
Under review as a conference paper at ICLR 2020

SCALING UP NEURAL ARCHITECTURE SEARCH WITH
BIG SINGLE-STAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural architecture search (NAS) methods have shown promising results discov-
ering models that are both accurate and fast. For NAS, training a one-shot model
has became a popular strategy to approximate the quality of multiple architectures
(child models) using a single set of shared weights. To avoid performance degra-
dation due to parameter sharing, most existing methods have a two-stage workflow
where the best child model induced from the one-shot model has to be retrained
or finetuned. In this work, we propose BigNAS, an approach that simplifies this
workflow and scales up neural architecture search to target a wide range of model
sizes simultaneously. We propose several techniques to bridge the gap between
the distinct initialization and learning dynamics across small and big models with
shared parameters, which enable us to train a single-stage model: a single model
from which we can directly slice high-quality child models without retraining or
finetuning. With BigNAS we are able to train a single set of shared weights on Im-
ageNet and use these weights to obtain child models whose sizes range from 200
to 1000 MFLOPs. Our discovered model family, BigNASModels, achieve top-1
accuracies ranging from 76.5% to 80.9%, surpassing all state-of-the-art models in
this range including EfficientNets.

1 INTRODUCTION

Designing network architectures that are both accurate and efficient is crucial for deep learning on
edge devices. It is well known that a single neural network architecture can require more than an
order of magnitude more inference time if it is deployed on a slower device (Yu et al., 2018). This
makes it appealing to not only search for architectures that are optimized for specific devices, but
also to ensure that a range of models can be deployed effectively.

In the past, Neural Architecture Search (NAS) methods (Zoph & Le, 2016; Zoph et al., 2018; Real
et al., 2018) have shown to be excellent at optimizing for a single device and latency target (Tan et al.,
2019). However, if we wish to target a large array of devices, it becomes prohibitively expensive
and time-consuming to run a separate search for each one. A possible solution to this is to use
basic scaling heuristics such as the EfficientNet family (Tan & Le, 2019). However, this loses
out on opportunities to optimize models specialized for the diverse performance characteristics of
individual devices. Another option would be to use efficient architecture search methods, e.g., Pham
et al. (2018); Bender et al. (2018); Liu et al. (2018b). However, to target multiple devices, we must
run many searches and retrain all of the searched models from scratch.

In this work, we search over a big single-stage model that contains both small child models (∼200
MFLOPs, comparable to MobileNetV3) and big child models (∼1 GFLOPs, comparable to Effi-
cientNet B2). Different from existing one-shot methods (Bender et al., 2018; Liu et al., 2018b;
Brock et al., 2018; Pham et al., 2018), our trained single-stage model offers a much wider coverage
of model capacities, and more importantly, all child models are trained in a way such that they simul-
taneously reach excellent performance at the end of the search phase, without requiring a separate
retraining step. Architecture selection can be then carried out via a simple coarse-to-fine selection
strategy. Once an architecture is selected, we can obtain a child model by slicing the single-stage
model for instant deployment w.r.t. the given constraints such as memory footprint and/or runtime
latency. The workflow is illustrated in Figure 1.

1



Under review as a conference paper at ICLR 2020

Figure 1: Comparison with several existing workflows. We use nested squares to denote models with
shared weights, and use the size of the square to denote the size of each model. Workflow in the
middle refers the concurrent work from Cai et al. (2019), where submodels are sequentially induced
through progressive distillation and channel sorting. We simultaneously train all child models in a
single-stage model with proposed modifications, and deploy them without retraining or finetuning.

The success of our method heavily relies on training a high-quality single-stage model, which is
challenging on its own. For example, we find the training loss explodes if the single-stage model
is not properly initialized, and bigger child models start to overfit before smaller ones plateau. It is
particularly nontrivial to simultaneously retain good performance on every individual child model
due to aggressive parameter sharing during architecture search. We address these challenges through
a combination of techniques, including an improved sampling strategy and efficient inplace distilla-
tion, and substantially stabilize the single-stage model training through better initialization, learning
rate schedule and regularization. Effectiveness of the proposed solutions is backed up by ablation
studies.

With the proposed techniques, we are able train a single-stage model on ImageNet and obtain a
family of child models that simultaneously surpass all the state-of-the-art models in the range of
200 to 1000 MFLOPs, including EfficientNets B0-B2 (1.6% more accurate under 400 MFLOPs),
without retraining or finetuning the child models upon the completion of search. One of our child
models achieves 80.9% top-1 accuracy at 1G FLOPs (four times less computation than a ResNet-50).

