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ABSTRACT

Across numerous applications, forecasting relies on numerical solvers
for partial differential equations (PDEs). Although the use of deep-
learning techniques has been proposed, the uses have been restricted
by the fact the training data are obtained using PDE solvers. Thereby,
the uses were limited to domains, where the PDE solver was applicable,
but no further.
We present methods for training on small domains, while applying the
trained models on larger domains, with consistency constraints ensur-
ing the solutions are physically meaningful even at the boundary of the
small domains. We demonstrate the results on an air-pollution forecast-
ing model for Dublin, Ireland.

1 INTRODUCTION

Solving partial differential equations (PDEs) underlies much of applied mathematics and engineer-
ing, ranging from computer graphics and financial pricing, to civil engineering and weather predic-
tion. Conventional approaches to prediction in PDE models rely on numerical solvers and require
substantial computing resources in the model-application phase. While in some application domains,
such as structural engineering, the longer run-times may be acceptable, in domains with rapid decay
of value of the prediction, such as weather forecasting, the run-time of the solver is of paramount
importance.

In many such applications, the ability to generate large volumes of data facilitates the use of sur-
rogate or reduced-order models (Benner et al., 2015) obtained using deep artificial neural networks
(Goodfellow et al., 2016). Although the observation that artificial neural networks could be applied
to physical models is not new (Lagaris et al., 1998; 2000; Lee & Kang, 1990; Ramuhalli et al., 2005;
Delpiano & Zegers, 2006; Muro & Ferrari, 2009; Rudd et al., 2014; Lee & Kang, 1990; Rudd, 2013),
and indeed, it is seen as one of the key trends (Bellinger et al., 2017; Karpatne et al., 2017; Swischuk
et al., 2018) on the interface of applied mathematics, data science, and deep learning, their applica-
tions did not reach the level of success observed in the field of the image classification, speech recog-
nition, machine translation, and other problems processing unstructured high-dimensional data, yet.
A key issue faced by applications of deep-learning techniques to physical models is their scalability.

Even very recent research on deep-learning for physical models (Tompson et al., 2017; James et al.,
2018; Wiewel et al., 2018) uses a solver for PDEs to obtain hundreds of thousands of outputs. The
deep learning can then be seen as means of non-linear regression between the inputs and outputs.
For example, (James et al., 2018) have recently observed a factor of 12,000 computational speedup
compared to that of a leading solver for the PDE, on the largest domain they were able to work
with. Considering the PDE solver is used to generate the outputs to train the deep-learning model
on, however, the deep-learning model is limited to the domain and application that it is trained on.

We present methods for training Deep Neural Networks (DNNs) on small domains, while applying
the trained models on larger domains, with consistency constraints ensuring the solutions are physi-
cally meaningful even at the boundaries of the small domains. Our contributions are as follows:

• definition of the consistency constraints, wherein the output for one (tile of a) mesh is used
to constrain the output for another (tile of a) mesh.
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• methods for applying the consistency constraints within the training of a DNN, which al-
lows for an increase in the extent of the spatial domain by concatenating the outputs of
several PDE-based models by considering boundary conditions and state at the boundary.

• a numerical study of the approach on a pollution-forecasting problem, wherein we lose
accuracy from 1 to 7 per cent compared to the unconstrained model, but remove boundary
artefacts.

We note that the methods can be applied both in terms of “patching” multiple (tiles of a) meshes, and
in terms of “zooming” in multi-resolution approaches, where lower-resolution (e.g., city-, country-
scale) component constrains higher-resolution components (e.g., district-, city-scale), which in turn
impose consistency constraints on the former.

2 OUR APPROACH

Our work is a first attempt to apply techniques based on domain decomposition to deep learning.
Conceptually, it promises the ability to concatenate outputs from disparate PDE-based simulation
models into a single dataset for training deep learning with constraints to ensure consistency across
the boundaries of the disparate simulations, i.e., physical viability across multiple meshes for a
physical phenomenon governed by a PDE. The approach under consideration is rather intuitive
and consists of training a deep learning model for each available sub-grid, providing a method to
ensure consistency across sub-grids, and scaling up to the wider area such that the accuracy of
the predictions is increased. Further, by enabling communication between meshes (via constraints),
individual domain prediction can be provided with information external to the domain.

