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ABSTRACT

Image classification problems today are often solved by first collecting examples
along with candidate labels, second obtaining clean labels from workers, and third
training a large, overparameterized deep neural network on the clean examples.
The second, manual labeling step is often the most expensive one as it requires
manually going through all examples. In this paper we propose to i) skip the man-
ual labeling step entirely, ii) directly train the deep neural network on the noisy
candidate labels, and iii) early stop the training to avoid overfitting. With this pro-
cedure we exploit an intriguing property of overparameterized neural networks:
While they are capable of perfectly fitting the noisy data, gradient descent fits
clean labels faster than noisy ones. Thus, training and early stopping on noisy
labels resembles training on clean labels only. Our results show that early stop-
ping the training of standard deep networks (such as ResNet-18) on a subset of the
Tiny Images dataset (which is obtained without any explicit human labels and only
about half of the labels are correct), gives a significantly higher test performance
than when trained on the clean CIFAR-10 training dataset (which is obtained by
labeling a subset of the Tiny Images dataset). In addition, our results show that
the noise generated through the label collection process is not nearly as adversarial
for learning as the noise generated by randomly flipping labels, which is the noise
most prevalent in works demonstrating noise robustness of neural networks.

1 INTRODUCTION

Much of the recent success in building machine learning systems for image classification can be
attributed to training deep neural networks on large, humanly annotated datasets, such as Ima-
geNet (Deng et al., 2009) or CIFAR-10 (Torralba et al., 2008). However, assembling such datasets is
time-consuming and expensive: Both ImageNet and CIFAR-10 were constructed by first searching
the web for candidate images and second labeling the candidate images by workers to obtain clean
labels instead of the noisy candidate ones. The first step already yields labeled examples, but the
accuracy of those automatically collected, candidate labels is low: For example, only about half of
the labels of the Tiny Images dataset constructed in the first step of obtaining the CIFAR-10 dataset
are correct (Torralba et al., 2008). In the second step, clean labels are obtained by asking workers
through a crowdsourcing platform for annotations and aggregating them.

In this paper we propose to train directly on the noisy candidate examples, effectively skipping
the expensive human labeling step. To make this work, we exploit an intriguing property of large,
overparameterized neural networks: If trained with stochastic gradient descent or variants thereof,
neural networks fit clean labels significantly faster than noisy ones. This fact is well known, see for
example the experiments by Zhang et al. (2017, Fig. 1a) which demonstrated that overparameterized
deep networks can fit even randomly shuffled CIFAR-10 labels perfectly. What is now well known
is that this effect is sufficiently strong to enable training on candidate labels only. Our idea is that,
if neural networks fit clean labels faster than noise, then training them on a set containing clean and
wrong labels and early stopping the training resembles training on the clean labels only.
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1.1 OUR CONTRIBUTIONS

We show that early stopping the training on candidate examples can achieve classification perfor-
mance higher than when training on clean labels, provided the total number of clean labels in the
candidate training set is sufficiently large (throughout this paper, we refer to the dataset that con-
sists of the examples with the associated, noisy candidate labels—as obtained in the first step of the
dataset construction process—as the candidate dataset/candidate training set). This result questions
the expensive practice of building clean humanly labeled training sets, and suggests that it can be
better to collect larger, noisier datasets instead.

Specifically, we consider the CIFAR-10 classification problem, where the goal is to classify 32x32
color images in 10 classes. The clean training set consists of 5000 images per class and was obtained
by labeling the images from the Tiny Images dataset with expert labelers. Instead of training on the
original, clean training set, we train on a new noisy training set consisting of candidate examples
only. We constructed this candidate training set by picking the images from the Tiny Images dataset
with the labels of the CIFAR-10 classes. Only about half of the examples in this candidate dataset
are correctly labeled. We quantify performance on the new CIFAR-10.1 test set from Recht et al.
(2019). We ensured by automatically and manually cleaning the training set that it contains no
images that are similar to any of the images in the CIFAR-10.1 test set.

