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ABSTRACT

Sequence labeling is a fundamental framework for various natural language pro-
cessing problems including part-of-speech tagging and named entity recognition.
Its performance is largely influenced by the annotation quality and quantity in
supervised learning scenarios. In many cases, ground truth labels are costly and
time-consuming to collect or even non-existent, while imperfect ones could be
easily accessed or transferred from different domains. A typical example is crowd-
sourced datasets which have multiple annotations for each sentence which may be
noisy or incomplete. Additionally, predictions from multiple source models in
transfer learning can be seen as a case of multi-source supervision. In this paper,
we propose a novel framework named Consensus Network (CONNET) to conduct
training with imperfect annotations from multiple sources. It learns the repre-
sentation for every weak supervision source and dynamically aggregates them
by a context-aware attention mechanism. Finally, it leads to a model reflecting
the consensus among multiple sources. We evaluate the proposed framework in
two practical settings of multi-source learning: learning with crowd annotations
and unsupervised cross-domain model adaptation. Extensive experimental results
show that our model achieves significant improvements over existing methods in
both settings. 1

1 INTRODUCTION

Sequence labeling is a fundamental framework for various natural language processing (NLP) tasks
including part-of-speech (POS) tagging (Ratnaparkhi, 1996), noun phrase chunking (Sang & Buch-
holz, 2000), word segmentation (Low et al., 2005), and named entity recognition (NER) (Nadeau
& Sekine, 2007). Typically, existing methods follow the supervised learning paradigm, and require
high-quality annotations. While ground truth labels are expensive and time-consuming, imperfect
annotations are much easier to obtain from crowdsourcing (noisy labels) or other domains (out-of-
domain). To alleviate or even address the problem of noise and incompleteness, it is important and
beneficial to learn from multiple sources.

Specifically, we are interested in two typical application scenarios: 1) learning with crowd anno-
tations and 2) unsupervised cross-domain model adaptation, which are detailed in Sec. 2 and
Sec. 3. The key challenge of learning with multi-source supervision is to aggregate annotators for
learning a model without knowing the underlying ground truth label sequences in the target domain.
Many attempts have been made in generalizing multiple informative sources to an out-of-domain
distribution for a range of tasks, including multi-class classification (Sheshadri & Lease, 2013), ob-
ject detection (Su et al., 2012) and information extraction (Liu et al., 2017). However, most of the
prior works (Nguyen et al., 2017; Wang et al., 2019; Peng & Dredze, 2016; Yang et al., 2017; Chen
& Cardie, 2018) choose to use simple heuristic-based methods of aggregating source models for
performing on a target corpus without carefully calibration.

Our intuition is mainly from the common phenomenon that each source of supervision has distinct
strength in different inputs, and thus they should not keep consistent importance in aggregating su-
pervisions when inferring tag sequences for new inputs. Aggregating multiple sources for a specific
input should be a dynamic process depending on the sentence context rather than a fixed way. To

1Code and data have been uploaded and will be published up to the acceptance of the paper.
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Figure 1: Illustration of the task settings for the two applications in this work: (a) learning consensus
model from crowd annotations; (b) unsupervised cross-domain model adaptation.

better model this nature, we need to (1) explicitly model the unique traits of different sources when
training and (2) find best suitable sources for generalizing the learned model on unseen sentences.

In this paper, we propose a novel framework, named Consensus Network (CONNET), for sequence
labeling with multi-source supervisions. We represent the annotation patterns as different biases of
annotators over a shared behavior pattern. Both annotator-invariant patterns and annotator-specific
biases are modeled in a decoupled way. The first term through sharing part of low-level model
parameters in a multi-task learning schema. For learning the biases, we decouple them from the
model as the transformations on top-level tagging model parameters, such that they can capture the
unique strength of each annotator. With such decoupled source representations, we further learn
an attention network for dynamically assigning the best sources for every unseen sentence through
composing a transformation that represents the consensus. Extensive experimental results in two
scenarios show that our model always outperforms strong baseline methods. CONNET achieves the
state-of-the-art performance on real-world crowdsourcing datasets and improve significantly in most
unsupervised cross-domain adaptation tasks over existing works. In addition to sequence labeling,
it also shows its effectiveness on text classification tasks.

2 RELATED WORK

Neural Sequence Labeling. Traditional approaches for sequence labeling usually need significant
efforts in feature engineering for graphical models like hidden markov models (HMMs) (Rabiner,
1989) and conditional random fields (CRFs) (Lafferty, 2001). Recent research efforts in neural net-
work models have shown that end-to-end learning like convolutional neural networks (CNNs) (Ma &
Hovy, 2016b) or bidirectional long short-term memory (BLSTMs) (Lample et al., 2016) can largely
eliminate human-crafted features. Together with a final CRF layer, these BLSTM-CRF models have
achieved promising performance and are used as our base sequence tagging model in this paper.