Let us consider an index-set M of meshes Mm, m ∈ M, with sets of nm mesh points P (Mm).
The output of each PDE-based simulation on such a mesh consists of values in Rdm at each point
of P (Mm). Often, a small sub-set of n(r)m of such points is of particular interest, which we call
receptors R(Mm); the remainder of the points represents hidden points H(Mm). The receptors and
hidden points thus partition the mesh points P (Mm) = H(Mm)∪R(Mm), with nm = n

(h)
m +n

(r)
m .

Further, let us consider the index-set B ⊆ M×M of boundaries Bmn of meshes. Such a possibly
infinite boundary Bmn ⊆ P (Mm) × P (Mn) links pairs of points from the two meshes. To each
boundary Bmn we associate a constant εmn that reflects the importance of this boundary. Further,
for each mesh Mm we have an ordered set of simulations indexed with time t ∈ Z, where each
simulation is defined by the inputs x(m)

t ∈ X(m)
t and a set of outputs y(m)

t ∈ (Rdm)×nm . Often, one
wishes to consider y(m)

t being part of x(m)
t+k for some k > 0, in a recurrent fashion.

Our aim is to minimise residuals subject to consistency constraints to ensure physical “sanity” of the
results, i.e.,

r∗ = min
f

∑
t

∑
m∈M

∥∥∥projR(Mm)

(
y
(m)
t − f (m)

(
x
(m)
t

))∥∥∥ (1)

s. t. ∀t ∀(m,n) ∈ B ∀(p1, p2) ∈ Bmn :

prox
(
proj{p1}f

(m)
(
x
(m)
t

)
, proj{p2}f

(n)
(
x
(n)
t

))
≤ εmn ,

where projQ : (Rdm)×nm → (Rdm)×|Q| is a projection operator that projects the array of outputs
at all points onto the outputs at a subset of points Q ⊂ P (Mm), prox is a proximity operator,
the decision variable defines the mapping f = {f (m)}m∈M, whereby f (m)

(
x
(m)
t

)
represents the

output of a non-linear mapping between inputs and PDE-based simulation outputs at the points of
the mesh, f (m) : X

(m)
t → (Rdm)×nm , on each independent mesh Mm, which can be seen as a non-

linear regression, and εmn is a constant specific to (m,n) ∈ B. We provide examples of f (m) in the
following sections. The requirement of physical “sanity” is usually a statement about smoothness of
the values of the mapping f (m) across the boundaries of two different meshes. To be able to compare
those values, we require that the dimensions are the same, that is ∀m,n ∈ M : dm = dn ≡ d.
For example, for prox being the norm of a difference of the arguments, “smooth” at a point at the
boundary of two meshes means that the values predicted within the two meshes at that point are
numerically close to each other. Also adding the norm of the difference of their gradients to that
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makes it a statement about the closeness of their first derivatives too. Technically, “smoothness”
is a statement about all their higher derivatives as well, however, we will only concern ourselves
with their values, or zeroth order of derivatives, for now. Notice though that generically this is an
infinitely large problem.

In theory, equation 1 can be solved by Lagrangian relaxation techniques, e.g., by solving:

r∗ = inf
f, λ

∑
t

( ∑
m∈M

∥∥∥projR(Mm)

(
y
(m)
t − f (m)(x

(m)
t )

)∥∥∥ (2)

+
∑

(m,n)∈B

∑
(p1,p2)∈Bmn

λ
(m)
t prox

(
proj{p1}f

(m)
(
x
(m)
t

)
, proj{p2}f

(n)
(
x
(n)
t

)))
,

for λ = {λ(m)
t }m∈Mt∈Z . This can be seen as a statement that there exist λ(m)

t , t ∈ Z, such that the
infimum over f (m) coincides with r∗, for each m ∈ M. Clearly, if at least some of the boundaries
Bmn are infinite, then the optimisation problem is infinite-dimensional.

Further, one can borrow techniques from iterative solution schemes in the numerical analysis do-
main. Notice that the first term in equation 2 is finite-dimensional and separable across the meshes.
For each mesh Mm, m ∈ M, the above can be computed independently. Further, one can sub-
sample the boundaries to obtain a consistent estimator. Subsequently, one could solve the finite-
dimensional projections of equation 2, wherein each new solution will increase the dimension of
λ
(m)
t . While this is feasible in theory, the inclusion of non-separable terms with λ(m)

t would still
render the solver less than practical.