2 RELATED WORK

Earlier NAS methods (Zoph & Le, 2016; Zoph et al., 2018; Liu et al., 2017; 2018a; Real et al.,
2018) train thousands of candidate architectures from scratch (on a smaller proxy task) and use their
validation performance as the feedback to an algorithm that learns to focus on the most promising
regions in the search space. More recent works have sought to amortize the cost by training a single
over-parameterized one-shot model. Each architecture in the search space uses only a subset of the
operations in the one-shot model; these child models can be efficiently ranked by using the shared
weights to estimate their relative accuracies (Brock et al., 2018; Pham et al., 2018; Bender et al.,
2018; Liu et al., 2018b; Cai et al., 2018; Wu et al., 2019).

As a complementary direction, resource-aware NAS methods are proposed to simultaneously max-
imize prediction accuracy and minimize resource requirements such as latency, FLOPs, or memory
footprints (Tan et al., 2019; Cai et al., 2019; Wu et al., 2019; Stamoulis et al., 2019; Guo et al., 2019;
Yu & Huang, 2019a).

All the aforementioned approaches require two-stage training: Once the best architectures have been
identified (either through the proxy tasks or using a one-shot model), they have to be retrained from
scratch to obtain a final model with higher accuracy. In most of these existing works, a single search
experiment only targets a single resource budget or a narrow range of resource budgets at a time.

To alleviate these issues, Cai et al. (2019) proposed a progressive training approach (OFA) concur-
rently with our work. The idea is to pre-train a single full network and then progressively distill
it to obtain the smaller networks. Moreover, a channel sorting procedure is required to progres-
sively construct the smaller networks. In our proposed BigNAS, however, all the child models in
the single-stage model are trained simultaneously, allowing the learning of small and big networks
to mutually benefit each other. During the training, we always keep lower-index channels in each
layer and lower-index layers in each stage for our child models, eliminating the sorting procedure.
While OFA focuses on a limited range of model sizes (for example, models around 300 MFLOPs),

2



Under review as a conference paper at ICLR 2020

our BigNAS is able to handle a wider set of models (from 200 MFLOPs to 1 GFLOPs) and offers a
better coverage over diverse deployment scenarios and varied resource budgets.

Our work shares high-level similarities with slimmable networks (Yu et al., 2018; Yu & Huang,
2019b;a) in terms of training a single shared set of weights which can be used for many child
models. However, while slimmable networks are specialized to vary the number of channels only,
we are able to handle a much larger space where many architectural dimensions (kernel and channel
sizes, network depths, input resolutions) are searched simultaneously, subsuming and outperforming
the scaling heuristics in EfficientNets (Tan & Le, 2019).

3 ARCHITECTURE SEARCH WITH SINGLE-STAGE MODELS

Our proposed method consists of two steps:

1. We train a big single-stage model from which we can directly sample or slice different
architectures as child models for instant inference and deployment. In contrast to previ-
ous works (Brock et al., 2018; Pham et al., 2018; Bender et al., 2018; Liu et al., 2018b;
Stamoulis et al., 2019; Guo et al., 2019), our training is single-stage as it does not require
finetuning the sampled architectures or retraining them from scratch at the end of search.

2. Architecture selection using a simple coarse-to-fine selection method to find the most ac-
curate model under the given resource constraints (for example, FLOPs, memory footprint
and/or runtime latency budgets on different devices).

In the following, we will first systematically study how to train a high-quality single-stage model
from five aspects: network sampling during training, inplace distillation, network initialization, con-
vergence behavior and regularization. Then we will present a coarse-to-fine approach for efficient
resource-aware architecture selection.

3.1 TRAINING A HIGH-QUALITY SINGLE-STAGE MODEL

Training a high-quality single-stage model is important and highly non-trivial due to the distinct
initialization and learning dynamics of small and big child models. In this section, we first generalize
two techniques originally introduced by Yu & Huang (2019b) to simultaneously train a set of high-
quality networks with different channel numbers, and show that both can be extended to handle
a much larger space where the architectural dimensions, including kernel sizes, channel numbers,
input resolutions, network depths are jointly searched. We then present three additional techniques
to address the distinct initialization and learning dynamics of small and big child models.

Sandwich Rule In each training step, given a mini-batch of data, the sandwich rule (Yu & Huang,
2019b) samples the smallest child model, the biggest (full) child model and N randomly sampled
child models (N = 2 in our experiments). It then aggregates the gradients from all sampled child
models before updating the weights of the single-stage model. As multiple architectural dimensions
are included in our search space, the “smallest” child model is the one with lowest input resolution,
thinnest width, shallowest depth, and smallest kernel size (the kernel of the depthwise convolutions
in each inverted residual block (Sandler et al., 2018)). The motivation is to improve all child models
in our search space simultaneously, by pushing up both the performance lower bound (the smallest
child model) and the performance upper bound (the biggest child model) across all child models.

Inplace Distillation During the training of a single-stage model, inplace distillation (Yu & Huang,
2019b) takes the soft labels predicted by the biggest possible child model (full model) to supervise
all other child models. The benefit of inplace distillation comes for free in our training setting, as we
always have access to the predictions of the largest child model in each gradient update step thanks
to the sandwich rule. We note that all child models are only trained with the inplace distillation loss,
starting from the first training step to the end of the training.

