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ABSTRACT

This paper explores a simple regularizer for reinforcement learning by proposing
Generative Adversarial Self-Imitation Learning (GASIL), which encourages the
agent to imitate past good trajectories via generative adversarial imitation learning
framework. Instead of directly maximizing rewards, GASIL focuses on reproducing
past good trajectories, which can potentially make long-term credit assignment
easier when rewards are delayed. GASIL can be easily combined with any policy
gradient objective by using GASIL as a learned reward shaping function. Our
experimental results show that GASIL improves the performance of proximal
policy optimization on 2D Point Mass and MuJoCo environments with delayed
reward and stochastic dynamics.

1 INTRODUCTION

A major component of Reinforcement learning (RL) is the temporal credit assignment problem that
amounts to figuring out which action in a state leads to a better outcome in the future. Different RL
algorithms have different forms of objectives to solve this problem. For example, policy gradient
approaches learn to directly adapt the policy to optimize the RL objective (i.e., maximizing cumulative
rewards), while value-based approaches (e.g., Q-Learning (Watkins & Dayan, 1992)) estimate long-
term future rewards and induce a policy from it. Policies optimized for different objectives many
have different learning dynamics, which end up with different sub-optimal policies in complex
environments, though all of these objectives are designed to maximize cumulative rewards.

In this paper, we explore a simple regularizer for RL, called Generative Adversarial Self-Imitation
Learning (GASIL). Instead of directly maximizing rewards, GASIL aims to imitate past good
trajectories that the agent has generated using generative adversarial imitation learning framework (Ho
& Ermon, 2016). GASIL solves the temporal credit assignment problem by learning a discriminator
which discriminates between the agent’s current trajectories and good trajectories in the past, while
the policy is trained to make it hard for the discriminator to distinguish between the two types of
trajectories by imitating good trajectories. GASIL can potentially make long-term temporal credit
assignment easier when reward signal is delayed, because reproducing certain trajectories is often
much easier than maximizing long-term delayed rewards. GASIL can be interpreted as an optimal
reward learning algorithm (Singh et al., 2009; Sorg et al., 2010), where the discriminator acts as a
learned reward function which provides dense rewards for the agent to reproduce relatively better
trajectories. Thus, it can be used as a shaped reward function and combined with any RL algorithms.

Our empirical results on 2D Point Mass and OpenAI Gym MuJoCo tasks (Brockman et al., 2016;
Todorov et al., 2012) show that GASIL improves the performance of proximal policy optimization
(PPO) (Schulman et al., 2017), especially when rewards are delayed. We also show that GASIL is
robust to stochastic dynamics to some extent in practice.

2 RELATED WORK

Generative adversarial learning Generative adversarial networks (GANs) (Goodfellow et al.,
2014) have been increasingly popular for generative modeling. In GANs, a discriminator is trained
to discriminate whether a given sample is drawn from data distribution or model distribution. A
generator (i.e., model) is trained to “fool” the discriminator by generating samples that are close to
the real data. This adversarial play allows the model distribution to match to the data distribution.
This approach has been very successful for image generation and manipulation (Radford et al., 2015;
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Reed et al., 2016; Zhu et al., 2017). Recently, Ho & Ermon (2016) proposed generative adversarial
imitation learning (GAIL) which extends this idea to imitation learning. In GAIL, a discriminator
is trained to discrimiate between optimal trajectories (or expert trajectories) and policy trajectories,
while the policy learns to fool the discriminator by imitating optimal trajectories. Our work further
extends this idea to RL. Unlike GAN or GAIL setting, however, optimal trajectories are not available
to the agent in RL. Instead, our GASIL treats “relatively better trajectories” that the policy has
generated as optimal trajectories that the agent should imitate.