We trained the best performing networks for CIFAR-10, (ResNet (He et al., 2016), Shake-
Shake (Gastaldi, 2017), VGG (Simonyan & Zisserman, 2015), DenseNet (Huang et al., 2017) and
others (Han et al., 2017; Liu et al., 2018)), and found that with early stopping the training we achieve
significantly higher test accuracy than when training on the original, clean examples. That is possi-
ble, because even though the candidate dataset is very noisy, it contains more clean examples than
the original CIFAR-10 training set, as additional experiments show.

More specifically, the best performing model trained on the original CIFAR-10 training set has 7%
classification error on the CIFAR-10.1 test set (Recht et al., 2019). The best performing model
trained on our candidate training set, in contrast, achieves the better error rate of only 5.85%, with
early stopping training of the PyramidNet-110 model. This is a lower (better) test accuracy (as
measured on the CIFAR-10.1 dataset) than that achieved by any model trained on the clean CIFAR-
10 training set. What is more, all models we tested have a significant gap of training on the original
clean and our noisy data. For example, the performance of ResNet-18 jumps from 85.2% to 92.15%
when training and early stopping on the noisy dataset instead of the clean one.

Early stopping is critical to achieve the best performance. By keeping track of the performance of
a clean subset of the noisy training set, we show that the clean labels are fitted significantly faster
than the noisy labels, and a good point to stop is when most of the clean labels are fitted well by the
network, because at this point most of the wrong labels have not been fitted yet.

We also study the difference between the “real” noise in the data obtained through the actual data
collection progress (from sources such as search engines, like Tiny Images) and artificially generated
noise through randomly flipping the labels of a clean dataset, which is often used in the literature as
a proxy for the former. We show that the “real” noise is more structured and therefore it is easier
to fit and less harmful to the classification performance in contrast to artificially generated noise,
which is harder to fit and potentially much more adversarial to performance.

Finally, we show that our results continue to hold for other datasets. Specifically, we consider clas-
sifying invertebrate animals from training on i) a candidate dataset we collected from Flicker only
through keyword search es and without subsequent labeling and from ii) a subset of the ImageNet.
While for this experiment training on the candidate dataset does not improve over training on the
clean set, early stopped gradient descent achieves performance close to that obtained when training
on the clean set.

1.2 RELATED WORK

While our work focuses on exploiting the fact that large neural networks fit clean labels faster than
noise, a large number of related works have shown that neural networks are robust to label noise, both
in theory and practice (Rolnick et al., 2017), and have proposed methods to make deep networks even
more robust to label noise (Sukhbaatar & Fergus, 2014; Jindal et al., 2016). Several other papers have
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suggested loss function adjustments and re-weighting techniques for noise robust training (Zhang &
Sabuncu, 2018; Ren et al., 2018; Tanaka et al., 2018).

Guan et al. (2018) has demonstrated that the classification performance of deep networks remains
almost constant when training on partly randomly perturbed MNIST (handwritten digits) training
examples. A number of recent works have offered explanations for why deep neural networks fit
structure in data before fitting noise or other complex patterns: Arpit et al. (2017) has shown that
loss sensitivity of clean examples is different to noisy examples, Ma et al. (2018) demonstrated that
DNNs model low-dimensional subspaces that match the underlying data distribution during the early
stages of training but needs to increase the dimensionality of the subspaces to fit the noise later in
training, and finally Li et al. (2019); Arora et al. (2019) have attributed this in the over-parameterized
case with the low-rank structure of the Jacobian at initialization. There are few works that have ex-
ploited the fact that clean examples are fitted faster than noise, with three noteable exceptions being
the paper by Shen & Sanghavi (2019) which achieved noise-robustness by proposing a iterative re-
training scheme, Sun et al. (2018) which proposed systematic early stopping, and Song et al. (2018)
which trains networks with large learning rates and uses the resulting loss to separate clean from
misslabeled examples. Li et al. (2019) provided the perhaps first theoretical justification for early
stopping to achieve robustness, by showing that gradient descent with early stopping is provably
robust to label noise for overparameterized networks.