During training, input images are randomly cropped as a preliminary data augmentation step. When
distilling a high-resolution teacher model into a low-resolution student model, we find that it is
helpful to feed the same image patches into both the teacher and the student. In our data preparation,
we first randomly crop an image with a fixed resolution (on ImageNet we use 224), and then apply

3



Under review as a conference paper at ICLR 2020

bicubic interpolation to the same patch to transform it into all target resolutions (e.g., 192, 288, 320).
In this case, soft labels predicted by the biggest child model (the teacher) are more compatible with
the inputs seen by other child models (the students). Therefore this can serve as a more accurate
distillation signal. Our preliminary results show that sampling different patches even in a same
image leads to ∼ 0.3% drop on top-1 accuracy for child models.

Initialization Previous weight initialization methods, such as “He Initialization” (He et al., 2015),
are deduced from fixed neural networks where the number of input units n (the fan-in) is constant.
The principal motivation of these initialization methods is to keep the variance of the responses in
each layer unchanged, so that the forward information signals and the backward gradients will not
be reduced or magnified exponentially as the network goes deeper. For example, He et al. (2015)
suggested to initialize the variance of the weights as 2

n for convolutions with ReLU activations.

However, the above is ill-fitted for initializing a single-stage model, where n is no longer a constant
across different child models with varied kernel sizes and input channels. This issue is exaggerated
when we train bigger and deeper single-stage models. In practice, we find the training loss of a
single-stage model explodes when we use the optimized learning rates for training a normal network.
The training starts to work when we reduce the learning rate to 30%, but it leads to much worse
results (∼ 1.0% top-1 accuracy on ImageNet).

Identifying this issue is critical while the solution is quite simple. As all child models in our search
space are residual networks, we initialize the output of each residual block (before skip connection)
to an all-zeros tensor by setting the learnable scaling coefficient γ = 0 in the last Batch Normal-
ization (Ioffe & Szegedy, 2015) layer of each residual block, ensuring identical variance before
and after each residual block regardless of the fan-in. This initialization is originally mentioned in
(Goyal et al., 2017) which improves accuracy by ∼ 0.2% in their setting, yet is more critical in our
setting (improving by ∼ 1.0%) due to the above analyzed initialization issue. We also additionally
add a skip connection between each stage transitions when either resolutions or channels differ (us-
ing 2 × 2 average pooling and/or 1 × 1 convolution if necessary) to explicitly construct an identity
mapping (He et al., 2016b).

Convergence Behavior In practice, we find that big child models converge faster while small
child models converge slower. Figure 2a shows the typical learning curves during the training of a
single-stage model, where we plot the validation accuracies of a small and a big child model over
time. This reveals a dilemma: at training step t when the performance of big child models peaks,
the small child models are not fully-trained; and at training step t′ when the small child models have
better performance, the big child models already overfitted.

(a)

Constant Ending

(b)

Figure 2: On the left, we show typical accuracy curves during the training process for both small and
big child models. On the right, we plot the modified learning rate schedules with constant ending.

To address this issue, we put our focus on the learning rate schedule. We first plot the optimized
and widely used exponentially decaying learning rate schedule for MobileNet-series (Howard et al.,
2017; Sandler et al., 2018; Howard et al., 2019), MNasNets (Tan et al., 2019) and EfficientNets (Tan
& Le, 2019) in Figure 2b. We introduce a simple modification to this learning rate schedule, named

4



Under review as a conference paper at ICLR 2020

exponentially decaying with constant ending, which has a constant learning rate at the end of training
when it reaches 5% of the initial learning rate (Figure 2b). It brings two benefits. First, with a slightly
larger learning rate at the end, the small child models learn faster. Second, the constant learning rate
at the end alleviates the overfitting of big child models as the weights oscillate.

Regularization Big child models tend to overfit the training data whereas small child models tend
to underfit. In previous work, Bender et al. (2018) apply the same weight decay to all child mod-
els regardless whether they are small or big. In EfficientNet, Tan & Le (2019) linearly increase
dropout (Srivastava et al., 2014) ratio as it moves from the smallest EfficientNet-B0 to the biggest
EfficientNet-B7. This becomes even more complicated in the context of training big single-stage
models, due to the interplay among the small child models and big child models with shared pa-
rameters. Nevertheless, we introduce a simple rule that is surprisingly effective for this problem:
regularize only the biggest (full) child model (i.e., the only model that has direct access to the ground
truth training labels because of inplace distillation). We apply this rule to both weight decay and
dropout, and empirically demonstrate its effectiveness in our experiments.

Batch Norm Calibration Batch norm statistics are not accumulated when training the single-
stage model as they are ill-defined with varying architectures. After the training is completed, we
re-calibrate the batch norm statistics (Yu & Huang, 2019b) for each sampled child model for de-
ployment without retraining or finetuning any network parameters.

