SP, F1 and ACC are reported as the maximum value over thresholds. The FCN models trained
without discriminator, show inferior performance with respect to Multi-ADV suggesting that the
adversarial framework improves quality of segmentation. Our method outperforms existing vessel
segmentation methods in literature. Quantitatively, for lesion and optic disc segmentation, the pro-
posed method is compared to the best performing teams from the Diabetic Retinopathy challenge
leaderboard3 using the metrics used in the challenge for ranking in Table 2. Fig. 3(a) illustrates the
qualitative results of the Multi-ADV model on DRIVE and IDRiD fundus images. It also shows
how the method predicts classes which are not annotated for either dataset. It predicts optic disk for
DRIVE images and retinal vessels for IDRiD images too. Fig. 3(b) compares the result of Deep-
Vessel (Fu et al., 2016) to our method. DeepVessel incorrectly predicts the optic disk boundary as
a retinal vessel while it was claimed that their method eliminates incorrect over-segmentation. Our
method not only prevents over-segmentation but has also detected more finer vessels than DeepVes-
sel.

6. Conclusion

In this paper, a multiadversary based fully convolutional neural network is proposed for retinal
anatomy and pathology segmentation using weakly labelled fundus images. A FCN with skip con-
nections is used as the segmentor network. The skip connections propagate context information
to higher resolution layers for more precise segmentation. Two discriminators are used: the first

3. https://idrid.grand-challenge.org/Leaderboard/
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Table 1: Comparison with existing models for Vessel Segmentation

Method SE SP ACC F1 AUC
Azzopardi and Petkov (2013) 0.7655 0.9704 0.9442 - 0.9614
Liskowski and Krawiec (2016) 0.7811 0.9807 0.9535 - 0.9790
DeepVessel (Fu et al., 2016) 0.7603 - 0.9523 - -
Orlando et al. (2017) 0.7897 0.9684 0.9454 0.7857 0.9506
Alom et al. (2018) 0.7792 0.9813 0.9556 - 0.9784
Maninis et al. (2016) - - - 0.8220 -
FCN 0.7731 0.9724 0.9467 0.7612 0.9588
Multi-ADV 0.7906 0.9839 0.9641 0.7925 0.9812

Table 2: Comparison with IDRiD leaderboard for Optic Disk and Lesions

Class Metric Existing Proposed ACC - Proposed
Optic Disk Jaccard Index (IOU) 0.9338 0.9644 0.9829

Microaneurysms Area under PPV vs SE 0.5017 0.5504 0.9034
Haemorrhages Area under PPV vs SE 0.6804 0.7338 0.9655
Soft Exudates Area under PPV vs SE 0.6995 0.7118 0.9618
Hard Exudates Area under PPV vs SE 0.8850 0.8698 0.9771

discriminator contributes to making the segmentation result as realistic as possible while the second
discriminator works to enforce segmentation of classes not annotated for a particular image. Re-
sults indicates that proposed approach outperforms other state-of-the-arts. The model also predicts
classes that were originally not annotated in a given dataset by learning from other dataset.
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Appendix

A few experimental results are demonstrated on other datasets. Inference only was performed on
these images using our existing model without re-training it with any images from these datasets.

Inference on Vessel dataset

HRF dataset 4 was used for inference for vessels class. The results are presented in Table 3. It
is worthwhile to note that despite of the network not having had seen HRF images during train-
ing, it performs almost equivocal with slightly higher sensitivity and accuracy as compared to the
competitive prior art for the task of vessel segmentation.

Figure 4: Vessel Segmentation on HRF dataset. Left: Fundus Image, center: Ground Truth, right:
Prediction

4. https://www5.cs.fau.de/research/dat/fundus-images/
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Table 3: Performance evaluation on HRF dataset

Method SE SP ACC F1
Proposed 0.7891 0.9642 0.9610 0.7552

Odstrcilik et al. (2013) 0.7741 0.9669 0.9493 -

Inference on pathology datasets

Similar to the approach in for vessel segmentation above, only inferencing is employed on e-optha
5 for exudates and microaneurysms (Table 4), and REFUGE 6 for optic disk (Table 5). For the
REFUGE dataset, the results were compared with the challenge leaderboard 7 results.

Figure 5: Hard Exudates Segmentation on eoptha-EX dataset. Left: Fundus Image, center: Ground
Truth, right: Prediction

Table 4: Performance evaluation on eoptha dataset

Dataset Area under Precision Recall
eoptha-EX 0.8235
eoptha-MA 0.2500

5. http://www.adcis.net/es/Descargar-Software-Base-De-Datos-Terceros/E-Ophtha.html
6. https://refuge.grand-challenge.org
7. https://refuge.grand-challenge.org/leaderboard

425



LEARNING WITH MULTITASK ADVERSARIES FOR WEAKLY LABELLED DATA

Figure 6: Optic Disk Segmentation on REFUGE dataset. Left: Fundus Image, center: Ground
Truth, right: Prediction

Table 5: Performance evaluation on REFUGE dataset

Method F1 Jaccard
Proposed 0.9286 0.9202

REFUGE leaderboard 0.958 -
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