Next we note that, we have used the Tiny Images dataset as a source for obtaining (noisy) candidate
examples; other works have used it as a source for augmenting the clean CIFAR-10 and CIFAR-100
datasets (Carmon et al., 2019; Laine & Aila, 2016) for a semi-supervised learning setting.

Finally we note that most of the works on learning from noisy labels have used artificially generated
noise on clean, baseline datasets for motivation, experimentation and as performance metrics. As
discussed later in this paper, we find that the performance degradation resulting from overfitting the
noisy data is significantly worse on such artificially generated noise, whereas overfitting to the true
label noise is not nearly as detrimental. The reason is that the true label noise found in the Tiny
Images dataset is highly structured and not adversarial.

2 DATASET COLLECTION AND PROBLEM SETUP

We construct a candidate training dataset for the CIFAR-10 classification problem, without any
explicit human labeling effort. Our noisy training set is a subset of the 80 million Tiny Images
dataset (Torralba et al., 2008). The Tiny Images dataset consists of 32x32 images obtained by
searching for nearly 80, 000 query keywords or labels in the image search engines Google, Flickr,
and others. This yields examples of the form (keyword, image), but the associated labels (keywords)
are very noisy, specifically only about 44% are correct (Torralba et al., 2008, Sec. III-B), and often
an example image is completely unrelated to the label (keyword).

The goal of the CIFAR-10 classification problem is to classify 32x32 color images into the ten
classes {airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck}. The original, clean,
training set for the CIFAR-10 dataset was obtained by first extracting candidates from the noisy
examples of the Tiny Images dataset for each of the ten classes based on the finely grained tiny-
images keywords (for example, keywords for the class dog are: puppy, pekingese, chihuahua, etc.,
see (Recht et al., 2019, Table 6) for a complete list), and then labeling all of the so-obtained images
by human experts (Krizhevsky, 2009). This gives a clean training set consisting of 5000 examples
per class.

We construct a new and larger (by a factor of about 10) noisy training set by simply taking the
subset of the Tiny Images for the respective class according to the same finely grained Tiny Images
keywords, without any further human labeling. This resembles a data collection process without any
explicit human labeling or cleaning of the data.

In our experiments throughout this paper, test performance is measured on the CIFAR-10.1 test set
from Recht et al. (2019). To ensure that our noisy training set does not overlap with the CIFAR-
10.1 test set in any way, we carefully removed all test images as well as images that are similar
to test images from the noisy training set. Both is necessary because the extracted subset of the
Tiny Images dataset contains many images that are similar to test images up to slight differences in
color scale, contrast, original resolution, croppings, and watermarks. See Appendix A on details and
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Figure 1: Randomly selected images from our noisy training set for some CIFAR-10 classes. Each
row corresponds to a class and contains 10 randomly selected images. Note that about half of the
images (marked with a red rectangle) are completely unrelated to the class and even to other classes.

examples of this non-trivial data cleaning process. We work with the CIFAR-10.1 test set instead of
the original CIFAR-10 test set because it contains fewer images (2000 instead of 10000), and thus
made our manual data cleaning process faster. Both datasets share the same distributional properties,
and Recht et al. (2019, Figure 1) found the test performance on both sets to be linearly related.

