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ABSTRACT

Recent work has shown that quantization can help reduce the memory, compute,
and energy demands of deep neural networks without significantly harming their
quality. However, whether these prior techniques, applied traditionally to image-
based models, work with the same efficacy to the sequential decision making
process in reinforcement learning remains an unanswered question. To address
this void, we conduct the first comprehensive empirical study that quantifies the
effects of quantization on various deep reinforcement learning policies with the
intent to reduce their computational resource demands. We apply techniques such
as post-training quantization and quantization aware training to a spectrum of re-
inforcement learning tasks (such as Pong, Breakout, BeamRider and more) and
training algorithms (such as PPO, A2C, DDPG, and DQN). Across this spectrum
of tasks and learning algorithms, we show that policies can be quantized to 6-8
bits of precision without loss of accuracy. We also show that certain tasks and re-
inforcement learning algorithms yield policies that are more difficult to quantize
due to their effect of widening the models’ distribution of weights and that quanti-
zation aware training consistently improves results over post-training quantization
and oftentimes even over the full precision baseline. Additionally, we show that
quantization aware training, like traditional regularizers, regularize models by in-
creasing exploration during the training process. Finally, we demonstrate useful-
ness of quantization for reinforcement learning. We use half-precision training to
train a Pong model 50% faster, and we deploy a quantized reinforcement learning
based navigation policy to an embedded system, achieving an 18× speedup and a
4× reduction in memory usage over an unquantized policy.

1 INTRODUCTION

Deep reinforcement learning has promise in many applications, ranging from game playing (Sil-
ver et al., 2016; 2017; Kempka et al., 2016) to robotics (Lillicrap et al., 2015; Zhang et al., 2015)
to locomotion and transportation (Arulkumaran et al., 2017; Kendall et al., 2018). However, the
training and deployment of reinforcement learning models remain challenging. Training is expen-
sive because of their computationally expensive demands for repeatedly performing the forward and
backward propagation in neural network training. Deploying deep reinforcement learning (DRL)
models is prohibitively expensive, if not even impossible, due to the resource constraints on embed-
ded computing systems typically used for applications, such as robotics and drone navigation.

Quantization can be helpful in substantially reducing the memory, compute, and energy usage of
deep learning models without significantly harming their quality (Han et al., 2015; Zhou et al., 2016;
Han et al., 2016). However, it is unknown whether the same techniques carry over to reinforcement
learning. Unlike models in supervised learning, the quality of a reinforcement learning policy de-
pends on how effective it is in sequential decision making. Specifically, an agent’s current input
and decision heavily affect its future state and future actions; it is unclear how quantization affects
the long-term decision making capability of reinforcement learning policies. Also, there are many
different algorithms to train a reinforcement learning policy. Algorithms like actor-critic methods
(A2C), deep-q networks (DQN), proximal policy optimization (PPO) and deep deterministic policy
gradients (DDPG) are significantly different in their optimization goals and implementation details,
and it is unclear whether quantization would be similarly effective across these algorithms. Finally,
reinforcement learning policies are trained and applied to a wide range of environments, and it is
unclear how quantization affects performance in tasks of differing complexity.
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Here, we aim to understand quantization effects on deep reinforcement learning policies. We com-
prehensively benchmark the effects of quantization on policies trained by various reinforcement
learning algorithms on different tasks, conducting in excess of 350 experiments to present represen-
tative and conclusive analysis. We perform experiments over 3 major axes: (1) environments (Atari
Arcade, PyBullet, OpenAI Gym), (2) reinforcement learning training algorithms (Deep-Q Networks,
Advantage Actor-Critic, Deep Deterministic Policy Gradients, Proximal Policy Optimization) and
(3) quantization methods (post-training quantization, quantization aware training).

We show that quantization induces a regularization effect by increasing exploration during train-
ing. This motivates the use of quantization aware training, which we show demonstrates improved
performance over post-training quantization and oftentimes even over the full precision baseline.
Additionally, We show that deep reinforcement learning models can be quantized to 6-8 bits of
precision without loss in quality. Furthermore, we analyze how each axis affects the final perfor-
mance of the quantized model to develop insights into how to achieve better model quantization.
Our results show that some tasks and training algorithms yield models that are more difficult to
apply post-training quantization as they widen the spread of the models’ weight distribution, yield-
ing higher quantization error. To demonstrate the usefulness of quantization for deep reinforcement
learning, we 1) use half precision ops to train a Pong model 50% faster than full precision training
and 2) deploy a quantized reinforcement learning based navigation policy onto an embedded system
and achieve an 18× speedup and a 4× reduction in memory usage over an unquantized policy.

