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ABSTRACT

We propose a new notion of ‘non-linearity’ of a network layer with respect to an
input batch that is based on its proximity to a linear system, which is reflected in
the non-negative rank of the activation matrix. We measure this non-linearity by
applying non-negative factorization to the activation matrix. Considering batches
of similar samples, we find that high non-linearity in deep layers is indicative of
memorization. Furthermore, by applying our approach layer-by-layer, we find that
the mechanism for memorization consists of distinct phases. We perform exper-
iments on fully-connected and convolutional neural networks trained on several
image and audio datasets. Our results demonstrate that as an indicator for memo-
rization, our technique can be used to perform early stopping.

1 INTRODUCTION

A fundamental challenge in machine learning is balancing the bias-variance tradeoff, where overly
simple learning models underfit the data (suboptimal performance on the training data) and overly
complex models are expected to overfit or memorize the data (perfect training set performance, but
suboptimal test set performance). The latter direction of this tradeoff has come into question with the
observation that deep neural networks do not memorize their training data despite having sufficient
capacity to do so (Zhang et al.,[2016)), the explanation of which is a matter of much interest.

Due to their convenient gradient properties and excellent performance in practice, rectified-linear
units (ReLU) have been widely adopted and are now ubiquitous in the field of deep learning. In
addition, the relative simplicity of this function (max(-,0)) makes the analysis of ReLU networks
more straight-forward than networks with other activation functions.

We propose a new notion of ‘non-linearity’ of a ReLU layer with respect to an input batch. We
show that networks that generalize well have deep layers that are approximately linear with respect
to batches of similar inputs. In contrast, networks that memorize their training data are highly non-
linear with respect to similar inputs, even in deep layers.

Our method is based on the fact that the main source of non-linearity in ReLU networks is the
threshold at zero. This thresholding determines the support of the resulting activation matrix, which
plays an important role in the analysis of non-negative matrices. As we discuss in Section |3} the
non-negative rank of a matrix is constrained by the shape of the support, and is therefore indicative
of the degree of non-linearity in a ReLU activation matrix with respect to the input.

Although computing the non-negative rank is NP-hard (Vavasis, 2009), we can restrict it with ap-
proximate non-negative matrix factorization (NMF) (Lee & Seung|, |1999). Consequently, we pro-
pose to estimate the ‘non-linearity’ of a ReLU layer with respect to an input batch by performing
NMF on a grid over the approximation rank k, and measuring the impact on network performance.

This procedure can be seen as measuring the robustness of a neural network to increasing compres-
sion of its activations. We therefore compare our NMF-based approach to two additional dimen-
sionality reduction techniques, namely principal component analysis (PCA) and random ablations.

We informally define memorization as the implicit learning of a rule that associates a specific sample
(i.e., with index %) to a particular label (e.g., with index 7). Such a rule does not benefit the network
in terms of improving its performance on new data.

We show that our NMF-based approach is extremely sensitive to memorization in neural networks.
We report results for a variety of neural network architectures trained on several image and audio
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datasets. We conduct a layer-by-layer analysis and our results reveal interesting details on the inter-
nal mechanism of memorization in neural networks. Finally, as an indicator for memorization, we
use our proposed measure to perform early stopping.

2 RELATED WORK

The study of factors involved in the bias-variance tradeoff in learning models goes back several
decades. Classical results in statistical learning consider properties of learning models such as the
VC-dimension (Vapnik, [1998)) and Rademacher complexity (Bartlett & Mendelson, [2002). These
properties give generalization bounds in terms of the capacity model to (over)fit data. When consid-
ering the vast capacity of deep neural networks, such bounds become irrelevant and fail to explain
their ability to generalize well in practice (Zhang et al.,[2016; Bartlett et al.|[2017).

More direct analyses have been done with respect to a specific setting of model parameters. For in-
stance, Bartlett| (1998) showed that the number of weights in a network is less important compared to
their scalar value (e.g. £2-norm), and more recently Bartlett et al.| (2017) presented a bound for deep
neural networks based on the product of spectral norms of the network’s weight matrices. |Achille
& Soatto| (2017) showed that memorizing networks contain more information in their weights.