After removing the similar images, our noisy training set consists of the number of examples indi-
cated in the table below. About half of the labels in the noisy training set are wrong, see Figure 1
for an illustration. Also note that they are often completely unrelated and out of distribution—for
example a screenshot, a picture of a person, and a wheel are all assigned the label “dog”.

plane auto bird cat deer dog frog horse ship truck total
our candidate training set 39k 53k 35.5k 47.5k 38k 48k 33.5k 41.5k 46.5k 44k 426.5k
clean CIFAR training set 5k 5k 5k 5k 5k 5k 5k 5k 5k 5k 50k

3 TRAINING ON A LARGE NOISY DATASET CAN BE BETTER THAN TRAINING
ON A CLEAN ONE

In this section, we show that the performance of a deep network trained on clean examples can
be matched or even bested if the same network is trained with early stopping on noisy candidate
examples—despite the many wrong labels—as long as there are sufficiently many clean labels in the
noisy dataset. Our results show that this is due to neural networks fitting clean labels significantly
faster than noise; specifically we observe that a subset of our training set that has clean labels is
fitted during the early stages of training and much faster than the overall training set. Thus, when
stopped early, the network is at a state similar to that obtained when only trained on the clean labels
in the first place. This effect enables achieving classification performance by training on very noisy,
potentially automatically collected candidate datasets that is on par with the performance obtained
by training on very clean, expert annotated datasets.

Figure 2 depicts the training and test accuracy of training with stochactic gradient descent on our
candidate dataset as well as on the clean CIFAR-10 training dataset for ResNet-18 with default
parameters, taken from the Pytorch GitHub repository (PyTorch). The results show that when trained
on the noisy dataset, the network achieves significantly better test performance than when trained
on the clean dataset. Moreover, the best performance is achieved when the network is early stopped
at about 30 epochs. At this optimal early stopping point, essentially all the clean examples but only
very few of the noisy examples are fitted. This follows by noting that at about 30 epochs, the network
achieves almost 100% training accuracy on a clean subset of the noisy dataset, but only about 65%
overall test accuracy at a false-label-rate of about 50%. As test set we used CIFAR-10.1, and the
clean subset of the training examples is the original CIFAR-10 test set, which is by construction a
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Figure 2: Accuracy on the training set, test set throughout training of the ResNet-18 and DenseNet-
110 (k=12) models on our training set (left) and original CIFAR-10 training set (right). For the
experiment on our training set, we also show the accuracy on a subset of the training set that is
known to have clean labels and corresponds to CIFAR-10 test set.

subset of the candidate training set. In practice, the optimal stopping time can be obtained in a data
driven way by monitoring the test performance on a small, clean subset of the data, and stopping
once close to 100% training accuracy is achieved on the clean subset of the data.

ResNet is sufficiently overparameterized to perfectly fit the training data, even the mislabeled ex-
amples. However, even a network with fewer parameters, such as the DenseNet-110 (k=12) fits the
clean data before the network reaches its capacity to fit the noisy labels and the training accuracy
plateaus at about 80%, see Figure 2.

We observe this effect across a large number of standard and state-of-the-art models (see Ap-
pendix B). In Table 1, we provide the main results for the models we have tested on both the original
clean CIFAR-10 training set and our candidate training set. The reported accuracies correspond to
the best ones achieved during training for each setup. We note that there is a significant improvement
in test performance across all models. We also observe that the number of parameters does not seem
to be directly related to the performance increase of the models.

#Parameters
Clean

training
accuracy

Noisy
training
accuracy

Gap

Shake-Shake-26 2x64d 1.19·107 87.6 93.6 6
PyramidNet-100 (α = 270) 2.85·107 87.5 94.15 6.65
DenseNet-BC-100 (k=12) 7.69·105 85.25 91.35 6.1

ResNet-18 1.12·107 85.2 92.15 6.95
VGG-16 1.47·107 84.65 89.9 5.25
PNASNet 4.52·105 81.25 89.55 8.3

Table 1: Model accuracy (in percent) on the CIFAR-10.1 test set when trained on the original
CIFAR-10 training set and our noisy training set. Number of parameters is the total trainable number
of parameters of the model and gap is the difference between the corresponding accuracies of the
two training sets.
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Figure 3: Average test performance of ResNet-18 for training on datasets with varying number of
examples and noise level: The fraction 0 corresponds to a dataset entirely consisting of clean labels
of the CIFAR-10 traing set; at fraction 0.5, half of the clean images are substituted each with r many
images from the noisy dataset. The results show that that if the number of clean examples grows
sufficiently fast with the noisy level, the test accuracy improves.