2 RELATED WORK

Reducing neural network resource requirements is an active research topic. Techniques include
quantization (Han et al., 2015; 2016; Zhu et al., 2016; Jacob et al., 2018; Lin et al., 2019; Polino
et al., 2018; Sakr & Shanbhag, 2018), deep compression (Han et al., 2016), knowledge distilla-
tion (Hinton et al., 2015; Chen et al., 2017), sparsification (Han et al., 2016; Alford et al., 2018; Park
et al., 2016; Louizos et al., 2018b; Bellec et al., 2017) and pruning (Alford et al., 2018; Molchanov
et al., 2016; Li et al., 2016). These methods are employed because they compress to reduce storage
and memory requirements as well as enable fast and efficient inference and training with specialized
operations. We provide background for these motivations and describe the specific techniques that
fall under these categories and motivate why quantization for reinforcement learning needs study.

Compression for Memory and Storage: Techniques such as quantization, pruning, sparsifica-
tion, and distillation reduce the amount of storage and memory required by deep neural networks.
These techniques are motivated by the need to train and deploy neural networks on memory-
constrained environments (e.g., IoT or mobile). Broadly, quantization reduces the precision of net-
work weights (Han et al., 2015; 2016; Zhu et al., 2016), pruning removes various layers and filters
of a network (Alford et al., 2018; Molchanov et al., 2016), sparsification zeros out selective network
values (Molchanov et al., 2016; Alford et al., 2018) and distillation compresses an ensemble of net-
works into one (Hinton et al., 2015; Chen et al., 2017). Various algorithms combining these core
techniques have been proposed. For example, Deep Compression (Han et al., 2015) demonstrated
that a combination of weight-sharing, pruning, and quantization might reduce storage requirements
by 35-49x. Importantly, these methods achieve high compression rates at small losses in accuracy
by exploiting the redundancy that is inherent within the neural networks.

Fast and Efficient Inference/Training: Methods like quantization, pruning, and sparsification may
also be employed to improve the runtime of network inference and training as well as their en-
ergy consumption. Quantization reduces the precision of network weights and allows more efficient
quantized operations to be used during training and deployment, for example, a ”binary” GEMM
(general matrix multiply) operation (Rastegari et al., 2016; Courbariaux et al., 2016). Pruning speeds
up neural networks by removing layers or filters to reduce the overall amount of computation neces-
sary to make predictions (Molchanov et al., 2016). Finally, Sparsification zeros out network weights
and enables faster computation via specialized primitives like block-sparse matrix multiply (Ren
et al., 2018). These techniques not only speed up neural networks but decrease energy consumption
by requiring fewer floating-point operations.

Quantization for Reinforcement Learning: Prior work in quantization focuses mostly on quan-
tizing image / supervised models. However, there are several key differences between these models
and reinforcement learning policies: an agent’s current input and decision affects its future state and
actions, there are many complex algorithms (e.g: DQN, PPO, A2C, DDPG) for training, and there
are many diverse tasks. To the best of our knowledge, this is the first work to apply and analyze the
performance of quantization across a broad of reinforcement learning tasks and training algorithms.
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3 QUANTIZED REINFORCEMENT LEARNING (QUARL)

We develop QuaRL, an open-source software framework that allows us to systematically apply tradi-
tional quantization methods to a broad spectrum of deep reinforcement learning models. We use the
QuaRL framework to 1) evaluate how effective quantization is at compressing reinforcement learn-
ing policies, 2) analyze how quantization affects/is affected by the various environments and training
algorithms in reinforcement learning and 3) establish a standard on the performance of quantization
techniques across various training algorithms and environments.

Environments: We evaluate quantized models on three different types of environments: OpenAI
gym (Brockman et al., 2016), Atari Arcade Learning (Bellemare et al., 2012), and PyBullet (which
is an open-source implementation of the MuJoCo). These environments consist of a variety of tasks,
including CartPole, MountainCar, LunarLandar, Atari Games, Humanoid, etc. The complete list of
environments used in the QuaRL framework is listed in Table 1. Evaluations across this spectrum of
different tasks provide a robust benchmark on the performance of quantization applied to different
reinforcement learning tasks.

Training Algorithms: We study quantization on four popular reinforcement learning algorithms,
namely Advantage Actor-Critic (A2C) (Mnih et al., 2016), Deep Q-Network (DQN) (Mnih et al.,
2013), Deep Deterministic Policy Gradients (DDPG) (Lillicrap et al., 2015) and Proximal Policy
Optimization (PPO) (Schulman et al., 2017). Evaluating these standard reinforcement learning al-
gorithms that are well established in the community allows us to explore whether quantization is
similarly effective across different reinforcement learning algorithms.

Quantization Methods: We apply standard quantization techniques to deep reinforcement learning
models. Our main approaches are post-training quantization and quantization aware training. We
apply these methods to models trained in different environments by different reinforcement learning
algorithms to broadly understand their performance. We describe how these methods are applied in
the context of reinforcement learning below.