Reward learning Singh et al. (2009) discussed a problem of learning an internal reward function
that is useful across a distribution of environments in an evolutionary context. Simiarly, Sorg et al.
(2010) introduced optimal reward problem under the motivation that the true reward function defined
in the environment may not be optimal for learning, and there exists an optimal reward function that
allows learning the desired behavior much quickly. This claim is consistent with the idea of reward
shaping (Ng et al., 1999) which helps learning without changing the optimal policy. There has been a
few attempts to learn such an internal reward function without domain-specific knowledge in deep
RL context (Sorg et al., 2010; Guo et al., 2016; Zheng et al., 2018). Our work is closely related to
this line of work in that GASIL learns a discriminator which acts as an interal reward function that
allows the agent to learn to maximize external rewards more easily.

Self-imitation There has been a line of work that introduces a notion of learning and inducing a
good policy by focusing on good experiences that the agent has generated. For example, episodic
control (Lengyel & Dayan, 2008; Blundell et al., 2016; Pritzel et al., 2017) and the nearest neighbor
policy (Mansimov & Cho, 2017) construct a non-parametric policy directly from the past experience
by retreiving similar states in the past and following the best decision made in the past. Instead, our
work aims to learn a parametric policy from past good experiences. Self-imitation has been shown to
be useful for program synthesis (Liang et al., 2016; Abolafia et al., 2018), where the agent is trained
to generate K-best programs generated by itself. Our work proposes a different objective based on
generative adversarial learning framework and evaluates it on RL benchmarks. More recently, Goyal
et al. (2018) proposed to learn a generative model of preceding states of high-value states (i.e., top-K
trajectories) and update a policy to follow the generated trajectories. In contrast, our GASIL directly
learns to imitate past good trajectories without learning a generative model. GASIL can be viewed as
a generative adversarial extension of self-imitation learning (Oh et al., 2018) which updates the policy
and the value function towards past better trajectories. Contemporaneously with our work, Gangwani
et al. (2018) also proposed the same method as our GASIL, which was independently developed.
Most of the previous works listed above including ours may not guarantee policy improvement under
certain types of stochastic environments due to its bias towards positive outcome, though they have
been shown to work well on existing benchmarks when used as a regularizer. Looking forward,
dealing with stochasticity with this type of approach with stronger theoretical guarantees would be an
interesting future direction.

3 BACKGROUND

Throughout the paper, we consider a finite state space S and a finite action space A. The goal of
RL is to find a policy π ∈ Π : S × A → [0, 1] which maximizes the discounted sum of rewards:
η(π) = Eπ [

∑∞
t=0 γ

trt] where γ is a discount factor and rt is a reward at time-step t.

Alternatively, we can re-write the RL objective η(π) in terms of occupancy measure. Occupancy
measure ρπ ∈ D : S ×A → R is defined as ρπ(s, a) = π(a|s)

∑∞
t=0 γ

tP (st = s|π). Intuitively, it
is a joint distribution of states and actions visited by the agent following the policy π. It is shown that
there is a one-to-one correspondence between the set of policies (Π) and the set of valid occupancy
measures (D = {ρπ : π ∈ Π}) (Syed et al., 2008). This allows us to write the RL objective in terms
of occupancy measure as follows:

η(π) = Eπ

[ ∞∑
t=0

γtrt

]
=

∑
s,a

ρπ(s, a)r(s, a). (1)

where r(s, a) is the reward for choosing action a in state s. Thus, policy optimization amounts to find-
ing an optimal occupancy measure which maximizes rewards due to the one-to-one correspondence
between them.
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3.1 POLICY GRADIENT

Policy gradient methods compute the gradient of the RL objective η(πθ) = Eπθ [
∑∞
t=0 γ

trt]. Since
η(πθ) is non-differentiable with respect to the parameter θ when the dynamics of the environment are
unknown, policy gradient methods rely on the score function estimator to get an unbiased gradient
estimator of η(πθ). A typical form of policy gradient objective is given by:

JPG(θ) = Eπθ
[
log πθ(at|st)Ât

]
(2)

where πθ is a policy parameterized by θ, and Ât is an advantage estimation at time t. Intuitively, the
policy gradient objective either increases the probability of the action when the return is higher than
expected (Ât > 0) or decreases the probability when the return is lower than expected (Ât < 0).