3.2 COARSE-TO-FINE ARCHITECTURE SELECTION

After training a single-stage model, one needs to select the best architectures w.r.t. the resource
budgets. Although obtaining the accuracy of a child model is cheap, the number of architecture
candidates is extremely large (more than 1012). To address this issue, we propose a coarse-to-fine
strategy where we first try to find a rough skeleton of promising network candidates in general, and
then sample multiple fine-grained variations around each skeleton architecture of interest.

Specifically, in the coarse-grained phase, we define a limited input resolution set, depth set (global
depth multipliers), channel set (global width multipliers) and kernel size set, and obtain benchmarks
for all child models in this restricted space. This is followed by a fine-grained search phase, where
we first pick the best network skeleton satisfying the given resource constraint found in the previous
phase, and then randomly mutate its network-wise resolution, stage-wise depth, number of channels
and kernel sizes to further discover better network architectures. Finally, we directly use the weights
from the single-stage model for the induced child models without any retraining or finetuning. More
details will be presented in the experiments.

4 EXPERIMENTS

In this section, we first present the details of our search space, followed by our main results com-
pared with the previous state-of-the-arts in terms of both accuracy and efficiency. Then we conduct
extensive ablative study to demonstrate the effectiveness of our proposed modifications. Finally, we
show the intermediate results of our coarse-to-fine architecture selection.

4.1 SEARCH SPACE DEFINITION

Following previous resource-aware NAS methods (Tan et al., 2019; Tan & Le, 2019; Cai et al.,
2018; Wu et al., 2019; Howard et al., 2019; Wu et al., 2019), our network architectures consist of a
stack with inverted bottleneck residual blocks (MBConv) (Sandler et al., 2018). The detailed search
space is summarized in Table 1. For the input resolution dimension, we sample from set {192, 224,
288, 320}. By training on different input resolutions, we find our trained single-stage model is able
to generalize to unseen input resolutions during architecture search or deployment (e.g., 208, 240,
256, 272, 304, 336) after BN calibration. For the depth dimension, our network has seven stages
(excluding the first and the last convolution layer). Each stage has multiple choices of the number
of layers (e.g., stage 5 can pick any number of layers ranging from 2 to 6). Following slimmable
networks (Yu et al., 2018) that always keep lower-index channels in each layer, we always keep
lower-index layers in each network stage (and their weights). For weight sharing on the kernel size

5



Under review as a conference paper at ICLR 2020

Table 1: MobileNetV2-based search space.

Stage Operator Resolution #Channels #Layers Kernel Sizes

Conv 192× 192 - 320× 320 32 - 40 1 3

1 MBConv1 96× 96 - 160× 160 16 - 24 1 - 2 3

2 MBConv6 96× 96 - 160× 160 24 - 32 2 - 3 3

3 MBConv6 48× 48 - 80× 80 40 - 48 2 - 3 3, 5

4 MBConv6 24× 24 - 40× 40 80 - 88 2 - 4 3, 5

5 MBConv6 12× 12 - 20× 20 112 - 128 2 - 6 3, 5

6 MBConv6 12× 12 - 20× 20 192 - 216 2 - 6 3, 5

7 MBConv6 6× 6 - 10× 10 320 - 352 1 - 2 3, 5

Conv 6× 6 - 10× 10 1280 - 1408 1 1

dimension in the inverted residual blocks, a 3 × 3 depthwise kernel is defined to be the center of
a 5 × 5 depthwise kernel. Both kernel sizes and channel numbers can be adjusted layer-wise. The
input resolution is network-wise and the number of layers is a stage-wise configuration in our search
space.

4.2 MAIN RESULTS ON IMAGENET

Group Model Family Params FLOPs Top-1

200M
FLOPs

MobileNetV1 0.5⇥ 1.3M 150M 63.3
MobileNetV2 0.75⇥ 2.6M 209M 69.8
AutoSlim-MobileNetV2 4.1M 207M 73.0
MobileNetV3 1.0⇥ 5.4M 219M 75.2
MNasNet A1 3.9M 315M 75.2
Once-For-All 4.4M 327M 75.0
Once-For-All finetuned 4.4M 327M 75.3

BigNASModel-S 4.5M 242M 76.5

400M
FLOPs

NASNet B 5.3M 488M 72.8
MobileNetV2 1.3⇥ 5.3M 509M 74.4
MobileNetV3 1.25⇥ 8.1M 350M 76.6
MNasNet A3 5.2M 403M 76.7
E�cientNet B0 5.3M 390M 77.3

BigNASModel-M 5.5M 418M 78.9

600M
FLOPs

MobileNetV1 1.0⇥ 4.2M 569M 70.9
NASNet A 5.3M 564M 64.0
DARTS 4.9M 595M 73.1
E�cientNet B1 7.8M 734M 79.2

BigNASModel 6.7M 659M 79.6

1000M
FLOPs

E�cientNet B2 9.2M 1050M 80.3
BigNASModel-L 9.5M 1040M 80.9

Figure 3: Main results of BigNASModels on ImageNet.