Algorithm OpenAI Gym Atari PyBullet

Cartpole MountainCar
(Continuous) BeamRider Breakout MsPacman Pong Qbert Seaquest SpaceInvader BipedalWalker HalfCheetah Walker2D

DQN PTQ n/a PTQ PTQ PTQ PTQ PTQ PTQ PTQ n/a n/a n/a

A2C
PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PPO
PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

DDPG n/a PTQ n/a n/a n/a n/a n/a n/a n/a
PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

Table 1: Summary of algorithms, environments, and quantization scheme in the QuaRL frame-
work. PTQ means post-training quantization, QAT refers to Quantization-Aware Training, BW
corresponds to evaluating the policy from 8-bits to 2-bits. The Atari games are the no frameskip ver-
sions with 4 frames stacked as input to the models. n/a means we cannot evaluate the combination
due to algorithm-environment incompatibility. All put together, including the individual bitwidth
experiments, we conduct over 350 experiments to present a deep understanding of how quantization
affects deep reinforcement learning. This is the first such (comprehensive) study.

3.1 POST-TRAINING QUANTIZATION

Post-training quantization takes a trained full precision model (32-bit floating point) and quantizes
its weights to lower precision values. We quantize weights down to fp16 (16-bit floating point) and
int8 (8-bit integer) values. fp16 quantization is based on IEEE-754 floating point rounding and int8
quantization uses uniform affine quantization.

Fp16 Quantization: Fp16 quantization involves taking full precision (32-bit) values and mapping
them to the nearest representable 16-bit float. The IEEE-754 standard specifies 16-bit floats with the
format shown below. Bits are grouped to specify the value of the sign (S), fraction (F ) and exponent
(E) which are then combined with the following formula to yield the effective value of the float:
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Sign
Exponent

(5 bits)
Fraction
(10 bits)

Vfp16 = (−1)S × (1 +
F

210
)× 2E−15

In subsequent sections, we refer to float16 quantization using the following notation:

Qfp16(W ) = roundfp16(W )

Uniform Affine Quantization: Uniform affine quantization (TensorFlow, 2018b) is applied to a
full precision weight matrix and is performed by 1) calculating the minimum and maximum values
of the matrix and 2) dividing this range equally into 2n representable values (where n is the number
of bits being quantized to). As each representable value is equally spaced across this range, the
quantized value can be represented by an integer. More specifically, quantization from full precision
to n-bit integers is given by:

Qn(W ) =

⌊
W

δ

⌋
+ z where δ =

|min(W, 0)|+ |max(W, 0)|
2n

, z =

⌊
−min(W, 0)

δ

⌋
Note that δ is the gap between representable numbers and z is an offset so that 0 is exactly repre-
sentable. Further note that we usemin(W, 0) andmax(W, 0) to ensure that 0 is always represented.
To dequantize we perform:

D(Wq, δ, z) = δ(Wq − z)

In the context of QuaRL, int8 and fp16 quantization are applied after training a full precision model
on an environment, as per Algorithm 1. In post training quantization, uniform quantization is applied
to each fully connected layer of the model (per-tensor quantization) and is applied to each channel
of convolution weights (per-axis quantization); activations are not quantized. We use post-training
quantization to quantize to fp16 and int8 values.

Algorithm 1: Post-Training
Quantization for Reinforce-
ment Learning
Input: T : task or

environment
Input: L : reinforcement

learning algorithm
Input: A : model architecture
Input: n : quantize bits (8 or

16)
Output: Reward

1 M = Train(T , L, A)

2 Q =

{
Qint8 n = 8

Qfp16 n = 16
3 return Eval(Q(M))

Algorithm 2: Quantization Aware Training for Reinforcement
Learning
Output: Reward
Input: T : task or environment
Input: L : reinforcement learning algorithm
Input: n : quantize bits
Input: A : model architecture
Input: Qd : quantization delay

1 Aq = InsertAfterWeightsAndActivations(Qtrain
n )

2 M , TensorMinMaxes =
TrainNoQuantMonitorWeightsActivationsRanges(T , L, Aq ,
Qd)

3 M = TrainWithQuantization(T , L, M , TensorMinMaxes,
Qtrain

n )
4 return Eval(M , Qtrain

n , TensorMinMaxes)

3.2 QUANTIZATION AWARE TRAINING

Quantization aware training involves retraining the reinforcement learning policies with weights
and activations uniformly quantized to n bit values. Importantly, weights are maintained in full fp32
precision except that they are passed through the uniform quantization function before being used
in the forward pass. Because of this, the technique is also known as “fake quantization” (Tensor-
Flow, 2018b). Additionally, to improve training there is an additional parameter, quantization delay
(TensorFlow, 2018a), which specifies the number of full precision training steps before enabling
quantization. When the number of steps is less than the quantization delay parameter, the minimum
and maximum values of weights and activations are actively monitored. Afterwards, the previously
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captured minimum and maximum values are used to quantize the tensors (these values remain static
from then on). Specifically:

Qtrain
n (W,Vmin, Vmax) =

⌊
W

δ

⌋
+ z where δ =

|Vmin|+ |Vmax|
2n

, z =

⌊
−Vmin

δ

⌋
Where Vmin and Vmax are the monitored minimum and maximum values of the tensor (expanding
Vmin and Vmax to include 0 if necessary). Intuitively, the expectation is that the training pro-
cess eventually learns to account for the quantization error, yielding a higher performing quantized
model. Note that uniform quantization is applied to fully connected weights in the model (per-tensor
quantization) and to each channel for convolution weights (per-axis quantization). n bit quantization
is applied to each layer’s weights and activations:

xk+1 = A(Qtrain
n (Wk, Vmin, Vmax)ak + b) where A is the activation function

ak+1 = Qtrain
n (xk+1, Vmin, Vmax)