Crowd-sourced Annotation. Crowd-sourcing has been demonstrated to be an effective way of
fulfilling the label consumption of neural models (Guan et al., 2017). It collects annotations with
lower costs and a higher speed by non-expert contributors but suffers from some degradation in
quality. Dawid & Skene (1979) proposes the pioneering work to aggregate crowd annotations
to estimate true labels, and Snow et al. (2008) shows its effectiveness with Amazon’s Mechanical
Turk system. Later works (Dempster et al., 1977; Dredze et al., 2009; Raykar et al., 2010) focus
on Expectation-Maximization (EM) algorithms to jointly learn the model and annotator behavior
on classification problems. Recent research shows the strength of multi-task framework in semi-
supervised learning (Lan et al., 2018; Clark et al., 2018), and cross-type learning (Wang et al.,
2018). Nguyen et al. (2017) and Rodrigues & Pereira (2018) regards crowd annotations as noisy
versions of glod labels and constructs crowd components to model annotator-specific bias which
were discarded during the inference process.

Unsupervised Domain Adaptation. Unsupervised cross-domain adaptation aims to transfer knowl-
edge learned from high-resource domains (source domains) to boost performance on low-resource
domains (target domains). Different from supervised adaptation (Lin & Lu, 2018), we assume there
is no labels at all for target corpora. Saito et al. (2017) and Ruder & Plank (2018) explored boot-
strapping with multi-task tri-training approach. The method is developed for one-to-one domain
adaptation and does not model the differences among multiple source domains. Yang & Eisenstein
(2015) represents each domain with a vector of metadata domain attributes and uses domain vectors
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to train the model to deal with domain shifting. Ghifary et al. (2016) uses an auto-encoder method
by jointly training a predictor for source labels, and a decoder to reproduce target input with a shared
encoder. The decoder acts as a normalizer to force the model to learn shared knowledge between
source and target domains. Adversarial penalty can be applied to the loss function to make models
learn domain-invariant feature only (Fernando et al., 2015; Ming Harry Hsu et al., 2015).

3 LEARNING WITH MULTI-SOURCE SUPERVISION

We consider the multi-source sequence labeling problem as follows. There are N sources of super-
vision, each source can be regarded as an imperfect annotator (non-expert human tagger or models
trained in related domains). For the k-th source data set S(k) = {(x(k)

i ,y
(k)
i )}mk

i=1, we denote its i-th
sentence as x(k)

i which is a sequence of tokens: x(k)
i = (x

(k)
i,1 , · · · , x

(k)
i,N ). The tag sequence of the sen-

tence is thus to be y
(k)
i = {y(k)

i,j }. We define the sentence set of each annotators as X (k) = {x(k)
i }

mk
i=1,

and the whole training domain as the union of all sentence sets: X =
⋃(K)

k=1 X
(k). The goal of the

multi-source learning task is to use such imperfect annotations to train a model for predicting the
tag sequence y for any sentence x in a target corpus T . Note that the target corpus T can either
share the same distribution with X (Application I) or be significantly different (Application II). In
the following two subsections, we formulate two typical tasks in this problem as shown in Fig. 1.

Application I: Learning with Crowd Annotations. When learning with crowd-sourced sequence
labeling data, we regard each worker as an imperfect annotator (S(k)), who may make mistakes or
skip sentences in its annotations. Note that for crowd-sourcing data, different annotators tag subsets
of the same given dataset (X ), and thus we assume there are no input distribution shifts among X (k).
Also, we only test sentences in the same domain such that the distribution in target corpus T is the
same as well. That is, the marginal distribution of target corpus PT (x) is the same with that for each
individual source dataset, i.e. PT (x) = Pk(x). However, due to imperfectness of the annotations
in each source, the Pk(y|x) has obvious shift from the underlying truth P (y|x) (illustrated in the
top-left part of Fig. 1). The multi-source learning objective here is to learn a model PT (y|x) for
supporting inference on any new sentences in the same domain.

Application II: Unsupervised Cross-Domain Model Adaptation. We assume that we have well-
annotated data in some source domains while having no labels in the target domain at all. Following
the formulation, we claim that the input distributions P (x) in different source domains X (k) vary
a lot, and fitting those annotations can only generalize to in-domain samples. That is, Pk(y|x) ≈
P (y|x) only for x ∈ X (k). For target corpus sentences x ∈ T , such a source model Pk(y|x) again
differs from underlying ground truth for the target domain PT (y|x) and can be seen as an imperfect
annotators. Our objective in this setting is also to jointly model PT (y,x) while noticing that there
are significant domain shifts between T and any other X (k).

4 PROPOSED APPROACH: CONSENSUS NETWORK

In this section, we present our two-phase framework CONNET for multi-source sequence label-
ing. As shown in Figure 2, our proposed framework first uses a multi-task learning schema with a
special objective to decouple annotator representations as different parameters of a transformation
around CRF layers. This decoupling phase (Section 4.2) is for decoupling the model parameters
into a set of annotator-invariant model parameters and a set of annotator-specific representations.
Secondly, the dynamic aggregation phase (Section 4.3) learns to contextually utilize the annotator
representations with a lightweight attention mechanism to find the best suitable transformation for
each sentence, so that the model can achieve a context-aware consensus among all sources. The
inference process is described in Section 4.4.