Methods to explain generalization have been proposed that examine a network’s robustness to per-
turbations (Hochreiter & Schmidhuber, [1997;/Chaudhari et al., 2016; |Keskar et al.,| 2016} Neyshabur,
et al., 2017; |Li et al.l |2017). These methods propose the notion of flatness of minima on the loss
surface, assuming that perturbing the parameters without dramatically changing performance is an
indicator of the generalization of a network.

However, any reversible transformation, such as simple scaling, can arbitrarily manipulate the local
flatness without affecting generalization (Dinh et al.l [2017). The procedure we propose can be
viewed as applying perturbations, albeit to activations and not parameters, and must address this
concern. The perturbations we apply to activations account for magnitude, since they depend on a
change of rank or non-negative rank of the activation matrix, a property which is robust to rescaling
and similar reversible transformations.

In contrast to the methods described thus far, which deal exclusively with the parameters of the
model, methods have been developed that account for the role of the data distribution. [Liang et al.
(2017) proposed to use the Fisher-Rao norm, which uses the geometry of the data distribution to
weigh the contribution of different model parameters. The empirical studies of [Morcos et al.|(2018))
and Novak et al. (2018]) explore robustness to specific types of noise. The former uses Gaussian
noise and masking noise injected into hidden activations, while the latter interpolates between in-
put samples to study network behavior on and off the data manifold. In both cases, robustness to
noise proved a reliable indicator for good generalization. Additionally, |Arora et al.| (2018)) derive
generalization bounds in terms of robustness to noise.

Our experimental setup is reminiscent of Morcos et al.|(2018) in that both methods apply a form of
compression to hidden activations and test for robustness to this type of noise. Specifically, they set
random axis-aligned directions in feature space to zero which can be viewed as a crude form of di-
mensionality reduction, i.e., by simply removing canonical dimensions. In our experiments we refer
to this method as random ablations. Our results show that robustness to NMF compression is much
more correlated with low memorization/high generalization than robustness to random ablations.
Arpit et al.| (2017) have also studied various empirical aspect of memorization.

As a dimensionality reduction technique, NMF has gained popularity due to its producing mean-
ingful factorizations that lend themselves to qualitative interpretation across various domains such
as document clustering (Xu et al., |2003), audio source separation (Grais & Erdogan, |2011), and
face recognition (Guillamet & Vitria, 2002). In the context of deep convolutional neural networks,
Collins et al.| (2018]) applied NMF to the activations of an image classifier and showed that the re-
sult gives a decomposition into semantic parts, which benefits from the transformation invariance
learned by the neural network.
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Figure 1: The support of the activation matrix is determined by ReLU threshold. (a) When all
the rows of the support are identical, there is a sub-weight-matrix such that the layer is fully linear
with respect to the input batch. (b, ¢) As the support becomes more complex, which we characterize
by the increase in its rectangle cover number, the layer becomes more non-linear.

3 METHOD

Consider a ReL.U layer of a neural network, parameterized by a weight matrix W € R™*4. For a
batch of n inputs X € R™ ™ we compute the layer activation matrix A as follows:

A =max (XW,0) € R}, (1
where R, are the non-negative reals. We omit the bias term for notational convenience.

3.1 RELU-INDUCED SUPPORT

The processing of a single input by a ReLU network is equivalent to sampling a sub-network
that is linear with respect to the sample 2016). This could be accomplished by simply
setting to zero the columns of each W whose dot product with the input is negative (and would thus
be set to zero by ReLU), and then removing the thresholdingﬂ

Extending this notion to a batch of several input samples to a ReLU layer, suppose the samples are
sufficiently close to each other such that they all share the same ReLU mask m € {0,1}9. In this
case, we may say that the layer is linear with respect to its input batch. This is because, for the entire
batch, instead of using ReLU, we could zero out a subset of columns and obtain a linear system, i.e.,
A = XWdiag(m).