During backward propagation, the gradient is passed through the quantization function unchanged
(also known as the straight-through estimator (Hinton, 2012)), and the full precision weight matrix
W is optimized as follows:

∆WQtrain
n (W,Vmin, Vmax) = I

In context of the QuaRL framework, the policy neural network is retrained from scratch after insert-
ing the quantization functions between weights and activations (all else being equal). At evaluation
full precision weights are passed through the uniform affine quantizer to simulate quantization error
during inference. Algorithm 2 describes how quantization aware training is applied in QuaRL.

4 RESULTS

In this section, we first show that quantization has regularization effect on reinforcement learning
algorithms and can boost exploration. Secondly, We show that reinforcement learning algorithms
can be quantized safely without significantly affecting the rewards. To that end, we perform evalua-
tions across the three principal axes of QuaRL: environments, training algorithms, and quantization
methods.For post-training quantization, we evaluate each policy for 100 episodes and average the
rewards. For Quantization Aware Training (QAT), we train atleast three policies and report the mean
rewards over hundred evaluations. Table 1 lists the space of the evaluations explored.

Quantization as Regularization: To further establish the effects of quantization during training,
we compare quantization-aware training with traditional regularization techniques (specifically
layer-norm (Ba et al., 2016; Kukacka et al., 2017)) and measure the amount of exploration these
techniques induce. It has been show in previous literature (Farebrother et al., 2018; Cobbe et al.,
2018) that regularization actively helps reinforcement learning training generalize better; here
we further reinforce this notion and additionally establish a relationship between quantization,
generalization and exploration. We use the variance in action distribution produced by the model as
a proxy for exploration: intuitively, since the policy samples from this distribution when performing
an action, a policy that produces an action distribution with high variance is less likely to explore
different states. Conversely, a low variance action distribution indicates high exploration as the
policy is more likely to take a different action than the highest scoring one.

We measure the variance in action distribution produced by differently trained models (QAT-
2, QAT-4, QAT-6, QAT-8, with layer norm and full precision) at different stages of the training
process. We collect model rewards and the action distribution variance over several rollouts with
deterministic action selection (model performs the highest scoring action). Importantly, we make
sure to use deterministic action selection to ensure that the states reached are similar to the the
distribution seen by the model during training. To separate signal from noise, we furthermore
smooth the action variances with a smoothing factor of .95 for both rewards and action variances.
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Figure 1: Exploration with different training processes and rewards achieved by corresponding mod-
els. Lower variance in inferred action distribution implies higher exploration. Training with higher
quantization levels, like layer norm regularization, induces lower action distribution variance and
thus higher exploration. Reward plot indicates that training with quantization achieves a similar
level of rewards despite more exploration. Note that quantization during training is turned on after
5,000,000 steps (quant delay = 5,000,000) and the differences manifest shortly after this point.

Figure 4 shows the variance in action distribution produced by the models at different stages of
training. Training with higher quantization levels (e.g: 2 bit vs 4 bit training), like layer norm
regularization, induces lower action distribution variance and hence indicates more exploration.
Furthermore, figure 4 reward plot shows that despite lower action variance, models trained with
quantization achieve a reward similar to the full precision baseline, which indicates that higher ex-
ploration is facilitated by quantization and not by a lack of training. Note that quantization is turned
on at 5,000,000 steps and we see its effects on the action distribution variance shortly after this
point. In summary, data shows that training with quantization, like traditional regularization, in part
regularizes reinforcement learning training by facilitating exploration during the training process.

Effectiveness of Quantization: To evaluate the overall effectiveness of quantization for deep rein-
forcement learning, we apply post-training quantization and quantization aware learning to a spec-
trum of tasks and record their performance. We present the reward results for post-training quanti-
zation in Table 2. We also compute the percentage error of the performance of the quantized policy
relative to that of their corresponding full precision baselines (Efp16 and Eint8). Additionally, we
report the mean of the errors across tasks for each of the training algorithms.

The absolute mean of 8-bit and 16-bit relative errors ranges between 2% and 5% (with the exception
of DQN), which indicates that models may be quantized to 8/16 bit precision without much loss in
quality. Interestingly, the overall performance difference between the 8-bit and 16-bit post-training
quantization is minimal (with the exception of the DQN algorithm, for reasons we explain in Sec-
tion 4). We believe this is because the policies weight distribution is narrow enough that 8 bits is able
to capture the distribution of weights without much error. In a few cases, post-training quantization
yields better scores than the full precision policy. We believe that quantization injected an amount
of noise that was small enough to maintain a good policy and large enough to regularize model be-
havior; this supports some of the results seen by Louizos et al. (2018a); Bishop (1995); Hirose et al.
(2018); see appendix for plots showing that there is a sweet spot for post-training quantization.