4.1 THE BASE MODEL FOR SEQUENCE LABELING: BLSTM-CRF

Many recent sequence labeling frameworks (Ma & Hovy, 2016a; Misawa et al., 2017) share a very
basic structure: a bidirectional LSTM network followed by a CRF tagging layer (i.e. BLSTM-
CRF). The BLSTM encodes an input sequence x = {x1, x2, . . . , xn} into a sequence of hidden
state vectors h1:n. The CRF takes as input the hidden state vectors and computes an emission score
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Figure 2: CONNET Overview. The decoupling phase constructs the shared model (yellow) and source-specific
matrices (blue). The aggregation phase dynamically combines crowd components into a consensus representa-
tion (blue) by a context-aware attention module (red) for each sentence x.

matrix U ∈ Rn×L where L is the size of tag set. It also maintains a trainable transition matrix
M ∈ RL×L. We can consider Ui,j is the score of labeling the tag with id j ∈ {1, 2, ..., L} for ith

word in the input sequence x, and Mi,j means the transition score from ith tag to jth.

The CRF further computes the score s for a predicted tag sequence y = {y1, y2, ..., yk} as

s(x,y) =

T∑
t=1

(Ut,yt
+Myt−1,yt

), (1)

then tag sequence y follows the conditional distribution

P (y|x) = exp s(x,y)∑
y∈Yx

exp s(x,y)
. (2)

4.2 THE DECOUPLING PHASE: LEARNING ANNOTATOR REPRESENTATIONS

For decoupling annotator-specific biases in annotations, we represent them as a transformation on
emission scores and transition scores respectively. Specifically, we learn a matrix A(k) ∈ RL×L for
each imperfect annotator k and apply this matrix as transformation on U and M as follows:

s(k)(x,y) =

T∑
t=1

(
(UA(k))t,yt

+ (MA(k))yt−1,yt

)
. (3)

From this transformation, we can see that the original score function s in Eq. 1 becomes an annotator-
specific computation. The original emission and transformation score matrix U and M are still
shared by all the annotators, while they both are transformed by the matrix A(k) for k-th annotator.
While training the model parameters in this phase, we follow a multi-task learning schema. That is,
we share the model parameters for BLSTM and CRF (including W, b, M), while updating A(k)

only by examples in Sk = {X (k),Y(k)}.

The assumption on the annotation representation A(k) is that it can model the pattern of annotation
bias. Each annotator can be seen as a noisy version of the shared model. For the k-th annotator, A(k)

models noise from labeling the current word and transferring from the previous label. Specifically,
each entry A

(k)
i,j captures the probability of mistakenly labeling i-th tag to j-th tag. In other words,

the base sequence labeling model in Sec. 4.1 learns the basic consensus knowledge while annotator-
specific components add their understanding to predictions.

4.3 THE AGGREGATION PHASE: DYNAMICALLY REACHING CONSENSUS

In the second phase, our proposed network learns a context-aware attention module for a consensus
representation supervised by combined predictions on the target data. For each sentence in target
data T , we use the model obtained from the decoupling phase to make predictions, and combine
predictions using weighted voting. The weight of each source is its normalized F1 score on the
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training set. Through weighted voting on such augmented labels over all source sentences X , we
can find a good approximation of underlying truth labels.

For better generalization and higher speed, an attention module is trained to estimate the relevance
of each source to the target under the supervision of generated labels. Specifically, we compute
embedding of each sentence by concatenating the last hidden states of the forward LSTM and the
backward LSTM, i.e. h(i) = [

−→
h

(i)
T ;
←−
h

(i)
0 ]. The attention module takes as input the sentence

embedding and outputs a normalized weight for each source:

qi = softmax(Qh(i)), where Q ∈ RK×2d. (4)

where d is the size of each hidden state h(i). Source-specific matrices {A(k)}Kk=1 are then aggre-
gated into a consensus representation A∗i for sentence xi ∈ X by

A∗i =

K∑
k=1

qi,kA
(k). (5)

In this way, the consensus representation contains more information about sources which are more
related to the current type of sentence. It also alleviates the contradiction problem among sources,
because it could consider multiple sources of different emphasis. Since only an attention model
with weight matrix Q is trained, the amount of computation is relatively small. We assume the
sequence labeling model and annotator representations are well-trained in the previous phase. The
main objective in this phase is to learn how to select most suitable annotators for the current sentence.

4.4 PARAMETER LEARNING AND INFERENCE OF CONNET

CONNET learns parameters through two phases described above. In the first decoupling phase,
each training instance from source Sk is used for training the base sequence labeling model and
its specific representation A(k). In the second aggregation phase, we use aggregated predictions
from the first phase to learn a lightweight attention module. For each instance in the target corpus
xi ∈ T , we calculate its embedding hi from BLSTM hidden states. With these sentence em-
beddings, the context-aware attention module assigns weight qi to each source and dynamically
aggregates source-specific representations {A(k)} for inferring ŷi. In the inference process, only
the consolidated consensus matrix A∗i is applied to the base sequence learning model. In this way,
more specialist knowledge helps to deal with more complex instances.