For an activation matrix A (Equation , we consider the support M = supp(A), which we describe
as a binary 0/1 matrix where M; ; = 1 where A; ; > 0. Because A is a ReLU activation matrix,
the structure of M is mainly determined by the thresholding at ZeroEl Because thresholding is the
main source of non-linearity in a ReLU network, the support takes on a special meaning in this case.

3.2 RECTANGLE COVER NUMBER AND NON-NEGATIVE RANK

We want to characterize how close to being linear a layer is with respect to its input X by examining
the support of the resulting activations M. If all the rows of M are identical to a unique vector m,
we can say the layer is completely linear with respect to X. In general, the ‘simpler’ the support
M., the closer to linearity the layer.

One measure that captures this idea is the rectangle cover number of a matrix, rc¢(M ), an important
quantity in the study of communication complexity 2003). Also known as the Boolean
rank, rc(M) is the smallest number r for which there exist binary matrices Ug € {0,1}"*", Vg €

!This is a similar intuition to that of viewing dropout as an approximation to a model ensemble, where the
dropout mask is seen to sample a sub-network (Srivastava et al.| 2014).
2The probability of an activation value being exactly zero prior to thresholding is negligible.
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{0,1}7*7 such that their Boolean matrix multiplication satisfies M = UpVp. As a complexity
measure for ReLU activations, r¢(M) = 1 means the layer is linear with respect to its input, and
higher values r¢(M ) imply increasing non-linearity. This is visualized in Figure

Intuitively, imagine having to fit a layer with ‘ReLU switches’, each of which controls a subset of
weight matrix columns. In the linear case, one switch would suffice to describe the data. In the most
non-linear case, we would require a switch for every column, which is also the maximal value of
re(M).

Because computing the rectangle cover number r¢(M) is complex, several approximations and
bounds to it have been studied (Fiorini et al., 2013). For the support of a non-negative matrix, a
well-known upper-bound is:

re(supp(A)) < ranky(A), 2)

where ranky (A) is the non-negative rank of A (Gillis & Glineur, 2012) that is defined as the

smallest number £ such that there exist non-negative matrices U € RT’“, Vi € Rixq such that
A = U, V4. Similar to the rectangle cover number, the non-negative rank is hard-constrained by
the combinatorial arrangement of supp(A), but additionally accounts for the actual value in the
non-zero entries of A.

While computing rank (A) is not easier than computing rc(supp(A)), we can restrict it by per-
forming approximate non-negative matrix factorization (NMF).

3.3 NON-NEGATIVE MATRIX FACTORIZATION

For a given non-negative rank constraint £, NMF solves for:

argmin | A — U, V.3, 3)
ULV,

with Uy, V, as defined above. The result ULV, = A}, ~ A is the closest matrix to A under the
Frobenius norm that has rank,. at most k.

Consequently, we propose to estimate the ‘linearity’ of a ReLU layer with respect to a batch of
similar inputs by performing NMF on a grid over the non-negative rank k, and measuring the impact
on network performance by observing the change in the prediction (output layer) as we change k.
This procedure also addresses the fact that in practice network activations tend to be noisy, whereas
supp(A) is not robust to noise, i.e., A; j; = € > 0 — M, ; = 1 even for very small .

Concretely, if we let A; be the activation matrix at layer 4, during the forward pass, we replace the
feature activations of one or several layers with their rank £k NMF approximations:

A;1 = max (AkWHl, O) €]

For convolutional networks, we first reshape the tensor of feature maps fromn x g x h X wto (n-h-
w) X g, i.e., we flatten the batch (n) and spatial dimensions (h, w) to form a matrix with g columns,
where ¢ is the number of channels in that layer. We then inversely reshape the approximated features
to continue forward propagation through the network.