For quantization aware training, we train the policy with fake-quantization operations while main-
taining the same model and hyperparameters (see Appendix). Figure 2 shows the results of quantiza-
tion aware training on multiple environments and training algorithms to compress the policies down
from 8-bits to 2-bits. Generally, the performance relative to the full precision baseline is maintained
until 5/6-bit quantization, after which there is a drop in performance. Broadly, at 8-bits, we see no
degradation in performance. From the data, we see that quantization aware training achieves higher
rewards than post-training quantization and also sometimes outperforms the full precision baseline.
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Algorithm→ A2C DQN PPO DDPG
Datatype→ fp32 fp16 int8 fp32 fp16 int8 fp32 fp16 int8 fp32 fp16 int8

Environment ↓ Rwd Rwd Efp16 (%) Rwd Eint8 (%) Rwd Rwd Efp16 (%) Rwd Eint8 (%) Rwd Rwd Efp16 (%) Rwd Eint8 (%) Rwd Rwd Efp16 (%) Rwd Eint8 (%)

Breakout 379 371 2.11 350 7.65 214 217 -1.40 78 63.55 400 400 0.00 368 8.00
SpaceInvaders 717 667 6.97 634 11.56 586 625 -6.66 509 13.14 698 662 5.16 684 2.01

BeamRider 3087 3060 0.87 2793 9.52 925 823 11.03 721 22.05 1655 1820 -9.97 1697 -2.54
MsPacman 1915 1915 0.00 2045 -6.79 1433 1429 0.28 2024 -41.24 1735 1735 0.00 1845 -6.34

Qbert 5002 5002 0.00 5611 -12.18 641 641 0.00 616 3.90 15010 15010 0.00 14425 3.90
Seaquest 782 756 3.32 753 3.71 1709 1885 -10.30 1582 7.43 1782 1784 -0.11 1795 -0.73
CartPole 500 500 0.00 500 0.00 500 500 0.00 500 0.00 500 500 0.00 500 0.00

Pong 20 20 0.00 19 5.00 21 21 0.00 21 0.00 20 20 0.00 20 0.00
Walker2D 1890 1929 -2.06 1866 1.27

HalfCheetah 2553 2551 0.08 2473 3.13
BipedalWalker 98 90 8.16 83 15.31
MountainCar 92 92 0.00 92 0.00

Mean 1.66 2.31 -0.88 8.60 -0.62 0.54 1.54 4.93

Table 2: Post training quantization error for DQN, DDPG, PPO, and A2C algorithm. The “Rwd”
column corresponds to the rewards. The negative error percentage means the quantized policy per-
formed better than fp32 policy. We summarize the error in rewards using arithmetic mean.
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Figure 2: Quantization aware training (QAT) of PPO, A2C, and DDPG algorithms on OpenAI gym,
Atari, and PyBullet. FP is achieved by fp32 and 8* is achieved by 8-bit post-training quantization.

Effect of Environment on Quantization Quality: To analyze the task’s effect on quantization
quality we plot the distribution of weights of full precision models trained in three environments
(Breakout, Beamrider and Pong) and their error after applying 8-bit post-training quantization
on them. Each model uses the same network architecture, is trained using the same algorithm (DQN)
with the same hyperparameters (see Appendix).

Environment EInt8

Breakout 63.55%
BeamRider 22.05%
Pong 0%
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Figure 3: Weight distribution and cor-
responding 8-bit quantized error for
models trained on the Breakout,
Beamrider and Pong environments
with DQN.

Figure 3 shows that the task with the highest error
(Breakout) has the widest weight distribution, the task
with the second-highest error (BeamRider) has a nar-
rower weight distribution, and the task with the lowest
error (Pong) has the narrowest distribution. With an
affine quantizer, quantizing a narrower distribution yields
less error because the distribution can be captured at a
fine granularity; conversely, a wider distribution requires
larger gaps between representable numbers and thus in-
creases quantization error. The trends indicate the envi-
ronment affects models’ weight distribution spread which
affects quantization performance: specifically, environ-
ments that yield a wider distribution of model weights are more difficult to apply quantization to.
This observation suggests that regularizing the training process may yield better performance.
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Algorithm Environment fp32 Reward Eint8 Efp16

DQN Breakout 214 63.55% -1.40%
PPO Breakout 400 8.00% 0.00%
A2C Breakout 379 7.65% 2.11%

Table 3: Rewards for DQN, PPO, and A2C.
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Figure 4: Weight distributions for the policies trained using DQN, PPO and A2C. DQN policy
weights are more spread out and more difficult to cover effectively by 8-bit quantization (yellow
lines). This explains the higher quantization error for DQN in Table 3. A negative error indicates
that the quantized model outperformed the full precision baseline.