4 HOW CLEAN DO THE LABELS HAVE TO BE?

In the previous section we found that learning on the noisy data gives significantly better perfor-
mance than training on the clean data. Next we demonstrate that this finding relies on the total
number of clean labels that are available—if that number grows sufficiently fast with the noise level,
then performance becomes increasingly better when training on the noisy training set.

We perform the following experiment to measure performance on increasingly larger and noisier
datasets. We start with the original CIFAR-10 training set and gradually replace a fraction of it with
r = 1, 2, 3, 5, 10 times more images from the Tiny Images dataset. For example, if the fraction
is 0.5 and r = 2, that means that the new, noisy dataset consists of 25.000 images of the original
clean CIFAR-10 training set and of 50.000 noisy images from our noisy training set. Increasing the
fraction for some fixed value of r > 1 thus increase both the dataset size as well as the noise level.
We did this experiment both in the regime of very few examples (500 per class) and many examples
(5000 per class). Figure 3 depicts the results.

For r = 1, the total dataset size remains constant but becomes increasingly noisier. Thus the ef-
fective number of clean examples in the noisy dataset becomes smaller as the fraction increases.
Non-surprisingly, we observe that the test accuracy drops as the noise increases. The curve for
r = 5 is more interesting: If we substitute one clean label with 5 noisy ones, then the test perfor-
mance increases even though the noise level increases, because the total number of clean examples
also grows sufficiently fast.

5 TRUE VERSUS SYNTHETIC LABEL NOISE

As mentioned in the introduction, a large number of papers has shown that neural networks fit
randomly corrupted labels slower than clean ones and/or that neural network are robust to label
noise (Zhang et al., 2017; Rolnick et al., 2017; Guan et al., 2018; Ma et al., 2018; Li et al., 2019).
The experiments in those works are exclusively for noisy labels generated by randomly flipping
the clean labels, which can be considered as in-distribution noise. As we see from Figure 1, the
‘true’ label noise generated through the image collection process is very different in that it contains
lots of out-of-distribution images as well as structured noise. For example, the keyword ‘Mouser’
used to query images for the cat class by CIFAR-10 yields mostly toy guns and listing images of an
electronics distribution company and only a few cat related images. Similarly, the keyword ‘Tomcat’
surprisingly yields only few cat related images as well. Most of the images are related to Java server
implementations, the F-14 jet nicknamed Tomcat, and a species of insects.

Such structured, “real” noise is easier to fit and less harmful to classification performance. To
demonstrate this, we take the original CIFAR-10 training set and perturb 45% of the labels by uni-
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Figure 4: Accuracy on the training set and test set throughout training of the ResNet-18 model on
a 50, 000 image subset of our training set (left) and original CIFAR-10 50, 000 image training set
with the labels permuted such that each class retains 55% clean labels (right).

formly flipping them. We then train on the so-obtained artificially perturbed dataset and a subset of
our noisy dataset consisting of the same number of examples (5000 per class). This process ensures
that the label error probability is approximately the same, but the distribution of the errors is very
different. The results in Figure 4 show that the data from our noisy dataset is fitted significantly
faster because the noise is more structured. Moreover, the results show that early stopping is impor-
tant for both setups, but training until overfitting is not nearly as detrimental to the test performance
for training on the candidate dataset than on the noisy one.

6 EXTENSIONS TO A SUB-SET OF IMAGENET

The finding that it is possible to build a well-performing classifier by training and early stopping
on a noisy candidate dataset is not unique to the CIFAR-10 classification problem. In order to
demonstrate this, we train a classifier for a subset of the popular ImageNet Deng et al. (2009) dataset.