4.5 MODEL APPLICATION

The proposed model can be applied to multi-sourcing learning. Here we describe the application in
two practical settings: learning with crowd annotations and unsupervised cross-domain model adap-
tation. In the crowd annotation learning setting, the training data of the same domain is annotated by
multiple noisy annotators, and each annotators is treated as a source. In the decoupling phase, the
model is trained on noisy annotations, and in the aggregation phase, it is trained with combined pre-
dictions on the training set. In the cross-domain setting, the model has access to unlabeled training
data of the target domain and clean labeled data of multiple source domains. Each domain is treated
as a source. In the decoupling phase, the model is trained on source domains, and in the aggregation
phase, the model is trained on combined predictions on the training data of the target domain.

Our framework can also potentially extend to new tasks other than sequence labeling with different
encoders. For example, if we use an MLP as encoder, we can transform its hidden representation
by multiplying with crowd/consensus matrices. The transformed representation will then used by a
decoder to make predictions. We will demonstrate this ability in experiments.

5 EXPERIMENTS

We evaluate CONNET in the two aforementioned settings of multi-source learning: learning with
crowd annotations and unsupervised cross-domain model adaptation. Additionally, to demonstrate
the generalization of our framework, we also test our method on sequence labeling with transformer
encoder in Appendix B and text classification with MLP encoder in Section 5.5.
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5.1 DATASETS

Crowd-Annotation Datasets. We use crowd-annotation datasets based on the 2003 CoNLL shared
NER task (Sang & De Meulder, 2003). The real-world datasets, denoted as AMT, are collected
by Rodrigues et al. (2014) using Amazon’s Mechanical Turk where F1 scores of annotators against
the ground truth vary from 17.60% to 89.11%. Since there is no development set in AMT, we also
follow Nguyen et al. (2017) to use the AMT training set and CoNLL 2003 development and test
sets, denoted as AMTC. Overlapping sentences are removed in the training set, which is ignored in
that work. Additionally, we construct two sets of simulated datasets to investigate the quality and
quantity of annotators. To simulate the behavior of a non-expert annotator, a CRF model is trained
on a small subset of training data and generates predictions on the whole set. Because of the limited
size of training data, each model would have a bias to certain patterns.

Cross-Domain Datasets. In this setting, we investigate three NLP tasks: POS tagging, NER and
text classification. For POS tagging task, we use the GUM portion (Zeldes, 2017) of Universal
Dependencies (UD) v2.3 corpus with 17 tags and 7 domains: academic, bio, fiction, news, voyage,
wiki, and interview. For NER task, we select the English portion of the OntoNotes v5 corpus (Hovy
et al., 2006). The corpus is annotated with 9 named entities with data from 6 domains: broadcast
conversation (bc), broadcast news (bn), magazine (mz), newswire (nw), pivot text (pt), telephone
conversation (tc), and web (web). Multi-Domain Sentiment Dataset (MDS) v2.0 (Blitzer et al.,
2007) is used for text classification, which is built on Amazon reviews from 4 domains: books, dvd,
electronics, and kitchen. Since the dataset only contains word frequencies for each review without
raw texts, we follow the setting in Chen & Cardie (2018) considering 5,000 most frequent words
and use the raw counts as the feature vector for each review.

5.2 EXPERIMENT SETUP

For sequence labeling tasks, we follow Liu et al. (2018) to build the BLSTM-CRF architecture as
the base model. The dimension of character-level, word-level embeddings and BLSTM hidden layer
are set as 30, 100 and 150 respectively. For text classification, We use an MLP with a hidden size
of 100 as encoder and a linear classification layer for predicting their labels. The dropout with
a probability of 0.5 is applied to the non-recurrent connections for regularization. The network
parameters are randomly initialized and updated by stochastic gradient descent (SGD). The learning
rate is initialized as 0.015 and decayed by 5% for each epoch. The training process stops early if
no improvements in 15 continuous epochs and selects the best model on the development set. For
the dataset without a development set, we report the performance on the 50-th epoch. For each
experiment, we report the average performance of 3 runs with different random initialization.

5.3 COMPARISON WITH BASELINE METHODS

We compare our models with multiple baselines, which can be categorized in two groups: wrapper
methods and joint models. To demonstrate the theoretical upper bound of performance, we also train
the base model using ground-truth annotations in the target domain (Gold).

A wrapper method consists of a label aggregator and a deep learning model. These two components
could be combined in two ways: (1) aggregating labels on crowd-sourced training set then feeding
the generated labels to a Sequence Labeling Model (SLM) (Liu et al., 2017); (2) feeding multi-source
data to a Multi-Task Learning (MTL) (Wang et al., 2018) model then aggregating multiple predicted
labels. We investigate multiple label aggregation strategies. CONCAT considers all crowd annota-
tions as gold labels. MVT does majority voting on the token level, i.e., the majority of labels {yk

i,j}
is selected as the gold label for each token xi,j . MVS is conducted on the sequence level, addressing
the problem of violating Begin/In/Out (BIO) rules. DS (Dawid & Skene, 1979), HMM (Nguyen et al.,
2017) and BEA (Rahimi et al., 2019) induce consensus labels with probability models.