Effect of Training Algorithm on Quantization Quality: To determine the effects of the reinforce-
ment learning training algorithm on the performance of quantized models, we compare the perfor-
mance of post-training quantized models trained by various algorithms. Table 3 shows the error
of different reinforcement learning algorithms and their corresponding 8-bit post-training quantiza-
tion error for the Atari Breakout game. Results indicate that the A2C training algorithm is most
conducive to int8 post-training quantization, followed by PPO2 and DQN. Interestingly, we see a
sharp performance drop compared to the corresponding full precision baseline when applying 8-bit
post-training quantization to models trained by DQN. At 8 bits, models trained by PPO2 and A2C
have relative errors of 8% and 7.65%, whereas the model trained by DQN has an error of ∼64%. To
understand this phenomenon, we plot the distribution of model weights trained by each algorithm,
shown in Figure 4. The plot shows that the weight distribution of the model trained by DQN is
significantly wider than those trained by PPO2 and A2C. A wider distribution of weights indicates
a higher quantization error, which explains the large error of the 8-bit quantized DQN model. This
also explains why using more bits (fp16) is more effective for the model trained by DQN (which
reduces error relative to the full precision baseline from ∼64% down to ∼-1.4%). These results
signify that the choice of RL algorithms (on-policy vs off-policy) have different objective functions
and hence can result in a completely different weight distribution. A wider distribution has more
pronounced impact on the quantization error.

5 CASE STUDIES

To show the usefulness of our results, we use quantization to optimize the training and deployment
of reinforcement learning policies. We 1) train a pong model 1.5× faster by using mixed precision
optimization and 2) deploy a quantized robot navigation model onto a resource constrained embed-
ded system (RasPi-3b), demonstrating 4× reduction in memory and an 18× speedup in inference.
Faster training time means running more experiments for the same time. Achieving speedup on
resource-constrained devices enables deployment of the policies on real robots.

Mixed/Half-Precision Training: Motivated by that reinforcement learning training is robust to
quantization error, we train three policies of increasing model complexity (Policy A, Policy B,
and Policy C) using mixed precision training and compare its performance to that of full precision
training (see Appendix for details). In mixed precision training, the policy weights, activations, and
gradients are represented in fp16. A master copy of the weights are stored in full precision (fp32)
and updates are made to it during backward pass (Micikevicius et al., 2017). We measure the runtime
and convergence rate of both full precision and mixed precision training (see Appendix).

Algorithm Network
Parameter

fp32
Runtime

(min)

MP
Runtime

(min)
Speedup

DQN-Pong
Policy A 127 156 0.87×
Policy B 179 172 1.04×
Policy C 391 242 1.61×

Table 4: Mixed precision training for rein-
forcement learning.
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Figure 5: Mixed precision v/s fp32 training rewards.

Figure 5 shows that all three policies converge under full precision and mixed precision training. In-
terestingly, for Policy B, training with mixed precision yields faster convergence; we believe that
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some amount of quantization error speeds up the training process. Table 5 shows the computational
speedup to the training loop by using mixed precision training. While using mixed precision training
on smaller networks (Policy A) may slow down training iterations (as overhead of doing fp32 to
fp16 conversions outweigh the speedup of low precision ops), larger networks (Policy C) show
up to a 60% speedup. Generally, our results show that mixed precision may speed up the training
process by up to 1.6× without harming convergence.

Quantized Policy for Deployment: To show the benefits of quantization in deploying of reinforce-
ment learning policies, we train multiple point-to-point navigation models (Policy I, II, and III) for
aerial robots using Air Learning (Krishnan et al., 2019) and deploy them onto a RasPi-3b, a cost
effective, general-purpose embedded processor. RasPi-3b is used as proxy for the compute platform
for the aerial robot. Other platforms on aerial robots have similar characteristics. For each of these
policies, we report the accuracies and inference speedups attained by the int8 and fp32 policies.

Table 5 shows the accuracies and inference speedups attained for each corresponding quantized
policy. We see that quantizing smaller policies (Policy I) yield moderate inference speedups (1.18×
for Policy I), while quantizing larger models (Policies II, III) can speed up inference by up to 18×.
This speed up in policy III execution times results in speeding-up the generation of the hardware
actuation commands from 5 Hz (fp32) to 90 Hz (int8). Note that in this experiment we quantize
both weights and activations to 8-bit integers; quantized models exhibit a larger loss in accuracy as
activations are more difficult to quantize without some form of calibration to determine the range to
quantize activation values to (Choi et al., 2018).

A deeper investigation shows that Policies II and III take more memory than the total RAM capacity
of the RasPi-3b, causing numerous accesses to swap memory (refer to Appendix) during inference
(which is extremely slow). Quantizing these policies allow them to fit into the RasPi’s RAM, elim-
inating accesses to swap and boosting performance by an order of magnitude. Figure 5 shows the
memory usage while executing the quantized and unquantized version of Policy III, and shows how
without quantization memory usage skyrockets above the total RAM capacity of the board.