We train our big single-stage model on ImageNet (Deng et al., 2009) using same settings as (Tan
et al., 2019; Tan & Le, 2019; Howard et al., 2017). We use RMSProp optimizer with decay 0.9 and
momentum 0.9; batch normalization with post-calibration (Yu & Huang, 2019b); weight decaying
factor 1e− 5; initial learning rate 0.256 that decays by 0.97 every 2.4 epochs. We also use the swish
activation (Ramachandran et al., 2017) and fixed AutoAugment V0 policy (Cubuk et al., 2018)
following EfficientNets (Tan & Le, 2019). In addition to these training settings, we train our big
single-stage model with all techniques proposed in Section 3.1. The learning rate is truncated to a
constant value when it reaches 5% of its initial learning rate (i.e., 0.0128) until the training ends. We
apply dropout only on training the full network with dropout ratio 0.2, and weight decaying only on
full network once in each training iteration. To train the single-stage model, we adopt the sandwich
sampling rules and inplace distillation proposed by Yu & Huang (2019b). After the training, we

6



Under review as a conference paper at ICLR 2020

use a simple coarse-to-fine architecture selection to find the best architecture under each interested
resource budgets. We will show the details of coarse-to-fine architecture selection in Section 4.4.

We show the performance benchmark of our model family, named BigNASModels, in Figure 3.
On the left we show the visualization of FLOPs-Accuracy benchmarks compared with the previ-
ous state-of-the-arts including MobileNetV1 (Howard et al., 2017), NASNet (Zoph et al., 2018),
MobileNetV2 (Sandler et al., 2018), AutoSlim-MobileNetV2 (Yu & Huang, 2019a), MNasNet (Tan
et al., 2019), MobileNetV3 (Howard et al., 2019), EfficientNet (Tan & Le, 2019) and concurrent
work Once-For-All (Cai et al., 2019). We show the detailed benchmark results on the right table. For
small-sized models, our BigNASModel-S achieves 76.5% accuracy under only 240 MFLOPs, which
is 1.3% better than MobileNetV3 in terms of similar FLOPs, and 0.5% better than ResNet-50 (He
et al., 2016a) with 17 × fewer FLOPs. For medium-sized models, our BigNASModel-M achieves
1.6% better accuracy than EfficientNet B0. For large-sized models, even when ImageNet classifica-
tion accuracy saturates, our BigNASModel-L still has 0.6% improvement compared with Efficient-
Net B2. Moreover, instead of individually training models of different sizes, our BigNASModel-S,
BigNASModel-M and BigNASModel-L are sliced directly from one pretrained single-stage model,
without retraining or finetuning.

4.3 ABLATION STUDY

Explode

Learn faster
Learn faster

Explode

Figure 4: Focusing on the start of training. Ablation study on different initialization methods. We
show the validation accuracy of a small (left) and big (right) child model.

20000 40000 60000 80000 100000 120000
Number of Training Steps

0.60

0.65

0.70

0.75

0.80

Im
ag

eN
et

 T
op

-1
 A

cc
ur

ac
y

Naive Initialization, 100% Learning Rate
Naive Initialization, 30% Learning Rate
Modified Initialization, 30% Learning Rate
Modified Initialization, 100% Learning Rate

20000 40000 60000 80000 100000 120000
Number of Training Steps

0.60

0.65

0.70

0.75

0.80

Im
ag

eN
et

 T
op

-1
 A

cc
ur

ac
y

Naive Initialization, 100% Learning Rate
Naive Initialization, 30% Learning Rate
Modified Initialization, 30% Learning Rate
Modified Initialization, 100% Learning Rate

Figure 5: Focusing on the end of training. Ablation study on different initialization methods. We
show the validation accuracy of a small (left) and big (right) child model.

Ablation Study on Initialization. Previous weight initialization methods (He et al., 2015) are
deduced from fixed neural networks, where the numbers of input units is constant. However, in a
single-stage model, the number of input units varies across the different child models. In this part,
we start with training a single-stage model using He Initialization (He et al., 2015) designed for
fixed neural networks. As shown in Figure 4, the accuracy of both small (left) and big (right) child

7



Under review as a conference paper at ICLR 2020

models drops to zero after a few thousand training steps during the learning rate warming-up (Goyal
et al., 2017). The single-stage model is able to converge when we reduce the learning rate to the
30% of its original value. If the initialization is modified according to Section 3.1, the model learns
much faster at the beginning of the training (shown in Figure 4), and has better performance at the
end of the training (shown in Figure 5). Moreover, we are also able to train the single-stage model
with the original learning rate hyper-parameter, which leads to much better performance for both
small (Figure 5, left) and big (Figure 5, right) child models.