Instead, we propose an iterative scheme, which is restricted to separable approximations. Let us
imagine that at time t, for a pair of points (p1, p2) ∈ Bmn on the boundary indexed with (m,n) ∈ B,
we obtain values from the trained model at those points in the respective mesh, Rd 3 f

(m)
p1,t =

proj{p1} f
(m)
(
x
(m)
t

)
and Rd 3 f (n)p2,t = proj{p2} f

(n)
(
x
(n)
t

)
. While the two points p1, p2 lay in two

different meshes, we would like the outputs at those points to coincide. For that we construct vectors
χ
p1,p2

and χp1,p2 ∈ Rd that serve as lower and upper bounds on the values obtained from the next

iteration of the training of f (m), that is, we element-wise construct

χ
p1,p2 i

= min
(
f
(m)
p1,t i

, f
(n)
p2,ti

)
+ εmn , χp1,p2 i = max

(
f
(m)
p1,t i

, f
(n)
p2,ti

)
− εmn , (3)

from which we can form univariate interval constraints, restricting the corresponding elements of
both f (m) at p1 and f (n) at p2 of the next iteration to the respective interval

(
χ
p1,p2 i

, χp1,p2 i
)
. Notice

that χ
p1,p2

and χp1,p2 become constant in the next iteration. Further, notice also that replacing λ(m)
t

with a constant λ provides an upper bound on r∗, which is computationally much easier to solve.

In the scheme, we consider a finite-dimensional projection of equation 2. For each (m,n) ∈ B we
consider a finite sample B̂mn ⊂ Bmn of pairs of points, for which we obtain

r∗ = min
f,λ

∑
t

( ∑
m∈M
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+
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∑
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λ
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(
0, χ

p1,p2
− f (l)p,t

)
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(
0, f

(l)
p,t − χp1,p2

)∥∥∥
1

)
,

where we consider the function max : R × Rd → Rd to operate element-wise. Further, when we
consider λ as a hyperparameter, we obtain an optimisation problem separable in m ∈ M, which in
the limit of |B̂mn| → |Bmn| provides an over-approximation for any λ.

In deep learning, this scheme should be seen as a recurrent neural network (RNN). A fundamental
extension of RNN compared to traditional neural network approaches is parameter sharing across
different parts of the model. We refer to (Goodfellow et al., 2016, Chapter 10) for an excellent
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Figure 1: A schematic illustration of our recurrent neural network, where the recursion considers the
consistency constraints defined by χ, χ.

introduction and Figure 1 for a schematic illustration. Each run provides constants (χ
p1,p2

, χp1,p2),
which are used in the consistency constraints of the subsequent run.

In terms of training the RNN, it is important to notice that equation 4 allows for very fast convergence
rate even in many classes of non-linear maps f . For instance, when f (m) : X

(m)
t → (Rdm)×nm is a

polynomial of a fixed degree (Gergonne, 1974), then equation 4 is strongly convex, despite the max
function making it non-smooth. The subgradient of the max function is well understood (Boyd &
Vandenberghe, 2004) and readily implemented in major deep-learning frameworks. Even in cases,
when the resulting problem is not convex, one could consider convexifications, following Mevissen
et al. (2008).

In numerical analysis, in general, and with respect to the multi-fidelity methods (Peherstorfer et al.,
2018), in particular, our approach could be seen as iterative model-order reduction. The original
PDEs could be seen as the full-order model (FOM) to reduce, and equation 1 could be seen as a
high-fidelity data-fit reduced-order model (ROM), albeit not a very practical one, whereas equation 4
could then be seen as a low-fidelity data-fit ROM, which allows for rapid prediction.

In learning theory, it is well known since the work of Cybenko (1989) that even a feed-forward
network with three or more layers of a sufficient number of neurons (e.g., with sigmoidal activa-
tion function) allows for a universal approximation of functions on a bounded interval. It is not
guaranteed, however, that the approximation has any further desirable properties, such as energy
conservation etc. Our consistency constraints allow for such properties.