3.2 GENERATIVE ADVERSARIAL IMITATION LEARNING

Generative adversarial imitation learning (GAIL) (Ho & Ermon, 2016) is an imitation learning
algorithm which aims to learn a policy that can imitate expert trajectories using the idea from
generative adversarial network (GAN) (Goodfellow et al., 2014). More specifically, the objective of
GAIL for maximum entropy IRL (Ziebart et al., 2008) is defined as:

argmin
θ

argmax
φ

LGAIL(θ, φ) = Eπθ [logDφ(s, a)] + EπE [log(1−Dφ(s, a))]− λH(πθ) (3)

where πθ, πE are a policy parameterized by θ and an expert policy respectively. Dφ(s, a) : S ×A →
[0, 1] is a discriminator parameterized by φ. H(π) = Eπ [− log π(a|s)] is the entropy of the policy.
Similar to GANs, the discriminator and the policy play an adversarial game by either maximizing or
minimizing the objective LGAIL, and the gradient of each component is given by:

∇φLGAIL = Eτπ [∇φ logDφ(s, a)] + EτE [∇φ log(1−Dφ(s, a))] (4)
∇θLGAIL = Eτπ [∇θ logDφ(s, a)]− λH(πθ) (5)

= Eτπ [∇θ log πθ(a|s)Q(s, a)]− λH(πθ), (6)

where Q(s̄, ā) = Eτπ [logDφ(s, a)|s0 = s̄, a0 = ā], and τπ, τE are trajectories sampled from πθ and
πE respectively. Intuitively, the discriminator Dφ is trained to discriminate between the policy’s
trajectories (τπ) and the expert’s trajectories (τE) through cross entropy loss. On the other hand, the
policy πθ is trained to fool the discriminator by generating trajectories that are close to the expert
trajectories according to the discriminator. Since logDφ(s, a) is non-differentiable with respect to θ
in Equation 5, the score function estimator is used to compute the gradient, which leads to a form of
policy gradient (Equation 6) using the discriminator as a reward function.

It has been shown that GAIL amounts to minimizing the Jensen-Shannon divergence between the
policy’s occupancy measure and the expert’s (Ho & Ermon, 2016; Goodfellow et al., 2014) as follows:

argmin
θ

argmax
φ

LGAIL(θ, φ) = argmin
θ

DJS(ρπθ ||ρπE )− λH(πθ) (7)

where DJS(p||q) = DKL(p||(p+ q)/2) +DKL(q||(p+ q)/2) denotes Jensen-Shannon divergence, a
distance metric between two distributions, which is minimized when p = q.

4 GENERATIVE ADVERSARIAL SELF-IMITATION LEARNING

The main idea of Generative Adversarial Self-Imitation Learning (GASIL) is to update the policy
to imitate past good trajectories using GAIL framework (see Section 3.2 for GAIL). We describe
the details of GASIL in Section 4.1 and make a connection between GASIL and reward learning in
Section 4.2, which leads to a combination of GASIL with policy gradient in Section 4.3.

4.1 ALGORITHM

The keay idea of GASIL is to treat good trajectories collected by the agent as trajectories that the
agent should imitate as described in Algorithm 1. More specifically, GASIL performs the following
two updates for each iteration.
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Algorithm 1 Generative Adversarial Self-Imitation Learning

Initialize policy parameter θ
Initialize discriminator parameter φ
Initialize good trajectory buffer B ← ∅
for each iteration do

Sample policy trajectories τπ ∼ πθ
Update good trajectory buffer B using τπ
Sample good trajectories τE ∼ B
Update the discriminator parameter φ via gradient ascent with:

∇φLGASIL = Eτπ [∇φ logDφ(s, a)] + EτE [∇φ log(1−Dφ(s, a))] (8)

Update the policy parameter θ via gradient descent with:

∇θLGASIL = Eτπ [∇θ log πθ(a|s)Q(s, a)]− λ∇θH(πθ),

where Q(s, a) = Eτπ [logDφ(s, a)|s0 = s, a0 = a]
(9)

end for

Updating good trajectory buffer (B) GASIL maintains a good trajectory buffer B = {τi} that
contains a few trajectories (τi) that obtained high rewards in the past. Each trajectory consists of a
sequence of states and actions: s0, a0, s1, a1, ..., sT . We define ‘good trajectories’ as any trajectories
whose the discounted sum of rewards are higher than expected return of the current policy. Though
there can be many different ways to obtain such trajectories, we propose to store top-K episodes
according to the return R =

∑∞
t=0 γ

trt.

Updating discriminator (Dφ) and policy (πθ) The agent learns to imitate good trajectories con-
tained in the good trajectory buffer B using generative adversarial imitation learning. More formally,
the discriminator (Dφ(s, a)) and the policy (πθ(a|s)) are updated via the following objective:

argmin
θ

argmax
φ

LGASIL(θ, φ) = Eτπ [logDφ(s, a)] + EτE∼B [log(1−Dφ(s, a))]− λH(πθ) (10)

where τπ, τE are sampled trajectories from the policy πθ and the good trajectory buffer B respectively.
Intuitively, the discriminator is trained to discriminate between good trajectories and the policy’s
trajectories, while the policy is trained to make it difficult for the discriminator to distinguish by
imitating good trajectories.

4.2 CONNECTION TO REWARD LEARNING

The discriminator in GASIL can be interpreted as a reward function for which the policy optimizes
because Equation 9 uses the score function estimator to maximize the reward given by− logDφ(s, a).
In other words, the policy is updated to maximize the discounted sum of rewards given by the
discriminator rather than the true reward from the environment. Since the discriminator is also
learned, GASIL can be viewed as an instance of optimal reward learning algorithm (Sorg et al., 2010).
A potential benefit of GASIL is that the optimal discriminator can provide intermediate rewards to
the policy along good trajectories, even if the true reward from the environment is delayed. In such
a scenario, GASIL can allow the agent to learn more easily compared to the true reward function.
Indeed, as we will show in Section 5.4, GASIL performs significantly better than a state-of-the-art
policy gradient baseline in a delayed reward setting.

4.3 COMBINING WITH POLICY GRADIENT

As the discriminator can be interpreted as a learned internal reward function, it can be easily combined
with any RL algorithms. In this paper, we explore a combination of GASIL objective and policy
gradient objective (Equation 2) as follows:

∇θJPG − α∇θLGASIL = Eπθ
[
∇θ log πθ(a|s)Âαt + λ∇θH(πθ)

]
(11)

where Âαt is an advantage estimation using a modified reward function rα(s, a) , r(s, a) −
α logDφ(s, a). Intuitively, the discriminator is used to shape the reward function to encourage
the policy to imitate good trajectories.
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5 EXPERIMENTS

The experiments are designed to answer the following questions: (1) What is learned by GASIL?
(2) Is GASIL better than behavior cloning approach? (3) Is GASIL competitive to policy gradient
method?; (4) Is GASIL complementary to policy gradient method when combined together?

5.1 IMPLEMENTATION DETAILS

We implemented the following agents:

• PPO: Proximal policy optimization (PPO) baseline (Schulman et al., 2017).

• PPO+BC: PPO with additional behavior cloning to top-K trajectories.

• PPO+SIL: PPO with self-imitation learning (Oh et al., 2018).

• PPO+GASIL: Our method using both the discriminator and the true reward (Section 4.3).

The details of the network architectures and hyperparameters are described in the appendix. Our
implementation is based on OpenAI’s PPO and GAIL implementations (Dhariwal et al., 2017).