20000 40000 60000 80000 100000 120000
Number of Training Steps

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

Im
ag

eN
et

 T
op

-1
 A

cc
ur

ac
y

Small Child Model
Big Child Model

20000 40000 60000 80000 100000 120000
Number of Training Steps

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

Im
ag

eN
et

 T
op

-1
 A

cc
ur

ac
y

Small Child Model
Big Child Model

Figure 6: The validation accuracy curves during the training process for both small and big child
models before (left) and after (right) our modifications.

Ablation Study on Convergence Behavior. During the training of a single-stage model, the big
child models converge faster and then overfit, while small child models converge slower and need
more training. In this part, we show the performance after addressing this issue in Figure 6. We
apply the proposed learning rate schedule exponentially decaying with constant ending on the right.
The detailed learning rate schedules are shown in Figure 2b. We also tried many other learning rate
schedules with an exhaustive hyper-parameter sweep, including linearly decaying (Ma et al., 2018;
Yu & Huang, 2019b) and cosine decaying (Loshchilov & Hutter, 2016; He et al., 2019). But the
performances are all worse than exponentially decaying.

0 10000 20000 30000 40000 50000 60000 70000
Number of Training Steps

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Im
ag

eN
et

 T
op

-1
 A

cc
ur

ac
y

Naive Regularization
Modified Regularization

0 10000 20000 30000 40000 50000 60000 70000
Number of Training Steps

0.72

0.74

0.76

0.78

0.80

0.82

Im
ag

eN
et

 T
op

-1
 A

cc
ur

ac
y

Naive Regularization
Modified Regularization

Figure 7: The validation accuracy of a small (left) and big (right) child model using different regu-
larization rules.

Ablation Study on Regularization. Big child models are prone to overfitting on the training data
whereas small child models are prone to underfitting. In this part, we compare the effects of the reg-
ularization between two rules: (1) applying regularization on all child models (Bender et al., 2018),
and (2) applying regularization only on the full network. Here the regularization techniques we
consider are weight decay with factor 1e− 5 and dropout with ratio 0.2 (the same hyper-parameters
used in training previous state-of-the-art mobile networks). In Figure 7, we show the performance
of both small (left) and big (right) child models using different regularization rules. On the left, the
performance of small child models is improved by a large margin (+0.5 top-1 accuracy) as it has

8



Under review as a conference paper at ICLR 2020

less regularization and more capacity to fit the training data. Meanwhile on the right, we found the
performance of the big child model is also improved slightly (+0.2 top-1 accuracy).

4.4 COARSE-TO-FINE ARCHITECTURE SELECTION

After the training of a single-stage model, we use coarse-to-fine architecture selection to find the
best architectures under different resource budgets. During the search, the evaluation metrics can
be flexible including predictive accuracy, FLOPs, memory footprint, latency on various different
devices, and many others. It is noteworthy that we pick the best architectures according to the
predictive accuracy on training set, because we used all training data for obtaining our single-stage
model (no retraining from scratch), and the validation set of ImageNet (Deng et al., 2009) is being
used as “test set” in the community. In this part, we first show an illustration of our coarse-to-fine
architecture selection with the trained big single-stage model in Figure 8. The search results are
based on FLOPs-Accuracy benchmarks (as FLOPs are more reproducible and independent of the
software version, hardware version, runtime environments and many other factors).

Figure 8: Benchmark results of coarse-to-fine architecture selection. The red dot in coarse-grained
architecture selection is picked and mutated for fine-grained architecture selection.

During the coarse-to-fine architecture selection, we first find rough skeletons of good candidate
networks. Specifically, in the coarse selection phase, we pre-define five input resolutions (network-
wise, {192, 224, 256, 288, 320}), four depth configurations (stage-wise via global depth multipliers (Tan
& Le, 2019)), two channel configurations (stage-wise via global width multipliers (Howard et al.,
2017)) and four kernel size configurations (stage-wise), and obtain all of their benchmarks (shown in
Figure 8 on the left). Then under our interested latency budget, we perform a fine-grained grid search
by varying its configurations (shown in Figure 8 on the right). For example, under FLOPs near 600M
we first pick the skeleton of the red dot shown in Figure 8. We then perform additional fine-grained
architecture selection by randomly varying the input resolutions, depths, channels and kernel sizes
slightly. We note that the coarse-to-fine architecture selection is flexible and not very exhaustive
in our experiments, yet it already discovered fairly good architectures as shown in Figure 8 on the
right. For the FLOPs near 650M, we finally select the child model with input resolution 256, depth
configuration {1:2:2:2:4:4:1}, channel configuration {32:16:24:48:88:128:216:352:1408} and kernel size configuration
{3:3:5:3:5:5:3}. After training of the single-stage model, the post-search step is highly parallelizable and
independent of training.