In contrast with wrapper methods, joint models incorporate multi-source data within the structure
of sequential taggers and jointly model all of the individual annotators. CRF-MA models CRFs with
Multiple Annotators by EM algorithm (Rodrigues et al., 2014). Nguyen et al. (2017) augments the
LSTM architecture with crowd vectors. These crowd components are element-wise added to the tags
scores (Crowd-Add) or concatenated to the output of the hidden layer (Crowd-Cat). These two
methods are the most similar to our extraction phase. We implemented them and got better results
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Methods AMTC AMT
Precision(%) Recall(%) F1-score(%) Precision(%) Recall(%) F1-score(%)

CONCAT-SLM 85.95(±1.00) 57.96(±0.26) 69.23(±0.13) 91.12(±0.57) 55.41(±2.66) 68.89(±1.92)
MVT-SLM 84.78(±0.66) 62.50(±1.36) 71.94(±0.66) 86.96(±1.22) 58.07(±0.11) 69.64(±0.31)
MVS-SLM 84.76(±0.50) 61.95(±0.32) 71.57(±0.04) 86.95(±1.12) 56.23(±0.01) 68.30(±0.33)
DS-SLM (Nguyen et al., 2017) 72.30∗ 61.17∗ 66.27∗ - - -
HMM-SLM (Nguyen et al., 2017) 76.19∗ 66.24∗ 70.87∗ - - -
MTL-MVT (Wang et al., 2018) 81.81(±2.34) 62.51(±0.28) 70.87(±1.06) 88.88(±0.25) 65.04(±0.80) 75.10(±0.44)
MTL-BEA (Rahimi et al., 2019) 85.72(±0.66) 58.28(±0.43) 69.39(±0.52) 77.56(±2.23) 67.23(±0.72) 72.01(±0.85)

CRF-MA (Rodrigues et al., 2014) - - - 49.40∗ 85.60∗ 62.60∗
Crowd-Add (Nguyen et al., 2017) 85.81(±1.53) 62.15(±0.18) 72.09(±0.42) 89.74(±0.10) 64.50(±1.48) 75.03(±1.02)
Crowd-Cat (Nguyen et al., 2017) 85.02(±0.98) 62.73(±1.10) 72.19(±0.37) 89.72(±0.47) 63.55(±1.20) 74.39(±0.98)
CL-MW (Rodrigues & Pereira, 2018) - - - 66.00∗ 59.30∗ 62.40∗

CONNET (Ours) 84.11(±0.71) 68.61(±0.03) 75.57(±0.27) 88.77(±0.25) 72.79(±0.04) 79.99(±0.08)

Gold (Upper Bound) 89.48(±0.32) 89.55(±0.06) 89.51(±0.21) 92.12(±0.31) 91.73(±0.09) 91.92(±0.21)

Table 1: Performance on real-world crowd-sourced NER datasets. (* indicates number reported by the paper.)
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Figure 3: Performance on simulated crowd-sourced NER datasets with (a) 5 annotators on different reliability
levels; (b) various numbers of annotators whose reliability r = 1/50.

than reported. CL-MW applies a crowd layer to a CNN-based deep learning framework (Rodrigues
& Pereira, 2018). Tri-Training uses bootstrapping with multi-task Tri-Training approach for
unsupervised one-to-one domain adaptation (Saito et al., 2017; Ruder & Plank, 2018).

5.4 PERFORMANCE ON LEARNING WITH CROWD ANNOTATIONS

Tab. 1 shows the performance of aforementioned methods and our CONNET on two real-world
datasets, i.e. AMT and AMTC. We can see that CONNET outperforms all other methods on both
datasets significantly on F1 score, which shows the effectiveness of dealing with noisy annotations
for higher-quality labels. Although CONCAT-SLM achieves the highest precision, it suffers from
low recall. All existing methods have the high-precision but low-recall problem. One possible
reason is that they try to find the latent ground truth and throw away illuminating annotator-specific
information. So only simple mentions can be classified with great certainty while difficult mentions
fail to be identified without sufficient knowledge. In comparison, CONNET pools information from
all annotations and focus on matching knowledge to make predictions. It makes the tagging model
be able to identify more mentions and get a higher recall.

It is enlightening to analyze whether the model decides the importance of annotators given a sen-
tence. In Fig. 4 we visualize test F1 score of all annotators on each tag, and attention weights qi

in Eq. 4 for 4 sampled sentences containing different entity types. Obviously, the 2nd sample sen-
tence with ORG has higher attention weights on 1st, 5th and 33rd annotator who are best at labeling
ORG. More details and cases are shown in Appendix A.1. We also investigate multiple variants and
conduct ablation study in Appendix A.2.

To analyze the impact of annotator quality, we split the origin train set into {5, 10, 15, 30, 50}
folds and train a CRF model on each fold whose reliability could be represented as r =
{1/5, 1/10, 1/15, 1/30, 1/50} because a model with less training data would have stronger bias
and less generalization. For each setting, we randomly select 5 trained models as the simulated
annotators to annotate the whole training set. When the reliability level of all annotators is too low,
i.e. 1/50, only the base model is used for prediction without annotator representations. The mod-
els are then trained with simulated annotations. Shown in Fig. 3(a), CONNET achieves significant
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Figure 4: Visualizations of (a) the expertise of annotators; (b) attention weights for sample sentences. More
cases and details are described in Appendix A.1.

improvements over MVT-SLM and competitive performance as Crowd-Cat. Our model shows its
effectiveness when annotators are less reliable.