Policy

Name

Network

Parameters

fp32

(ms)

fp32

success (%)

int8

(ms)

int8

success (%)
Speed up

Policy I 3L, MLP, 64 Nodes 0.147 60% 0.124 45% 1.18 ×

Policy II 3L, MLP, 256 Nodes 133.49 74% 9.53 60% 14 ×

Policy III 3L, MLP (4096, 512, 1024) 208.115 86% 11.036 75% 18.85 ×
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Figure 6: Table lists the inference speed in milliseconds (ms) on Ras-Pi3b+ and success rate (%) for
three policies. The figure shows the memory consumption for Policy III’s fp-32 and int8 policies.

In context of real-world deployment of an aerial (or any other type of) robot, a speedup in policy
execution potentially translates to faster actuation commands to the aerial robot – which in turn
implies faster and better responsiveness in a highly dynamic environment (Falanga et al., 2019).
Our case study demonstrates how quantization can facilitate the deployment of a accurate policies
trained using reinforcement learning onto a resource constrained platform.

6 CONCLUSION

We perform the first study of quantization effects on deep reinforcement learning using QuaRL, a
software framework to benchmark and analyze the effects of quantization on various reinforcement
learning tasks and algorithms. We analyze the performance in terms of rewards for post-training
quantization and quantization aware training as applied to multiple reinforcement learning tasks and
algorithms with the high level goal of reducing policies’ resource requirements for efficient training
and deployment. We broadly demonstrate that reinforcement learning models may be quantized
down to 8/16 bits without loss of performance. Also, we link quantization performance to the dis-
tribution of models’ weights, demonstrating that some reinforcement learning algorithms and tasks
are more difficult to quantize due to their effect of widening the models’ weight distribution. Addi-
tionally, we show that quantization during training acts as a regularizer which improve exploration.
Finally, we apply our results to optimize the training and inference of reinforcement learning mod-
els, demonstrating a 50% training speedup for Pong using mixed precision optimization and up to
a 18x inference speedup on a RasPi by quantizing a navigation policy. In summary, our findings
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indicate that there is much potential for the future of quantization of deep reinforcement learning
policies.
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APPENDIX

Here, we list several details that are committed from the first 8 pages due to the limited page count.
To the best of our ability, we provide sufficient details to reproduce our results and address common
clarification questions.

A POST TRAINING QUANTIZATION RESULTS

Here we tabulate the post training quantization results listed in Table 2 into four separate tables for
clarity. Each table corresponds to post training quantization results for a specific algorithm. Table 5
tabulates the post training quantization for A2C algorithm. Likewise, Table 6 tabulates the post
training quantization results for DQN. Table 7 and Table 8 lists the post training quantization results
for PPO and DDPG algorithms respectively.

Environment fp32 fp16 E fp16 int8 E int8
Breakout 379 371 2.11% 350 7.65%
SpaceInvaders 717 667 6.97% 634 11.58%
BeamRider 3087 3060 0.87% 2793 9.52%
MsPacman 1915 1915 0.00% 2045 -6.79%
Qbert 5002 5002 0.00% 5611 -12.18%
Seaquest 782 756 3.32% 753 3.71%
CartPole 500 500 0.00% 500 0.00%
Pong 20 20 0.00% 19 5.00%
Mean 1.66 % 2.31 %

Table 5: A2C rewards for fp32, fp16, and int8 policies.

Environment fp32 fp16 E fp16 int8 E int8
Breakout 214 217 -1.40% 78 63.55%
SpaceInvaders 586 625 -6.66% 509 13.14%
BeamRider 925 823 11.03% 721 22.05%
MsPacman 1433 1429 0.28% 2024 -41.24%
Qbert 641 641 0.00% 616 3.90%
Seaquest 1709 1885 -10.30% 1582 7.43%
CartPole 500 500 0.00% 500 0.00%
Pong 21 21 0.00% 21 0.00%
Mean -0.88% 8.60%

Table 6: DQN rewards for fp32, fp16, and int8 policies.

Environment fp32 fp16 E fp16 int8 E int8
Breakout 400 400 0.00% 368 8.00%
SpaceInvaders 698 662 5.16% 684 2.01%
BeamRider 1655 1820 -9.97% 1697 -2.54%
MsPacman 1735 1735 0.00% 1845 -6.34%
Qbert 15010 15010 0.00% 14425 3.90%
Seaquest 1782 1784 -0.11% 1795 -0.73%
CartPole 500 500 0.00% 500 0.00%
Pong 20 20 0.00% 20 0.00%
Mean 8.6% 0.54%

Table 7: PPO rewards for fp32, fp16, and int8 policies.

B DQN HYPERPARAMETERS FOR ATARI

For all Atari games in the results section we use a standard 3 Layer Conv (128) + 128 FC. Hyperpa-
rameters are listed in Table 9.
We use stable-baselines (Hill et al., 2018) for all the reinforcement learning experiments. We use
Tensorflow version 1.14 as the machine learning backend.