We randomly choose 15 classes out of the 61 classes belonging to the family class of invertebrates
(any animal lacking a backbone). In order to construct a noisy candidate set, we use the synsets
of these classes as search keywords to obtain candidate images from Flickr. In order to avoid any
overlaps between the original ImageNet dataset and the candidate dataset, we restrict the search
date to a 5-year period, from 2014-07-12 to 2019-07-12. We also search in 4-month intervals at a
time and restrict the maximum number of images from each interval in order to prevent any bias
that might be a result of mass uploads from institutional and professional accounts. We do not filter
or further label any of the images obtained from the Flickr searches, only resize them to 256x256,
which is the size of the images in the ImageNet. The resulting candidate dataset consists of around
173k images across 15 classes. Note that this is an extremly noisy dataset, the average accuracy of
image search results from the internet is considered to be around 10% Torralba et al. (2008).

In Figure 5, we show the training and test accuracy of training with stochastic gradient descent on our
candidate dataset obtained from Flickr as well as the subset of ImageNet training set corresponding
to the chosen 15 classes for the ResNet-18 model with default parameters. The results show that
when trained on the candidate dataset, the model achieves a comparable test performance to when
trained on the clean dataset. Moreover, there is a clear early stopping point (about 30 epochs) during
the training on the candidate dataset where the best test performance is achieved. Our manual
inspections of the candidate dataset reveal that the dataset is very noisy with falsely labeled images
accounting to much more than half of all the images for each class. Moreover, a large part of the
falsely labeled images comes from uploads from few, but highly active accounts. This also hinders
the independence of the noise distribution across different classes as there are few prominent sources
of the noise, which in turn makes the noise more adversarial. This partly explains the high variance
and lower test performance during the early steps of training on the candidate dataset. We note that
in practice using more specific search keywords instead of the ImageNet synsets can yield much
better results.
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Figure 5: Accuracy on the training set, test set throughout training of the ResNet-18 model on our
candidate training set (left) that was obtained from Flickr searches and original ImageNet training
set (right) for the classification problem consisting of 15 children classes of the parent class corre-
sponding to invertebrate animals.

7 REGULARIZATION WITH EARLY STOPPING: APPEALING TO LINEAR
MODELS

For understanding why highly overparameterized neural networks fit structure faster than noise, it
is helpful to appeal to linear models. Specifically, a number of recent works show that highly over-
parameterized models behave like an associated linear model around the initialization, which in
turn offers an explanation why neural networks fit structure faster than no structure (Li et al., 2019;
Du et al., 2019; 2018; Arora et al., 2019). While the regime where those results hold is extremely
overparameterized and thus might not be the regime in which those models actually operate (Chizat
et al., 2018), it can provide some intuition on the dynamics of fitting clean versus noisy data. In
this section, we first briefly comment on those recent theoretical results and explain how they pro-
vide intuition on why deep networks fit structured data faster than noise, and second, inspired by
those explanations for linear models, we demonstrate that early stopping the training of non-deep
overparameterized linear models enables learning from noisy examples as well.

7.1 EXISTING THEORY FOR OVERPARAMETERIZED MODELS

Consider a binary classification problem, and let fW : Rd → R be a neural network with weights
W ∈ RN , mapping a d-dimensional features space to a label. The output label associated with
example x is interpreted as belonging to class 1 if fW(x) is positive and as belonging to class −1 if
fW(x) is negative. Let {(y1,x1), . . . , (yn,xn)} be a set of n many training examples. The network
is trained by minimizing the empirical loss

L(W) =
1

2
‖y − fW(X)‖2,

with gradient descent, where y = [y1, . . . , yn] are the labels of the examples and fW(X) =
[fW(x1), . . . , fW(xn)] are the predictions of the model. Let J (W) ∈ Rn×N be the Jacobian of the
mapping from weights to outputs f : RN → Rn, and let J ∈ Rn×N be a specific matrix that obeys
JJT = E

[
J (W0)J T (W0)

]
, where expectation is with respect to the random initialization W0.