Regarding the influence of annotator quantity, we split the train set into 50 subsets to train 50 models
(r = 1/50) respectively and randomly select {5, 10, 15, 30, 50} models as simulated annotators to
annotate the whole training set. The models are then trained with simulated annotations. Fig. 3(b)
shows CONNET is superior to baselines and able to well deal with many annotators while there is
no obvious relationship between the performance and the number of annotators in baselines. We
can see the performance of our model increases as the number of annotators and, regardless of the
number of annotators, our method consistently outperforms than other baselines.

5.5 PERFORMANCE ON CROSS-DOMAIN ADAPTATION

Methods POS Tagging Named Entity Recognition Text Classification
CONCAT-SLM 92.11(±0.07) 61.24(±0.92) 79.41(±0.02)
MTL-MVT (Wang et al., 2018) 90.73(±0.29) 60.44(±0.45) 77.54(±0.06)
MTL-BEA (Rahimi et al., 2019) 91.71(±0.06) 52.15(±0.58) 78.01(±0.28)

Crowd-Add (Nguyen et al., 2017) 91.36(±0.14) 39.30(±4.44) 79.30(±9.21)
Crowd-Cat (Nguyen et al., 2017) 91.94(±0.08) 62.14(±0.89) 79.54(±0.25)
Tri-Training (Ruder & Plank, 2018) 91.93(±0.01) 61.67(±0.31) 80.58(±0.02)

CONNET (Ours) 92.33(±0.17) 63.32(±0.81) 81.55(±0.04)

Gold (Upper Bound) 92.88(±0.14) 68.61(±0.64) 83.22(±0.19)

Table 2: Performance on cross-domain adaptation. The average score for all domains is reported for each
task. The best score in each column that is significantly (p < 0.05) better than the second-best is marked bold,
while those are better but not significantly are underlined. Detailed results can be found in Appendix A.3.

The average performance of each method on each task is shown in Tab. 2. More detailed results on
each target domain can be found in Appendix A.3. We report the accuracy for POS tagging and text
classification, and report the chunk-level F1 score for NER. We can see that CONNET achieves the
highest average score in all tasks. MTL-MVT is similar to our decoupling phase without the attention
module, which performs much worse. It shows that naively doing unweighted voting does not work
well. The attention can be viewed as implicitly doing weighted voting on the feature level. This
demonstrates the importance of having such a module to assign weights to all domains based on the
input sentence. The Tri-Training model trained on the concatenated training data from all sources
performs worse than CONNET, which suggests that it is important to have a multi-task structure to
model the difference among domains. We analyze the OntoNotes dataset to show that the attention
scores generated by the model are meaningful. Details can be found in Appendix A.4.

6 CONCLUSION

In this paper, we present CONNET for learning a sequence tagger from multi-source supervision.
It could be applied in two practical scenarios: learning with crowd annotations and cross-domain
adaptation. In contrast to prior works, CONNET learns fine-grained representations of each source
which are further dynamically aggregated for every unseen sentence in the target data. Experiments
show that our model is superior to previous crowd-sourcing and unsupervised domain adaptation
sequence labeling models. The proposed learning framework also shows promising results on other
NLP tasks like text classification.
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A ANALYSIS OF CONNET WITH BLSTM ENCODER

A.1 CASE STUDY ON LEARNING WITH CROWD ANNOTATIONS
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Figure 5: Visualizations of (a) the expertise of annotators; (b) attention weights for additional sample
sentences to Fig. 4. Details of samples are described in Tab. 3.

1 Defender [PER Hassan Abbas] rose to intercept a long ball into the area in the 84th minute
but only managed to divert it into the top corner of [PER Bitar] ’s goal .

2 [ORG Plymouth] 4 [ORG Exeter] 1

3 Hosts [LOC UAE] play [LOC Kuwait] and [LOC South Korea] take on [LOC Indonesia]
on Saturday in Group A matches .

4 The former [MISC Soviet] republic was playing in an [MISC Asian Cup] finals tie for
the first time .

5 [PER Bitar] pulled off fine saves whenever they did .
6 [PER Coste] said he had approached the player two months ago about a comeback .
7 [ORG Goias] 1 [ORG Gremio] 3
8 [ORG Portuguesa] 1 [ORG Atletico Mineiro] 0
9 [LOC Melbourne] 1996-12-06

10
On Friday for their friendly against [LOC Scotland] at [LOC Murrayfield] more than
a year after the 30-year-old wing announced he was retiring following differences over
selection .

11 Scoreboard in the [MISC World Series]
12 Cricket - [MISC Sheffield Shield] score .
13 “ He ended the [MISC World Cup] on the wrong note , ” [PER Coste] said .
14 Soccer - [ORG Leeds] ’ [PER Bowyer] fined for part in fast-food fracas .
15 [ORG Rugby Union] - [PER Cuttitta] back for [LOC Italy] after a year .