3.4 SINGLE CLASS BATCHES

We now characterize the input batch, with respect to which we would like to measure layer linearity.
Informally, the goal of training is to cluster together input samples that have similar (or identical)
output labels,while separating them from samples of other labels. In the context of classification
then, we expect therefore that from a certain depth and onward, samples of the same class will have
similar activations, and thus a simpler support. In other words, while a network may exploit flexible
non-linear structure to separate different classes, we expect that with respect to a single class, deep
layers are approximately linear.
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Figure 2: Memorization mechanism of CNNs trained on CIFAR-10, with increasing level of label
randomization p (i.e., p = 0 is the unmodified dataset). We analyze each layer by applying NMF
compression to its activation matrix with increasing rank %, while observing the impact on classi-
fication performance. In (a) and (b) we show the k vs. accuracy curves at an layers of different
depth. We can immediately see that in deep layers, networks with high memorization are signif-
icantly less robust to NMF compression, indicating higher degrees of non-linearity. Furthermore,
networks trained on fully randomized labels (p = 1) behave differently than networks with partial or
no randomization. By summarizing each curve in (a) and (b) by its area under the curve (AuC), we
show in (c) a birds-eye view over all layers. All networks with p < 1 pass through distinct phases
consisting of a feature extraction phase until conv3_1, followed by a memorization phase until
conv4_2, followed by a final clustering phase. Interestingly, the case p = 1 shifts the process into
earlier layers, explaining why layer-by-layer it appears as an outlier.

When single-class batches are not approximately linear even in deep layers, i.e., activations are not
clustered within a few linear regions, we empirically show in the next section that this behavior is
indicative of memorization.

4 EXPERIMENTS

4.1 FEATURE COMPRESSION AND MEMORIZATION

We start by studying networks that have been forced into different levels of memorization due to
label randomization applied to their training set (Zhang et al.,2016). The level of induced memo-
rization is controlled by setting a probability p for a training label to be randomized, i.e., p = 0 is the
unmodified dataset and p = 1 gives fully random labels. Note that the capacity of these networks is
sufficiently large such that the training accuracy is 1 in all cases, regardless of the value of p.

As such, we use batches of training data and observe how accuracy drop from 1 to constant predic-
tion as we increase the level of compression. In all experiments, sampling single-class batches is
done with respect to the label used for training (i.e., the random label if p > 0). We sample batches
stochastically (up to the label), have found all methods discussed below to be robust to the batch
size (e.g., 20-100). In all our experiments we set the batch size to 50.

We perform experimental evaluations on several image datasets, namely CIFAR-10 (Krizhevsky &
Hinton, 2009)), Fashion-MNIST (Xiao et al.,[2017), SVHN(Netzer et al.,2011), and ImageNet (Rus-
sakovsky et al.| 2015)), as well as on the Urban Sounds audio classification dataset (Salamon et al.,
2014). We use a fully-connected network for Fashion-MNIST and various CNN architectures for
the others, which we describe in more detail the appendix.

4.1.1 LAYER BY LAYER ANALYSIS

We start by analyzing the layers of an 11-layer CNN trained on CIFAR-10. We sampled 10 batches
(one batch per class) of 50 images, and compressed the activation matrix at each layer individually
down to various values of the non-negative rank. We then measured classification accuracy of the
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Figure 3: Detecting memorization via compression. We demonstrate this on networks trained
with different levels of label randomization (p), and hence of memorization. (a) Due to its sensitiv-
ity to the non-linearity of ReLU activations, NMF successfully captures the level of memorization
present in neural networks. (b) PCA compression is able to regain sufficient variance for good
accuracy even with small values of %k, which renders it less effective for detecting memorization.
(c) Though not taking into account batch statistics, random ablations can distinguish between dif-
ferent levels of memorization, albeit less significantly. Compression was applied to the final three
(convolutional) layers of CNNs trained on CIFAR-10.

prediction. In this analysis we report average results for 60 neural networks, ten networks (with
different random initializations) trained per randomization level p.