C MIXED PRECISION HYPERPARAMETERS

In mixed precision training, we used three policies namely Policy A, Policy B and Policy C respec-
tively. The policy architecture for these policies are tabulated in Table 10.
For measuring the runtimes for fp32 adn fp16 training, we use the time Linux command for each
run and add the usr and sys times to measure the runtimes for both mixed-precision training and
fp32 training. The hyperparameters used for training DQN-Pong agent is listed in Table 9.
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Environment fp32 fp16 E fp16 int8 E int8
Walker2D 1890 1929 -2.06% 1866 1.27%
HalfCheetah 2553 2551 0.08% 2473 3.13%
BipedalWalker 98 90 8.16% 83 15.31%
MountainCarContinuous 92 92 0.00% 92 0.00%
Mean 1.54% 4.93%

Table 8: DDPG rewards for fp32, fp16, and int8 policies.

Hyperparameter Value
n timesteps 1 Million Steps
buffer size 10000

learning rate 0.0001
warm up 10000

quant delay 500000
target network update frequency 1000

exploration final eps 0.01
exploration fraction 0.1

prioritized replay alpha 0.6
prioritized replay True

Table 9: Hyper parameters used for mixed precision training for training DQN algorithm in all the
Atari arcade learning environments.

D QUANTIZED POLICY DEPLOYMENT

Here we describe the methodology used to train a point to point navigation policy in Air Learning
and deploy it on an embedded compute platform such as Ras-Pi 3b+. Air Learning is an AI research
platform that provides infrastructure components and tools to train a fully functional reinforcement
learning policies for aerial robots. In simple environments like OpenAI gym, Atari the training
and inference happens in the same environment without any randomization. In contrast to these
environments, Air Learning allows us to randomize various environmental parameters such as such
as arena size, number of obstacles, goal position etc.

In this study, we fix the arena size to 25 m × 25 m × 20 m. The maximum number of obstacles
at anytime would be anywhere between one to five and is chosen randmonly on episode to episode
basis. The position of these obstacles and end point (goal) are also changed every episode. We
train the aerial robot to reach the end point using DQN algorithm. The input to the policy is sensor
mounted on the drone along with IMU measurements. The output of the policy is one among the
25 actions with different velocity and yaw rates. The reward function we use in this study is defined
based on the following equation:

r = 1000 ∗ α− 100 ∗ β −Dg −Dc ∗ δ − 1 (1)

Here, α is a binary variable whose value is ‘1’ if the agent reaches the goal else its value is ‘0’. β is
a binary variable which is set to ‘1’ if the aerial robot collides with any obstacle or runs out of the
maximum allocated steps for an episode.1 Otherwise, β is ’0’, effectively penalizing the agent for
hitting an obstacle or not reaching the end point in time. Dg is the distance to the end point from the
agent’s current location, motivating the agent to move closer to the goal.Dc is the distance correction
which is applied to penalize the agent if it chooses actions which speed up the agent away from the
goal. The distance correction term is defined as follows:

Dc = (Vmax − Vnow) ∗ tmax (2)

Vmax is the maximum velocity possible for the agent which for DQN is fixed at 2.5 m/s. Vnow is
the current velocity of the agent and tmax is the duration of the actuation.

We train three policies namely Policy I, Policy II, and Policy III. Each policy is learned through cur-
riculum learning where we make the end goal farther away as the training progresses. We terminate
the training once the agent has finished 1 Million steps. We evaluate the all the three policies in fp32
and quantized int8 data types for 100 evaluations in airlearning and report the success rate.

1We set the maximum allowed steps in an episode as 750. This is to make sure the agent finds the end-point
(goal) within some finite amount of steps.

14



Under review as a conference paper at ICLR 2020

Algorithm Policy Architecture
Policy A 3 Layer Conv (128 Filters) + FC (128)
Policy B 3 Layer Conv (512 Filters) + FC(512)
Policy C 3 Layer Conv (1024 Filters) + FC (2048)

Table 10: The policy architecture that was used in mixed precision training for training DQN algo-
rithm in Atari Pong environment.

We also take these policies and characterize the system performance on a Ras-pi 3b platform. Ras-Pi
3b is a proxy for the compute platform available on the aerial robot. The hardware specification for
Ras-Pi 3b is shown in Table 11.

Embedded System Ras-Pi 3b
CPU Cores 4 Cores (ARM A53)

CPU Frequency 1.2 GHz
GPU None

Power <1W
Cost $35

Table 11: Specification of Ras-Pi 3b embedded computing platform. Ras-Pi 3b is a proxy for the
on-board compute platform available in the aerial robot.

We allocate a region of storage space as swap memory. It is the region of memory allocated in disk
that is used when system memory is utilized fully by a process. In Ras-Pi 3b, the swap memory is
allocated in Flash storage.

E POST-TRAINING QUANTIZATION SWEET SPOT

Figures 7 shows that there is a sweet spot for post-training quantization. Sometimes, quantizing to
fewer bits outperforms higher precision quantization. Each plot was generated by applying post-
training quantization to the full precision baselines and evaluating over 10 runs.
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Figure 7: Post training quantization sweet spot for DQN MsPacman, DQN SeaQuest, DQN Break-
out. We see that post-training quantization sweet spot depends on the specific task at hand. Note
that 16-bit in this plot is 16-bit affine quantization, not fp16.
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