5.2 2D POINT MASS

0M 0.5M 1M 1.5M 2M

0

10

20

PPO
PPO+GASIL

Figure 1: Learning curve on 2D
point mass. See text for details.

To better understand how GASIL works, we implemented a simple
2D point mass environment with continuous actions that determine
the velocity of the agent in a 2D space as illustrated in Figure 2.
In this environment, the agent should collect as many blue/green
objects as possible that give positive rewards (5 and 10 respectively)
while avoiding distractor objects (orange) that give negative rewards
(-5). There is also an actuation cost proportional to L2-norm of
action which discourages large velocity.

The result in Figure 1 shows that PPO tends to learn a sub-optimal
policy quickly. Although PPO+GASIL learns slowly in the early
stage, it finds a better policy at the end of learning compared to PPO.

Figure 2 visualizes the learning progress of GASIL with the learned
discriminator. It is shown that the initial top-K trajectories collect
several positive objects as well as distractors on the top area of the environment. This encourages the
policy to explore the top area because GASIL encourages the agent to imitate those top-K trajectories.
As visualized in the third row in Figure 2, the discriminator learns to put higher rewards for state-
actions that are close to top-k trajectories, which strongly encourages the policy to imitate such
trajectories. As training goes and the policy improves, the agent finds better trajectories that avoid
distractors while collecting positive rewards. The good trajectory buffer is updated accordingly as the
agent collects such trajectories, which is used to train the discriminator. The interaction between the
policy and the discriminator converges to a sub-optimal policy which collects two green objects.

In contrast, Figure 3 visualizes the learning progress of PPO. Even though the agent collected the
same top-k trajectories at the beginning as in PPO+GASIL (compare the first columns of Figure 2
and Figure 3), the policy trained with PPO objective quickly converges to a sub-optimal policy which
collects only one green object depending on initial positions. We conjecture that this is because
the policy gradient objective (Eq 2) with the true reward function strongly encourages collecting
nearby positive rewards and discourages collecting negative rewards. Thus, once the agent learns a
sub-optimal behavior as shown in Figure 3, the true reward function discourages further exploration
due to distractors (orange objects) nearby green objects and the actuation cost.

On the other hand, our GASIL objective does not explicitly encourage nor discourage the agent to
collect positive/negative rewards, because the discriminator gives the agent internal rewards according
to how close the agent’s trajectories are to top-K trajectories regardless of whether it collects some
objects or not. Though this can possibly slow down learning, it can often help finding a better policy
in the end depending on tasks as shown in this experiment. This result also implies that directly
learning to maximize true reward such as in the policy gradient method may not always lead to the
best behavior due to the learning dynamics.
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Figure 2: Visualization of GASIL policy on 2D point mass. The first two rows show the agent’s trajectories and
top-k trajectories at different training steps from left to right. The third row visualizes the learned discriminator
at the corresponding training steps. Each arrow shows the best action at each position of the agent for which
the discriminator gives the highest reward. The transparency of each arrow represents the magnitude of the
discriminator reward (higher transparency represents lower reward).
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Figure 3: Visualization of PPO policy on 2D point mass. Compared to GASIL (Figure 2), PPO tends to
prematurely learn a worse policy.

5.3 MUJOCO

To further investigate how well GASIL performs on complex control tasks, we evaluated it on
OpenAI Gym MuJoCo tasks (Brockman et al., 2016; Todorov et al., 2012).1 The result in Figure 4
shows that GASIL improves PPO on most of the tasks. This indicates that GASIL objective can be
complementary to PPO objective, and the learned reward acts as a useful reward shaping that makes
learning easier.