16
[LOC Australia] gave [PER Brian Lara] another reason to be miserable when they beat
[LOC West Indies] by five wickets in the opening [MISC World Series] limited overs
match on Friday .

Table 3: Sample instances in Fig. 4 and Fig. 5 with NER annotations including PER (red), ORG
(blue), LOC (violet) and MISC (orange).

To better understand the effect and benefit of CONNET, we do some case study on AMTC real-world
dataset with 47 annotators. We look into some more instances to investigate the ability of attention
module to find right annotators in Fig. 5 and Tab. 3. Sentence 1-12 contains a specific entity type
respectively while 13-16 contains multiple different entities. Compared with expertise of annotators,
we can see that the attention module would give more weight on annotators who have competitive
performance and preference on the included entity type. Although top selected annotators for ORG
has relatively lower expertise on ORG than PER and LOC, they are actually the top three annotators
with highest expertise on ORG.
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A.2 ABLATION STUDY ON CONNET

To investigate the effectiveness of our proposed method, multiple variants of the decoupling phase
and aggregation phase are evaluated on the AMT dataset, shown in Fig. 6(a).

Decoupling Phase We tried three different approaches to incorporate source-specific representation
in the decoupling phase (DP). CRF means the traditional approach without annotator matrices as
Eq. 1 while DP(1+2) is described in Eq. 3. Similarly, DP(1) only applies source representations
A(k) to the emission score U while DP(2) only transfers the transition matrix M. They directly
use latent representations U and M in the decoupling phase (not augmented by A(k)) for prediction.
We can observe from the result that both variants that model the annotator-specific information can
improve the result. The underlying model keeps more consensus knowledge if we extract annotator-
specific bias on sentence encoding and label transition.

Aggregation Phase We compare four methods of generating supervision targets in the aggregation
phase (AP). OMV uses majority voting of original annotations as targets for training, while PMV sub-
stitutes them with model prediction learned from DP. AMV extends the model by using all prediction,
while AWV uses majority voting weighted by each annotator’s training F1 score. The results show
the effectiveness of AWV, which could well approximate the ground truth and supervise the attention
module to estimate the expertise of annotator on the current sentence. We can also infer labels on
the test set by conducting AWV on predictions of the underlying model with each annotator-specific
components. But it leads to heavy computation-consuming and unsatisfying performance, whose
test F1 score is 77.35(±0.08). To investigate the importance of extracted source-specific compo-
nents, we trained a traditional BLSTM-CRF model by the supervision of the same AMV labels. Its
result is 78.93(±0.13), which is lower than our CONNET.

These experiments convey four messages: (1) Using learned model prediction is better than directly
using original annotations as its target; (2) It is desirable to use all model predictions instead of
just confine each annotator on their data set. This means that the learned representation of indi-
vidual annotator can generalize on data it didn’t annotate. (3) Weighting aggregating models by
their performance is beneficial to overall accuracy. (4) The attention model could learn to estimate
annotators’ ability based on the context.

(a) (b)

Figure 6: (a) Performance of CONNET variants for ablation study; (b) Heatmap of averaged attention
scores from each source domain to each target domain.

A.3 DETAILED RESULTS FOR CROSS-DOMAIN ADAPTATION

The results of each task on each domain are shown in Tab. 4. We can see that CONNET performs
the best on most of the domains and achieves the highest average score for all tasks.

A.4 MULTI-DOMAIN: ANALYSIS

We analyzed the attention scores generated by the attention module on the OntoNotes dataset. For
each sentence in the target domain we collected the attention score of each source domain, and finally
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the attention scores are averaged for each source-target pair. Fig. 6(b) shows all the source-to-target
average attention scores. We can see that some domains can contribute to other related domains.
For example, bn (broadcast news) and nw (newswire) are both about news and they contribute to
each other; bn and bc (broadcast conversation) are both broadcast and bn contributes to bc; bn and
nw both contributes to mz (magzine) probably because they are all about news; wb (web) and tc
(telephone conversation) almost make no positive contribution to any other, which is reasonable
because they are informal texts compared to others and they are not necessarily related to the other.
Overall the attention scores can make some sense to human, and it suggests that the attention is
meaningful and contributing to the model.

Task & Corpus Multi-Domain POS Tagging: Universal Dependencies v2.3 - GUM
Target Domain academic bio fiction news voyage wiki interview AVG Acc(%)

CONCAT 92.68 92.12 93.05 90.79 92.38 92.32 91.44 92.11(±0.07)
MTL-MVT (Wang et al., 2018) 92.42 90.59 91.16 89.69 90.75 90.29 90.21 90.73(±0.29)
MTL-BEA (Rahimi et al., 2019) 92.87 91.88 91.90 91.03 91.67 91.31 91.29 91.71(±0.06)

Crowd-Add (Nguyen et al., 2017) 92.58 91.91 91.50 90.73 91.74 90.47 90.61 91.36(±0.14)
Crowd-Cat (Nguyen et al., 2017) 92.71 91.71 92.48 91.15 92.35 91.97 91.22 91.94(±0.08)
Tri-Training (Ruder & Plank, 2018) 92.84 92.15 92.51 91.40 92.35 91.29 91.00 91.93(±0.01)