Fundamentally, the approach can be summarised as learning the non-linear mapping between inputs
and predictions on each independent mesh, and iterating to ensure consistency of the solution across
meshes. Such an approach draws on a long history of work on setting boundary conditions as con-
sistency constraints in the solution of PDEs Quarteroni & Valli (1999). It can be applied to not only
the simple patching of two tiles, but also when changing the resolution of the mesh. We use the term
patching for working with neighbouring meshes at a single resolution and zooming when the mesh
resolution changes. Both merging and zooming are illustrated in Figure 3.
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predictions. Shown is the transition between three meshes of different
resolution and the potential difference between the sub-differentials of
figure 2.

3 METHODS

To illustrate this framework, we train the Recurrent Neural Network for city-scale pollution moni-
toring, utilising:

• The 3D structure of the atmosphere from our numerical weather forecasting model com-
prising the full atmospheric data (i.e., velocities, pressures, humidity, and temperatures in
3D).

• Pollution measurements and traffic data, since traffic is measurable and strongly correlated
to (esp. nitrogen oxide, particulate matter) pollution in the cities.

• The given discretisation of a city in multiple meshes, corresponding to multiple geographic
areas with their specificities.

Our test case is based in the city of Dublin, Ireland, for which real-time streams of traffic and pollu-
tion data (from Dublin City Council), and weather data (from the Weather Company) are available
to us, but which did not have any large-scale models of air pollution deployed.

3.1 AIR POLLUTION-BASED FORECASTING

Air pollution is known to have significant health impacts Organization (2018). Typically, in cities,
traffic-induced pollution is measured via the levels of nitrogen oxides (NOx) and Particulate Matter
(PM). The contribution of traffic to the levels of NOx is known to be around 70% in European cities,
whereas the contribution of traffic to the levels of particulate matter pollution is known to be up to
50% in cities of OECD countries, in particular due to the heavy presence of diesel engines.

We aim at estimating and predicting the traffic-induced air pollution levels of NOx, PM2.5 and
PM10, for defined receptors across the city. An air pollution dispersion model propagates the pollu-
tion levels emitted from the roadway links (line sources). The PDE-based model that we are using
is based on the Gaussian Plume model, studied at least since the work of Sutton (1947), and (by
now) a standard model in describing the steady-state transport of pollutants. The data inputs are the
periodic traffic volumes for a number of roadway links across the city, and periodic updates of atmo-
spheric data. The outputs it provides are the estimates of pollution levels on a periodic basis. For a
comprehensive review of line source dispersion models, the interested reader may refer to Nagendra
& Khare (2002) or Stockie (2011).

In addition to the traffic and weather data inputs, the Gaussian Plume model takes a lot of parameters
as inputs, such as the emission factors associated to the roadway links (depending on the composi-
tion of the fleet), the pollution dispersion coefficients which are a proxy for modelling the terrain
(density of buildings, etc.), and the background pollution levels (pollution that is not traffic induced).
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Such parameters are typically heterogeneous across cities and justify the use of different parameters,
resolutions and physical resolution, hence PDE-based models, for the different meshes Mm under
consideration.
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Figure 4: Left: Map of Dublin, partitioned into 12 domains (black lines), displaying the positions of
line sources (blue lines), receptors (red dots), and measurement stations (green diamonds). Right:
Output at 1 sample receptor collocated with a sensor over 3 days.

3.2 THE IMPLEMENTATION

We use Caline 4 (at the California Department of Transportation), the open-source dispersion mod-
elling suite, as a PDE solver to solve the Gaussian Plume model for the hourly inputs for each of the
12 domains described above. We note while Caline is one of the “Preferred and Recommended Air
Quality Dispersion Model” of the Environmental Protection Agency in the USA (US-EPA, 2018),
it is limited to 20 line sources and 20 receptors per solve, which in turn forces an arbitrary in-
homogeneous discretisation of the road network and is another motivation for the use of our deep
learning approach.

We have implemented the approach for the use case of Dublin, Ireland. There, the area is partitioned
into 12 domains, with 10-20 line sources of pollution each mesh. Time is discretised to hours. For
each hour, the inputs to the PDE solver comprise of traffic volume data at each line source, ob-
tained from data aggregation of traffic loop detectors from the SCATS deployment in Dublin, and
weather data at a discretisation of the spatial domain, obtained from The Weather Company under
a licence: wind speed, wind direction, wind direction standard deviation, temperature, humidity.
Available training data comprises almost one year worth of hourly data from July 1st 2017 to April
31st 2018. The outputs include concentrations of NO2 (which is closely related to the NOx con-
centration), PM2.5 and PM10 concentrations at predefined receptors per domain, as suggested in
Figure 4. The parameters were chosen for each mesh Mm based on the state-of-the-art practices: the
emission factors based on the UK National Atmospheric Emissions Inventory database, dispersion
coefficients based on the Caline recommendations (values for inner city, outer city areas), and back-
ground pollution levels chosen as the minimum time series values across the pollution measurements
stations.