It is also shown that GASIL significantly outperforms the behavior cloning baseline (‘PPO+BC’) on
most of the tasks. Behavior cloning has been shown to require a large amount of samples to imitate
compared to GAIL as shown by Ho & Ermon (2016). This can be even more crucial in the RL context
because there are not many good trajectories in the buffer (e.g., 1K-10K samples). Besides, GASIL
also outperforms self-imitation learning (‘PPO+SIL’) (Oh et al., 2018) showing that our generative
adversarial approach is more sample-efficient than self-imitation learning. In fact, self-imitation
learning can be viewed as a type of behavior cloning with different sample weights according to their
advantages, which can be the reason why GASIL is more sample-efficient. Another possible reason

1The demo video of the learned policies are available at https://youtu.be/AwrtIUS2_pc.
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Figure 4: Learning curves on OpenAI Gym MuJoCo tasks averaged over 10 independent runs. x-axis and y-axis
correspond to the number of steps and average reward.
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Figure 5: Learning curves on stochastic Walker2d-v2 averaged over 10 independent runs. The leftmost plot
shows the learning curves on the original task without any noise in the environment. The other plots show
learning curves on stochastic Walker2d-v2 task where Gaussian noise with standard deviation of {0.05, 0.1, 0.5}
(from left to right) is added to the observation for each step independently.

would be that GASIL generalizes better than behavior cloning method under non-stationary data (i.e.,
good trajectory buffer changes over time).

We further investigated how robust GASIL is to the stochasticity of the environment by adding a
Gaussian noise to the observation for each step on Walker2d-v2. The result in Figure 5 shows that the
gap between PPO and PPO+GASIL is larger when the noise is added to the environment. This result
suggests that GASIL can be robust to stochastic environments to some extent in practice.

5.4 DELAYED MUJOCO

OpenAI Gym MuJoCo tasks provide dense reward signals to the agent according to the agent’s
progress along desired directions. In order to see how useful GASIL is under more challenging
reward structures, we modified the tasks by delaying the reward of MuJoCo tasks for 20 steps. In
other words, the agent receives an accumulated reward only after every 20 steps or when the episode
terminates. This modification makes it much more difficult for the agent to learn due to the delayed
reward signal.

The result in Figure 6 shows that GASIL is much more helpful on delayed-reward MuJoCo tasks
compared to non-delayed ones in Figure 4, improving PPO on all tasks by a large margin. This
result demonstrates that GASIL is useful especially for dealing with delayed reward because the
discriminator gives dense reward signals to the policy, even though the true reward is extremely
delayed.

5.5 EFFECT OF HYPERPARAMETERS

Figure 7 shows the effect of GASIL hyperparameters on Walker2d-v2. Specifically, Figure 7a shows
the effect of the size of good trajectory buffer in terms of maximum steps in the buffer. It turns out
that the agent performs poorly when the buffer size is too small (500 steps) or large (5000 steps).
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Figure 6: Learning curves on delayed-reward versions of OpenAI Gym MuJoCo tasks averaged over 10
independent runs. x-axis and y-axis correspond to the number of steps and average reward.
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Figure 7: Effect of GASIL hyperparameters.

Although it is always useful to have more samples for imitation learning in general, the average
return of good trajectories decreases as the size of the buffer increases. This indicates that there is a
trade-off between the number of samples and the quality of good trajectories.

Figure 7b shows the effect of the number of discriminator updates with a fixed number of policy
updates per batch. It is shown that too small or too large number of discriminator updates hurts the
performance. This result is also consistent with GANs (Goodfellow et al., 2014), where the balance
between the discriminator and the generator (i.e., policy) is crucial for the performance.

6 DISCUSSIONS
Alternative ways of training the discriminator We presented a simple way of training the dis-
criminator: discriminating between top-K trajectories and policy trajectories. However, there can be
many different ways of defining good trajectories and training the discriminator. Developing a more
principled way of training the discriminator with strong theoretical guarantees would be an important
future work.