5 CONCLUSION

We presented a novel paradigm for neural architecture search by training a single-stage model, from
which high-quality child models of different sizes can be induced for instant deployment without
retraining or finetuning. With several proposed techniques, we obtain a family of BigNASModels as
slices in a big pre-trained single-stage model. These slices simultaneously surpass all state-of-the-art
ImageNet classification models ranging from 200 MFLOPs to 1G FLOPs. We hope our work can
serve to further simplify and scale up neural architecture search.

9



Under review as a conference paper at ICLR 2020

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wat-
tenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Understand-
ing and simplifying one-shot architecture search. In International Conference on Machine Learn-
ing, pp. 549–558, 2018.

Andrew Brock, Theo Lim, J.M. Ritchie, and Nick Weston. SMASH: One-shot model architecture
search through hypernetworks. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=rydeCEhs-.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. arXiv preprint arXiv:1812.00332, 2018.

Han Cai, Chuang Gan, and Song Han. Once for all: Train one network and specialize it for efficient
deployment. arXiv preprint arXiv:1908.09791, 2019.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation policies from data. arXiv preprint arXiv:1805.09501, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pp. 248–255. Ieee, 2009.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian
Sun. Single path one-shot neural architecture search with uniform sampling. arXiv preprint
arXiv:1904.00420, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pp. 630–645. Springer, 2016b.

Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. Bag of tricks for
image classification with convolutional neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 558–567, 2019.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. arXiv
preprint arXiv:1905.02244, 2019.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

10

https://www.tensorflow.org/
https://openreview.net/forum?id=rydeCEhs-


Under review as a conference paper at ICLR 2020

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceed-
ings of the European Conference on Computer Vision (ECCV), pp. 19–34, 2018a.

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. Hier-
archical representations for efficient architecture search. arXiv preprint arXiv:1711.00436, 2017.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018b.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines
for efficient cnn architecture design. In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 116–131, 2018.

Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. arXiv preprint arXiv:1802.03268, 2018.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv
preprint arXiv:1710.05941, 2017.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. arXiv preprint arXiv:1802.01548, 2018.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. In-
verted residuals and linear bottlenecks: Mobile networks for classification, detection and segmen-
tation. arXiv preprint arXiv:1801.04381, 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lymberopoulos, Bodhi Priyantha, Jie Liu,
and Diana Marculescu. Single-path nas: Designing hardware-efficient convnets in less than 4
hours. arXiv preprint arXiv:1904.02877, 2019.

Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. Proceedings of the International Conference on Machine Learning (ICML), 2019.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, and Quoc V Le. Mnasnet: Platform-
aware neural architecture search for mobile. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 10734–10742, 2019.

Jiahui Yu and Thomas Huang. Network slimming by slimmable networks: Towards one-shot archi-
tecture search for channel numbers. arXiv preprint arXiv:1903.11728, 2019a.

Jiahui Yu and Thomas Huang. Universally slimmable networks and improved training techniques.
arXiv preprint arXiv:1903.05134, 2019b.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks.
arXiv preprint arXiv:1812.08928, 2018.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

11



Under review as a conference paper at ICLR 2020

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697–8710, 2018.

A ARCHITECTURES OF BIGNASMODEL

We show the architecture visualization of the single-stage model and child models BigNASModel-
S, BigNASModel-M, BigNASModel@660M, BigNASModel-L in Figure 9. The child models are
directly sliced from the single-stage model without retraining or finetuning. Compared with the com-
pound model scaling heuristic (Tan & Le, 2019), our child models have distinct architectures across
all dimensions. For example, comparing BigNASModel-L with EfficientNet-B2, the EfficientNet-
B2 has input resolution 260, channels {40:24:32:40:88:128:216:352:1408}, kernel sizes {3:3:5:3:5:5:3} and stage lay-
ers {2:3:3:4:4:5:2}. Our BigNASModel-L achieves 80.9% top-1 accuracy under 1040 MFLOPs, while
EfficientNet-B2 achieves 80.3% top-1 accuracy under 1050 MFLOPs.

B IMPLEMENTATION DETAILS

We implement all training and coarse-to-fine architecture selection algorithms on TensorFlow frame-
work (Abadi et al., 2015). All of our experiments are conducted on 8×8 TPUv3 pods. For ImageNet
experiments, we use a total batch size 4096. Our single-stage model has sizes from 200 to 2000
MFLOPs, from which we search architectures from 200 to 1000 MFLOPs. To train a single-stage
model, it roughly takes 36 hours.