CONNET 92.97 92.25 93.15 91.06 92.52 92.74 91.66 92.33(±0.17)

Gold (Upper Bound) 92.64 93.10 93.15 91.33 93.09 94.67 92.20 92.88(±0.14)

Task & Corpus Multi-Domain NER: OntoNotes v5.0 - English
Target Domain nw wb bn tc bc mz AVG F1(%)

CONCAT 68.23 32.96 77.25 53.66 72.74 62.61 61.24(±0.92)
MTL-MVT (Wang et al., 2018) 65.74 33.25 76.80 53.16 69.77 63.91 60.44(±0.45)
MTL-BEA (Rahimi et al., 2019) 58.33 32.62 72.47 47.83 48.99 52.68 52.15(±0.58)

Crowd-Add (Nguyen et al., 2017) 45.76 32.51 50.01 26.47 52.94 28.12 39.30(±4.44)
Crowd-Cat (Nguyen et al., 2017) 68.95 32.61 78.07 53.41 74.22 65.55 62.14(±0.89)
Tri-Training (Ruder & Plank, 2018) 69.68 33.41 79.62 47.91 70.85 68.53 61.67(±0.31)

CONNET 71.31 34.06 79.66 52.72 71.47 70.71 63.32(±0.81)

Gold (Upper Bound) 84.70 46.98 83.77 52.57 73.05 70.58 68.61(±0.64)

Task & Corpus Multi-Domain Text Classification: MDS
Target Domain books dvd electronics kitchen AVG Acc(%)

CONCAT 75.68 77.02 81.87 83.07 79.41(±0.02)
MTL-MVT (Wang et al., 2018) 74.92 74.43 79.33 81.47 77.54(±0.06)
MTL-BEA (Rahimi et al., 2019) 74.88 74.60 79.73 82.82 78.01(±0.28)

Crowd-Add (Nguyen et al., 2017) 75.72 77.35 81.25 82.90 79.30(±9.21)
Crowd-Cat (Nguyen et al., 2017) 76.45 77.37 81.22 83.12 79.54(±0.25)
Tri-Training (Ruder & Plank, 2018) 78.75 78.45 81.95 83.17 80.58(±0.02)

CONNET 77.58 81.06 84.12 83.45 81.55(±0.04)

Gold (Upper Bound) 78.78 82.11 86.21 85.76 83.22(±0.19)

Table 4: Performance on cross-domain adaptation. The best score (except the Gold) in each
column that is significantly (p < 0.05) better than the second best is marked bold, while those are
better but not significantly are underlined. * means the results from the paper.

B RESULT OF CONNET WITH TRANSFORMER ENCODER

Methods AMTC UD
Precision(%) Recall(%) F1-score(%) Accuracy(%)

MVT-SLM 72.21(±1.63) 51.72(±3.58) 60.21(±1.87) 87.23(±0.51)
Crowd-Add (Nguyen et al., 2017) 75.32(±1.41) 50.80(±0.30) 60.68(±0.67) 88.20(±0.36)

CONNET (Ours) 76.86(±0.33) 56.43(±3.32) 65.05(±2.32) 89.27(±0.31)

Gold (Upper Bound) 81.24(±1.25) 80.52(±0.37) 80.87(±0.79) 90.45(±0.71)

Table 5: Performance of methods with Transformer-CRF as the base model on crowd-annotation NER dataset
AMTC and cross-domain POS dataset UD.
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To demonstrate the generalization of our framework, we re-implement CONNET and some baselines
(MTV-SLM, Crowd-Add, Gold) with Transformer-CRF as the base model. Specifically, the base
model takes Transformer as the encoder for CRF, which has shown its effectiveness in many NLP
tasks (Vaswani et al., 2017; Devlin et al., 2018). Transformer models sequences with self-attention
and eliminates all recurrence. Following the experimental settings from Vaswani et al. (2017), we
set the number of heads for multi-head attention as 8, the dimension of keys and values as 64, and
the hidden size of the feed-forward layers as 1024. We conduct experiments with crowd-annotation
dataset AMTC on NER task and cross-domain dataset UD on POS task, which are described in
Section 5.1. Results are shown in Table 5. We can see our model outperforms over other baselines
in both tasks and applications.

15


	Introduction
	Related Work
	Learning with Multi-source Supervision
	Proposed Approach: Consensus Network
	The Base Model for Sequence Labeling: BLSTM-CRF
	The Decoupling Phase: Learning annotator representations
	The Aggregation Phase: Dynamically Reaching Consensus
	Parameter Learning and Inference of ConNet
	Model Application

	Experiments
	Datasets
	Experiment Setup
	Comparison with baseline methods
	Performance on learning with Crowd Annotations
	Performance on Cross-Domain Adaptation

	Conclusion
	Analysis of ConNet with BLSTM Encoder
	Case study on learning with crowd annotations
	Ablation Study on ConNet
	Detailed results for Cross-Domain Adaptation
	Multi-domain: Analysis

	Result of ConNet with Transformer Encoder