In Figure [2| (2) and (b) we show k vs. accuracy curves of networks trained with increasing levels
of label randomization, at an early layer (conv2_1) and a deep layer (conv4_1) respectively. We
can immediately see that networks trained on fully randomized labels (p = 1) behave differently
than networks with partial or no randomization. Furthermore, note that in deep layers, memorizing
networks are significantly less robust to NMF compression, i.e., their activations posses a high non-
negative rank, which indicates high non-linearity with respect to the input, as discussed in Section
[3;2} We can characterize each curve in (a) and (b) with a single number, its area under the curve
(AuC). This allows us in Figure[2](c) to generate a single figure for all layers. Networks with p < 1
display a similar feed-forward trend up until layer conv3_1. Since these networks differ from each
other in no way other than the level of label randomization on the training data, we hypothesize this
to be a generic feature extraction phase common to all of them. In the next phase, until conv4_2,
we see a big difference between networks, such that more memorization (higher p) is correlated
with lower AuC, i.e., higher non-negative rank and hence non-linearity of those layers with respect
to single-class batches. We therefore localize memorization to these layers. Lastly, the phase only
of conv4_3 is where samples of the same class are clustered together, right before the final 10-
dimensional classification layer (which is not shown). This final phase is in accordance with the
premise that regardless of randomization level p, all of these networks achieve perfect training set
accuracy. Interestingly, setting p = 1 shifts the process to earlier layers, explaining why layer-by-
layer this case appears as an outlier.

4.1.2 COMPRESSION TECHNIQUES

We compare different compression techniques with regards to detecting memorization. Given our
choice of solving NMF under the Frobenius norm (Equation[3)), a natural method to compare against
is principal component analysis (PCA), which optimizes under the same norm but without the non-
negativity constraint on its factors. We also consider random ablations, i.e., setting a random subset
of columns in the activation matrix to zero, since this technique has been used previously to detect
memorization (Morcos et al., [2018)).

Rather than choosing a single layer, we sequentially apply compression to several layers. We target
the final convolutional blocks of our CNNs, all of which contain three layers, each of which consists
of 512 channels. In fully-connected networks, we applied compression to all layers.
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Figure 4: Memorization across various datasets and network architectures. We show that
NMF-based compression is sensitive to memorization in diverse settings. Each column shows re-
sults for a specific dataset and network architecture. (a, b, d, e¢) We show that network layers are con-
siderably more linear with respect to single-class batched than with respect to multi-class batches.
(b,c,e,f) PCA and random ablations show less sensitivity to memorization compared with NMF.

In Figure[3|we give results for the CIFAR-10 dataset, which confirm that NMF compression is indeed
more sensitive to memorization, due to the properties of the non-negative rank discussed in Section
[3:2] PCA, which is less constrained, is more ‘efficient” at compressing the activations, but is in turn
less discriminative with respect to the level of memorization. Finally, we confirm that robustness to
random ablations correlates with less memorization, however less so than NMF. It should be noted
that NMF does show more variance than the other two methods, and incurs a higher computational
cost, as discussed in section [6.6]in the appendix.

In Figure[d] we show additional results for single-class NMF on three additional datasets and network
architectures (described in the appendix), including a fully-connected network for Fashion-MNIST.
The results in (d) and (e), of applying PCA and NMF to multi-class batches, show that such batches
produce activations with higher rank or non-negative rank compared to single-class batches. This is
a result of the network trying to separate samples of different labels.

4.2 FEATURE COMPRESSION AND GENERALIZATION

We have shown results for networks forced into memorization due to label randomization. In this
section we show our technique is useful for predicting good generalization in a more realistic setting,
without artificial noise.

In addition to the experiments below, we refer the reader to Section [6.3] in the appendix, where
predict per-class generalization of a pre-trained VGG-19 network on a ImageNet classes.
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Figure 5: Detecting generalization via compression. While all three methods show correlation
with generalization error, NMF is most correlated with a Pearson correlation of -0.82, followed by
PCA with -.064 and random ablation with -0.61.
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Figure 6: Early stopping for CNN training on CIFAR-10. (a, b) The test loss is (in blue) starts to
increase after about the 5th epochs, indicating the start of overfitting. Using our proposed single-
class NMF approach, we can detect the test loss turning point. We show the area under the curve
(AuC) for the single-class NMF approach (in green) for the accuracy measures as discussed in
Section[d.1.2] Similarly, we show the AuC when performing random ablations (in orange). (c) The
NMEF AuC curve and test loss curve consistently have near extrema, as seen over several runs.