For two-layer networks, a number of very recent works (Li et al., 2019; Du et al., 2019; 2018; Arora
et al., 2019) have shown that gradient descent in close proximity around the initialization is well
approximated by gradient descent applied to the associated linear loss

Llinear(W) =
1

2
‖fW0

(X) + J(W −W0)− y‖2.
From this, it follows that (see (Li et al., 2019; Arora et al., 2019)) that the prediction error after t
iteration of gradient descent with stepsize η (provided that ηt is not too large) is given by

‖y − fWt
(X)‖2 ≈

n∑
i=1

(1− ησ2
i )

2t(〈y,vi〉)2, (1)
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Figure 6: Training a large random feature model on a subset of our candidate training set (middle)
and the CIFAR-10 training set (right) with gradient descent. Singular values of the feature matrix
(left) shows the low-rank structure for our candidate training set.

where vi are the eigenvectors and σ2
i are the eigenvalues of the matrix JJT , and η ≤ 1/σ2

max.
Equation (1) shows that the directions associated with large eigenvectors are fitted significantly faster
by gradient descent than directions associated with small eigenvalues. Thus labels vectors y that are
well aligned with eigenvectors corresponding to large eigenvalues are fitted significantly faster than
those corresponding to small eigenvalues. The eigenvalues and eigenvectors are determined by the
structure of the network. It turns out that for neural network the structure is such that the projection of
correctly labeled data (i.e., 〈vi,y〉, for y a set of correct labels) is much more aligned with directions
associated with large eigenvalues of JJT , than the projection of falsely labeled data (i.e., 〈vi,y〉, for
y a set of falsely labeled examples). This suggests that for highly linear overparameterized models
we expect to see similar dynamics in that for certain model structure is fitted faster than noise—a
property that we demonstrate in the next section.

7.2 NON-DEEP MODELS

Finally, we demonstrate that even with non-deep overparameterized models, clean labels are learned
faster than noisy ones, and thus early stopping enables learning from (noisy) candidate examples.
We consider a random feature model fitted with gradient descent and early stopped. The reason for
considering a random feature model is that such models can reach performances that are reasonably
close to that of a neural network if the number of random features, and thus the size of the model, is
sufficiently large.

We consider a random-feature model as proposed in Coates et al. (2011). We first extract for each
example random features through a one-layer convolutional network G with 4000 random filters,
each of size 6× 6. For each image x, this gives a feature vector G(x) of size m = 72000. Consider
a training set withN examples, and let X ∈ RN×m be the feature matrix associated with the training
set, and let Y ∈ RN×K be the matrix containing the labels. Specifically, Y has a one in the k-th
position of the i-th row if the i-th training example belongs to the k-th class, k ∈ {1, . . . ,K}. In the
training phase, we fit a linear model by minimizing the least-squares loss

L(Z) = ‖Y −XZ‖2F ,

with gradient descent. Here, the matrix Z ∈ Rm×K specifies the model, along with the random
featurizer (i.e., the random convolutional model). Given a new example x, the model then assigns
the label argmaxkG(x)Z.

We trained the model above on two datasets: a clean dataset consisting of 500 examples for each
class of the CIFAR-10 training set, and a candidate dataset consisting of 1500 examples for each
class from our candidate dataset. We measure classification performance as done throughout on the
CIFAR-10.1 test set. The results, shown in Figure 6, show that on the clean dataset, this model
achieves essentially 100% training accuracy. On the noisy dataset, similarly as for the deep net-
works, early stopping improves performance in that the best performance is achieved at about 70,000
iterations of gradient descent, long before the best fit of the model is achieved.
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A DETAILS ON THE DATA-CLEANING PROCESS

In order to make sure that the CIFAR-10.1 test set has no overlap with our noisy dataset, we con-
structed our noisy dataset by first extracting all images with the respective keywords from the Tiny
Images dataset, and then removing all images that are similar to the images in the CIFAR-10.1 test
set as follows: We first identified 100 closest images for each individual image in the CIFAR-10.1
test set in `2-distance, and then removed equivalent and similar images after manual visual inspec-
tion of these candidates.