Dealing with multi-modal trajectories In the experiment, we used a Gaussian policy with an
independent covariance. This type of parameterization has been shown to have difficulties in learning
diverse behaviors (Haarnoja et al., 2018; 2017). In GASIL, we observed that the good trajectory
buffer (B) often contain multi-modal trajectories because they are collected by different policies with
different parameters over time. We observed that a Gaussian policy struggles with imitatating them
reliably. In fact, there has been recent studies (Hausman et al., 2017; Li et al., 2017) that aim to
imitate multi-modal behaviors using the GAIL framework. We believe that combining such methods
would further improve the performance.
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Model-based approach We used a model-free GAIL framework which requires policy gradient
for training the policy. However, our idea can be extended to model-based GAIL (MGAIL) (Baram
et al., 2017) where the policy is updated by directly backpropagating through a learned discriminator
and a learned dynamics model. Since MGAIL has been shown to be more sample-efficient than
GAIL, we expect that a model-based counterpart of GASIL would also improve the performance.

7 CONCLUSION

This paper proposed Generative Adversarial Self-Imitation Learning (GASIL) as a simple regularizer
for RL. The main idea is to imitate good trajectories that the agent has collected using generative
adversarial learning framework. We demonstrated that GASIL significantly improves existing state-
of-the-art baselines across many control tasks especially when rewards are delayed. Extending this
work towards a more principled generative adversarial learning approach with theoretical guarantee
would be an interesting research direction.
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A EXPERIMENTS ON ATARI GAMES

Figure 8: Learning curves on hard exploration Atari games averaged over 3 independent runs. x-axis and y-axis
correspond to the number of steps and average reward.

Montezuma Freeway Hero PrivateEye Gravitar Frostbite

PPO 20 34 30645 145 2406 915
PPO+GASIL (Ours) 629 34 21830 15099 2141 8276
A2C+SIL (Oh et al., 2018) 2500 34 33069 8684 2722 6439

Table 1: Compariston to A2C+SIL (Oh et al., 2018) on hard exploration Atari games.

To see how well GASIL performs with richer observation space, we evaluated it on hard exploration
Atari games used in Oh et al. (2018). The result in Figure 8 shows that GASIL significantly improves
PPO on Frostbite, Montezuma’s Revenge, and PrivateEye. This suggests that GASIL is a useful RL
regularizer that can be generally applied to a variety of domains. We further compared PPO+GASIL
with A2C+SIL (Oh et al., 2018) in Table 1. It turns out that PPO+GASIL does not outperform
A2C+SIL, though this is not a fair comparison as they use different actor-critic algorithms (i.e., A2C
and PPO). In fact, GAIL (Ho & Ermon, 2016) has not been shown to be efficient on this type of
domain where observations are high-dimensional. Thus, we conjecture that GASIL is more beneficial
than SIL particularly for dealing with continuous control and simple observation space as shown in
our MuJoCo experiments.
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B HYPERPARAMETERS

Hyperperameters and architectures used for MuJoCo experiments are described in Table 2. We
performed a random search over the range of hyperparameters specified in Table 2. For GASIL+PPO
on Humanoid-v2, the policy is trained with PPO (α = 0) for the first 2M steps, and α is increased to
0.02 until 3M steps. For the rest of tasks including all delayed-MuJoCo tasks, we used used a fixed α
throughout training.

Table 2: GARL hyperparameters on MuJoCo.

Hyperparameters Value

Architecture FC(64)-FC(64)
Learning rate {0.0003, 0.0001, 0.00005, 0.00003}
Horizon 2048
Number of epochs 10
Minibatch size 64
Discount factor (γ) 0.99
GAE parameter 0.95
Entropy regularization coefficient (λ) 0

Discriminator minibatch size 128
Number of discriminator updates per batch {1, 5, 10, 20}
Discriminator learning rate {0.0003, 0.0001, 0.00002, 0.00001}
Size of good trajectory buffer (steps) {1000, 10000}
Scale of discriminator reward (α) {0.02, 0.1, 0.2, 1}
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