The RNN model is implemented in Tensorflow (Abadi et al., 2016) to obtain, in effect, the non-linear
regression between the inputs and outputs, with the consistency constraints applied iteratively. That
is, with each map from the inputs to the outputs, we also obtain further consistency constraints to
use by further runs on the same domain.

Crucially, we use domain knowledge to pick εmn specific to (m,n) ∈ B based on the expected
accuracy of the PDE-based model therein, as it is clear that a better accuracy can be expected when
line sources are situated closer to the boundary. We hence consider εmn to be the maximum of 0.01
and the minimum distance of a line source to the boundary, where 0.01 corresponds to 100 meters.
This choice takes effect not only in the threshold in the inequality 1, but via the construction of
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, it also affects the “learning rate”: the higher the εmn, the faster the consistency
constraints adapt to the solution obtained using the model trained on the adjacent mesh.

4 RESULTS

For validation purposes, we have use hourly NOx concentrations measured at 6 sites across the
city. (There are also 9 stations providing PM concentrations.) Figure 4 illustrates their positions, as
well as the performance of the deep-learning forecaster at one example receptor, collocated with
a measurement site used for our validation. The mean absolute percentage error (MAPE) of the
deep-learning forecast without the consistency constraints was about 1 per cent, which was reduced
to 7 per cent using the consistency constraints. This is because the same number of parameters
have to fit an increased number of constraints, however, as can be seen from figure 5, the boundary
artefacts disappeared after a few iterations of the training. These values have been taken from a
sample training for which we achieved convergence. It will be interesting to optimise the algorithm
architecture to observe convergence in more cases.

5 CONCLUSIONS

We have presented consistency constraints, which make it possible to train DNN on small domains
and apply the trained models to larger domains while allowing incorporation of information external
to the domain. The consistency constraints will ensure the solutions are physically meaningful even
at the boundary of the small domains in the output of the DNN. We have demonstrated promising
results on an air-pollution forecasting model for Dublin, Ireland.

The work is a first that makes possible numerous extensions. First, one could consider further ap-
plications of the consistency constraints, e.g., in energy conservation, or in consider merging the
outputs of a number of PDE models within multi-physics applications. Second, in some applica-
tions, in may be useful to explore other network topologies. Following Wiewel et al. (2018), one
could use long short-term memory (LSTM) units. Further, over-fitting control could be based on
an improved stacked auto-encoder architecture (Zhou et al., 2017). In interpretation of the trained
model, the approach of Cui et al. (2018) may be applicable.

Our work could also be seen as an example of Geometric Deep Learning (Bronstein et al., 2017),
especially in conjunction with the use of mesh-free methods (Sirignano & Spiliopoulos, 2017), such
as the 3D point clouds (Qi et al., 2017), non-uniform meshing, or non-uniform choice of receptors
within the meshes. Especially for applications, where the grids are in 3D or higher dimensions, the
need for such techniques is clear. More generally, one could explore links to isogeometric analysis
of Cottrell et al. (2009), which integrates solving PDEs with geometric modelling.
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Finally, one could generalise our methods in a number of directions of the multi-fidelity (Peherstorfer
et al., 2018) modelling, e.g., by combining the reduced-order and full-order models using adaptation,
fusion, or filtering. Overall, the scaling up of deep learning for PDE-based models seems to be a
particular fruitful area for further research.

Within the domain of our example application, recent surveys (Bellinger et al., 2017) suggest that
ours is the first use of deep learning in the forecasting of air pollution levels. Following the copi-
ous literature on PDE-based models of air pollution, one could consider further pollutants such as
ground-level ozone concentrations (Mallet et al., 2013), and ensemble Mallet (2010) or multi-fidelity
methods. One may also consider a joint model, allowing for traffic forecasting, weather forecasting,
and air pollution forecasting, within the same network, possibly using LSTM units Cui et al. (2018),
at the same time.
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