We consider two images similar, if they share the whole or a considerable portion of the same
underlying main object, secondary object, or a specific background (see Figure 7 for examples).
Performing this step manually is necessary because even images that are relatively far in `2-distance
are often extremely similar, while images relatively close can be significantly different (see Figure 8
for examples). We also note that it is too pessimistic to cutoff the images by using a threshold
together with a closeness measure because of this wide variety of differences across images that
actually contain the same object. Figure 8 demonstrates an instance of this problem for an image in
the ‘bird’ class. There are many other such instances with highly different distance values, which
necessitates manual inspection for this part.

In the following figures (9–11), we showcase some instances that further demonstrate the need for
expert labeling for this similar image identification task. We note that in addition to the provided
similar images, all the test images that are shown here also have identical copies in our training set
that can be found without any need for manual labor. This is expected because the CIFAR-10.1 test
set is compiled mostly from Tiny Images and it holds true for most of the images in this set.

a) Orig. a) d = 4.35 b) Orig. b) d = 6.14

c) Orig. c) d = 3.14 d) Orig. d) d = 4.22

Figure 7: Examples of images that are considered similar for the following reasons: a) Same pri-
mary object with different contrasts; b) Different primary objects in the same background c) Same
secondary object with different primary objects d) Same object in different poses.

Original d ≈ 7.51 d ≈ 7.69 d ≈ 7.70 d ≈ 7.71 d ≈ 7.76

Figure 8: Top-5 closest images to an test image in `2-distance (d). The image at distance d = 7.76
is almost equal to the original one, while a closer one, at d = 7.69 is a different image.
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a) Original b) d ≈ 3.34 c) d ≈ 3.46 d) d ≈ 3.56 e) d ≈ 3.88 f) d ≈ 4.41 g) d ≈ 4.45

Figure 9: Images that contain the same object in different colors, and are all removed from the
training set.

a) Original b) d ≈ 6.72 c) d ≈ 6.91 d) d ≈ 6.94 e) d ≈ 6.96

Figure 10: Images that contain the same object in different colors as well as a different object. This
demonstrates that images in different colors can have a larger `2-distance than completely different
images, thus we cannot simply remove images based on thresholding.

a) Original c) d ≈ 3.10 d) d ≈ 3.14 e) d ≈ 3.78 f) d ≈ 3.79

Figure 11: Images that contain different main objects in addition to the same or very similar sec-
ondary objects in the background.
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B LEARNING CURVES FOR DEEP LEARNING MODELS

In this section, we display additional learning curves for the models omitted in Section 3 of our main
document.
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Figure 12: Accuracy on the training set, test set throughout training of the VGG-16, PNASNet, and
Shake-Shake-26 2x64d (S-S-I) models on our training set (left) and original CIFAR-10 training set
(right). For the experiment on our training set, we also show the accuracy on a subset of the training
set that are known to have clean labels and corresponds to CIFAR-10 test set.

C ERROR ANALYSIS

In this section we take a closer look at the accuracy obtained by training on the candidate dataset.
Figure 13 shows the accuracy per class for training ResNet-18 on the original CIFAR-10 training set
and training on the candidate images with early stopping. The plots show that the model trained on
the candidate examples has better performance in each class than the model trained on the original
training set.
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Figure 13: Accuracy per class for training ResNet18 on the original CIFAR-10 training set (red
bars) and training on the candidate images with early stopping (blue bars). The plots show that
the model trained on the candidate examples has better performance in each class than the model
trained on the original training set. The error bars correspond to one standard deviation obtained by
averaging over many different initialization.
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