4.2.1 COMPRESSION TECHNIQUES

We trained 96 CNN classifiers on CIFAR-10, over a grid of hyper-parameter values for the batch
size, weight decay and optimization algorithm, SGD vs. ADAM (Kingma & Bal 2015). Following
the same procedure as above, for each of the three methods, NMF, PCA, or random ablations, we
computed the k vs. accuracy curves for each network, targeting its final convolutional block. In
Figure 5| we compare the area under the curve (AuC) of each curve with the average generalization
error on the test set.

While all three methods show correlation with generalization error, NMF is most correlated with a
Pearson correlation of -0.82, followed by PCA with -.064 and random ablation with -0.61.

4.2.2 EARLY STOPPING

We test whether our method can detect memorization during training. Doing so would allow us to
perform early stopping, i.e., stop training as memorization begins to decrease generalization.

We trained CNNs on CIFAR-10 with the original labels. Each network was trained for 10K batches
with a batch size of 100. We recorded the test set error every 250 batches, and tested the non-linearity
of the deepest three convolutional layers using our NMF-based approach with a coarse grid on k.
As before, we compute the area under each k vs. accuracy curve as in Figures[3](c). Finally, we also
computed the area under the curve produced by random ablations.
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Results of two instances are shown in Figure[6](a) and (b). In these figures we compare the test loss
against our single-class NMF method and random ablations. We smooth the plots using a radius of
two epochs to reduce the noise. The matching-color dashed lines mark the local minima of the test
loss in as well as the location of the first local maxima of the NMF and random ablation AuC curves
after smoothing has been applied. We notice that the test loss minima align almost precisely with
the maximum NMF AuC. We further confirm this behavior in Figure[6] (c), where we compare the
stopping times of NMF and the random ablations method against the best test loss over 10 different
runs.

5 CONCLUSION

We have introduced a notion of a ReLU layer’s non-linearity with respect to an input batch, which
is based on its proximity to a linear system. We measure this property indirectly via NMF applied to
deep activations of single-class batches. While more analysis is required before definite guarantees
could be given, we find that our approach is successful in detecting memorization and generalization
across a variety of neural network architectures and datasets.
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6 APPENDIX

6.1 NEURAL NETWORK ARCHITECTURES

CIFAR-10 Urban Sounds
Type Out dim. Kernel Padding Stride | Type Out dim. Kernel Padding Stride
Conv 64 3 1 1 Conv ;. 64 3 1 1
Conv 64 3 1 1 MaxPool - 2 - 1
Conv 128 3 1 2 Conv 128 3 1 1
Conv 4 128 3 1 1 Conv 128 3 1 1
Conv 128 3 1 1 MaxPool - 2 - 1
Conv_ 256 3 1 2 Conv 256 3 1 1
Conv 256 3 1 1 Conv ;. 256 3 1 1
Conv 256 3 1 1 MaxPool - 2 - 1
Conv 512 3 1 2 Conv 512 3 1 1
Conv 512 3 1 1 Conv 512 3 1 1
Conv 512 3 1 1 MaxPool - 2 - 1
Linear 10 - - - Linear 4096 - - -
Linear 4096 - - -
Linear 10 - -
SVHN Fashion-MNIST
Type Outdim. Kernel Padding Stride | Type Out dim. Kernel Padding Stride
Conv_ 64 3 1 1 Linear 128 - - -
Conv 64 3 1 1 Linear 512 - - -
Conv 128 3 1 2 Linear 2048 - - -
Conv_ 128 3 1 1 Linear 2048 - - -
Conv 256 3 1 2 Linear 10 - - -
Conv 256 3 1 1
Conv 512 3 1 2
Conv 512 3 1 1
Linear 10 - - -

Table 1: Neural architecture used for each dataset in Section

The exact architectures we used for each dataset are given in Table|[l} We denote a linear or convo-
lutional layer followed by a ReLU as Linear, and Conv, respectively.