Training on TPUs requires defining a static computational graph, where the shapes of all tensors
in that graph should be fixed. Thus, during the training we are not able to dynamically slice the
weights, select computational paths or sample many input resolutions. To this end, here we provide
the details of our implementation for training single-stage models on TPUs. On the dimensions of
kernel sizes, channels, and depths, we use the masking strategy to simulate the weight slicing or
path selection during the training (i.e., we mask out the rest of the channels, kernel paddings, or the
entire output of a residual block). On the dimension of input resolutions, in each training iteration,
our data pipeline provides same images with four fixed resolutions ({192, 224, 288, 320}) which
are paired with the model sizes. The smallest child model is always trained on the lowest resolution,
while the biggest child model is always trained on the highest resolution. For all other resolutions
the models are randomly varied on kernel sizes, channels, and depths. By this implementation, our
trained single-stage model is able to provide high-quality child models across all these dimensions.
For inference, we directly declare a child model architecture and load the sliced weights from the
single-stage model. To slice the weights, we always use lower-index channels in each layer, lower-
index layers in each stage, and the center 3× 3 depthwise kernel from a 5× 5 depthwise kernel.

For the data prefetching pipeline, we need multiple image input resolutions during the training. We
first prefetch a batch of training patches with a fixed resolution (on ImageNet we use 224) with data
augmentations, and then resize them with bicubic interpolation to our target input resolutions (e.g.,
192, 224, 288, 320). We note that during inference, the single-crop testing accuracy is reported.
Importantly, for testing data prefetching pipeline, we also prefetch a 224 center crop first and then
resize to the target resolution to avoid the inconsistency.

During the training, we use cross-replica (synchronized) batch normalization following Efficient-
Nets (Tan & Le, 2019). To enable this, we also have to use stateless random sampling function 1

since naive random sampling function 2 leads to different sampled values across different TPU cores.
The input seed of stateless random sampling functions is the global training step plus current layer
index so that the trained single-stage model can provide child models with different layer-wise/stage-
wise configurations.

1https://www.tensorflow.org/api_docs/python/tf/random/stateless_uniform
2https://www.tensorflow.org/api_docs/python/tf/random/uniform

12

https://www.tensorflow.org/api_docs/python/tf/random/stateless_uniform
https://www.tensorflow.org/api_docs/python/tf/random/uniform


Under review as a conference paper at ICLR 2020

Conv 3x3

MBConv1 3x3

MBConv1 3x3

MBConv6 3x3

MBConv6 3x3

MBConv6 3x3

MBConv6 ?x?

MBConv6 ?x?

MBConv6 ?x?

MBConv6 ?x?

MBConv6 ?x?

MBConv6 ?x?

MBConv6 ?x?

MBConv6 ?x?

MBConv6 ?x?

MBConv6 ?x?

MBConv6 ?x?

MBConv6 ?x?

MBConv6 ?x?

MBConv6 ?x?

MBConv6 ?x?

MBConv6 ?x?

MBConv6 ?x?

MBConv6 ?x?

MBConv6 ?x?

MBConv6 ?x?

MBConv6 ?x?

Conv 1x1

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Stage 7

Conv 3x3

MBConv1 3x3

MBConv6 3x3

MBConv6 3x3

MBConv6 5x5

MBConv6 5x5

MBConv6 3x3

MBConv6 3x3

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

MBConv6 3x3

Conv 1x1

Conv 3x3

MBConv1 3x3

MBConv6 3x3

MBConv6 3x3

MBConv6 5x5

MBConv6 5x5

MBConv6 3x3

MBConv6 3x3

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

MBConv6 3x3

Conv 1x1

Conv 3x3

MBConv1 3x3

MBConv1 3x3

MBConv6 3x3

MBConv6 3x3

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

MBConv6 3x3

MBConv6 3x3

MBConv6 3x3

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

Conv 1x1

One-Stage Model BigNASModel-S BigNASModel-M BigNASModel-L

96x96x16

96x96x24

48x48x40

24x24x80

12x12x112

12x12x192

6x6x320

6x6x1280

192x192x32

112x112x16

112x112x24

56x56x40

28x28x80

14x14x112

14x14x192

7x7x320

7x7x1280

224x224x32

144x144x16

144x144x24

72x72x40

36x36x80

18x18x112

18x18x216

9x9x352

9x9x1408

288x288x32
Conv 3x3

MBConv1 3x3

MBConv6 3x3

MBConv6 3x3

MBConv6 5x5

MBConv6 5x5

MBConv6 3x3

MBConv6 3x3

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

MBConv6 3x3

Conv 1x1

BigNASModel@660M

128x128x16

128x128x24

64x64x48

32x32x88

16x16x128

16x16x216

8x8x352

8x8x1408

256x256x32

Figure 9: Architecture visualization of the single-stage model and child models BigNASModel-S,
BigNASModel-M, BigNASModel@660M, BigNASModel-L. All child models are directly sliced
from the single-stage model without retraining or finetuning.

13


	Introduction
	Related Work
	Architecture Search with Single-Stage Models
	Training a High-quality Single-Stage Model
	Coarse-to-fine Architecture Selection

	Experiments
	Search Space Definition
	Main Results on ImageNet
	Ablation Study
	Coarse-to-fine Architecture Selection

	Conclusion
	Architectures of BigNASModel
	Implementation Details