6.2 ABLATING NMF AND PCA DIRECTIONS

It is interesting to study the impact of ablating the activation in the directions found by NMF and
PCA by forward propagating the residual, i.e.,

Aip1 = max ((Ak — Ap) Wiz, 0) 4)

This is interesting because in the case of PCA, for instance, the top & directions are those that capture
most of the variance in the activation matrix, and presumably the k directions found by NMF are of
similar importance. This is not true for the random ablations, where the ablated directions are of no
special importance.

In Figure[7]we see that networks with no induced memorization that are most vulnerable to ablation
of NMF and PCA direction. In other words, while non-memorizing networks are more robust to
random ablations, they are not robust to ablations of specific important directions. This is in con-
trast to the interpretation of [Morcos et al.|(2018) that non-memorizing networks are more robust to
ablations of single directions.
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Figure 7: NMF and PCA directions are more important for networks with induced-

memorization. Each column shows results for a specific dataset and network architecture. Com-
pared to random ablation as in Figures [3] and [d} where networks with induced-memorization are
most robust, in all cases we see that ablation in NMF and PCA directions hurts their performance
more, compared to memorizing networks.
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Figure 8: NMF compression on VGG-19. (a) Deep VGG layers are highly linear with respect to
single-class batches, as indicated by high accuracy for small dimensions of k. Compression can have
a denoising effect and improve upon the baseline accuracy of the batch (dashed line). (b) Removing
NMF directions causes a dramatic drop in accuracy, more so on single-class batches. (c) Per-class
test set accuracy is significantly correlated with the area under the k vs. accuracy curve (NMF AuC).

6.3 NMF oN VGG-19

The VGG-19 model (Simonyan & Zisserman, 2014), trained on ImageNet (Russakovsky et al.,
2015)), is known for its good generalization ability, as evident by its widespread use as a general
feature extractor. We use a pre-trained model here as an example of a well-generalizing network and
analyze it with our method.

We apply NMF compression to the three deepest convolutional layer, on activations of both single-
class batches and multi-class batches. We select 50 random classes from ImageNet and gather
batches of 50 training samples from each class.

In Figure 8] shown in blue, NMF applied to single-class batches, has a denoising effect and improves
over the baseline accuracy of the batch, shown as a dashed line. As the constraint on k is relaxed,
that accuracy drops back to its baseline level.

We contrast this behavior with the one shown in green when using multi-class batches. Here, only
when k is large do we regain baseline accuracy, and sensitivity to ablation is similarly diminished.
This is due to the critical role non-linearity plays in separating the different classes. Ablating the
NMEF directions dramatically reduces classification accuracy. Finally, in Figure [§](c) we show there
is a significant per-class correlation (Pearson » = 0.78 ) between NMF AuC and accuracy on test
accuracy on batches from the ImageNet test set.

6.4 EARLY STOPPING FOR FEW-SHOT LEARNING

In this experiment we use NMF-based early stopping to improve neural network accuracy in the
context of few-shot learning, i.e., learning with very few samples per output label. We choose this
setting since it is representative of data scarcity, where one would like to use all available data for
training, rather than holding some out for validation.

We demonstrate this on the case of MNIST LeCun et al.|(1998)) digits with only 2 samples per class,
which results in a training set of 20 samples. For early stopping with NMF, we set a very simple grid
over k, a single point at £ = 1. Thau NMf AuC thus simply becomes the training accuracy when
compressed with NMF k = 1.

In Figure[9]it is evident that training set accuracy with NMF k& = 1 shows similar gradients as the zest
set accuracy. Based on this observation, as before, we extract the first peak of the smoothed NMF
curve, and stop there. Results are shown in Table 2] for 10 runs with randomly sampled training sets.
We compare accuracy at our early stopping point to the best test set accuracy detected throughout
the run (Best case), the average test set accuracy where the training set accuracy is 1 (Average case),
and similarly the lowest test set accuracy where the set accuracy is 1 (Worst case).
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Figure 9: NMF early stopping for few-shot learning of MNIST digits with only 20 samples. By
observing the training set accuracy under NMF k£ = 1 compression, we are able to correctly guess
the gradient of the fest set accuracy. We use this to perform early stopping with the simple heuristic
of stopping at the first peak, which leads to improved accuracy as shown in Tabel 2]

Our network .
Early stop Best case Avg. case Worst case | Kimura et al.| (2018)
___ _Accuracy | _ 48 573 509 294 | ____ 3.9 .

mean 0.954 1.000 0.887 0.515 -
std 0.023 0.000 0.022 0.115 -

Table 2: NMF early stopping for few-shot learning of MNIST digits with only 20 samples. By
observing the fraining set accuracy under NMF k& = 1 compression, we are able to correctly guess
the gradient of the fest set accuracy. Early stopping at the first peak consistently improves accuracy.

In the first row of Table [2] we see that on average our method significantly improves over not using
early stopping, and is on par with a recently proposed method specifically deigned for few-short
learning. Furthermore, in the last two rows we show that per sampled training set, early stopping
consistently improves accuracy.

6.5 NMF RECONSTRUCTION ERROR

In Figure[2]we show for every layer the area under the curve (AuC) of its & vs. classification accuracy
curve. However in addition to the accuracy, the NMF reconstruction itself is also a quantity of
interest. There main difficulty involved with interpreting the NMF error is scale. The error depends
on the magnitude of the activations, which varies across networks, layers and even channels.

In Figure (10| (a) and (b) we show the raw and normalized NMF reconstruction error, i.e. || A — Al

A-A . . R
and w respectively. Measurements are taken over the same networks discussed in Figure

Observing the normalized values reveals that, proportionally, activation matrices become harder to
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Figure 10: NMF reconstruction error and extreme memorization. Layer-by-layer view of (a)
raw and (b) normalized NMF reconstruction errors, which NMF is trying to minimize. As we again
notice the outlier behavior of networks trained with label randomization p = 1, in (c) we localize
the transition between the two regimes to around p = 0.9.
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Figure 11: NMF runtime on a typical ImageNet batch. Thanks to GPU acceleration, NMF with
multiplicative updates can be run to convergence in reasonable time.

approximate with depth, with an interesting interaction between the memorization level and depth.
The error in absolute terms echo the accuracy curve, with p = 1 again presenting outlier behavior.
Returning to accuracy measurement as in[2)(c), sampling p more densely reveals in Figure[I0](c) that
a phase shift occurs around p = 0.9, where networks “shift” their memorization to earlier layers.

6.6 NMF COMPUTATIONAL OVERHEAD

Applying NMF compression to large matrices naturally incurs certain overhead. We find, however,
that our implementation of the multiplicative update algorithm |Lee & Seung| (2001) runs in reason-
able time thanks to GPU acceleration.

We report timing results for typical batch used for VGG-19, i.e., 100 samples of 224 x224 color
images. At layer conv5_4 activations form a tensor of size 100 x 14 x 14, which we flatten to a
matrix of size 19600 x 512. In Figure[TT|we show the timing curve for this batch as we increase ,
using an NVIDIA Titan X card. As can be seen, at k = 500 processing of the batch to convergence
requires 197 milliseconds on average.

For a batch of 32232 CIFAR-10 images, where the deep feature maps are, say, 8 x 8, the batch
processing time drop to approximately 135 milliseconds for k& = 500. Sweeping over all values of
k with an interval of 20 therefore takes about 2 seconds.

The final runtime depends on the number of classes sampled, and the granularity of the grid over k.
We found our measurements to be robust to heavy subsampling of both.
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