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Abstract
Deep-learning-based magnetic resonance (MR) imaging reconstruction techniques have the poten-
tial to accelerate MR image acquisition by reconstructing in real-time clinical quality images from
k-spaces sampled at rates lower than specified by the Nyquist-Shannon sampling theorem, which
is known as compressed sensing. In the past few years, several deep learning network architectures
have been proposed for MR compressed sensing reconstruction. After examining the successful
elements in these network architectures, we propose a hybrid frequency-/image-domain cascade of
convolutional neural networks intercalated with data consistency layers that is trained end-to-end
for compressed sensing reconstruction of MR images. We compare our method with five recently
published deep learning-based methods using MR raw data. Our results indicate that our archi-
tecture improvements were statistically significant (Wilcoxon signed-rank test, p < 0.05). Visual
assessment of the images reconstructed confirm that our method outputs images similar to the fully
sampled reconstruction reference.
Keywords: Magnetic resonance imaging, image reconstruction, compressed sensing, deep learn-
ing.

1. Introduction

Magnetic resonance (MR) is a non-ionizing imaging modality that possess far superior soft-tissue
contrast compared to other imaging modalities (Nishimura, 1996). It allows us to investigate both
structure and function of the brain and body. The major drawback of MR is its long acquisition
times, which can easily exceed 30 minutes per subject scanned (Zbontar et al., 2018). These long
acquisition times make MR susceptible to motion artifacts and difficult or impossible to image
dynamic physiology.

MR data is collected in Fourier domain, known as k-space, and acquisition times are propor-
tional to k-space sampling rates. Compressed sensing (CS) MR reconstruction is a technique that
reconstructs high quality images from MR data incoherently sampled at rates inferior to the Nyquist-
Shannon sampling theorem (Lustig et al., 2008).

In recent years, several deep-learning-based MR compressed sensing reconstruction techniques
have been proposed (Zhang et al., 2018; Seitzer et al., 2018; Jin et al., 2017; Lee et al., 2017;
Quan et al., 2018; Schlemper et al., 2018a; Yang et al., 2018; Zhu et al., 2018; Souza and Frayne,
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2018; Eo et al., 2018b,a; Schlemper et al., 2018b; Yu et al., 2017). This rapid growth in number of
publications can be explained by the success of deep learning in many medical imaging problems
(Litjens et al., 2017) and its potential to reconstruct images in real-time. Traditional CS methods
are iterative and usually are not suitable for fast reconstruction.

In this work, a hybrid frequency-domain/image-domain cascade of convolutional neural net-
works (CNNs) trained end-to-end for MR CS reconstruction is proposed. We analyze it on a single-
coil acquisition setting, since many older scanners still use it (Zbontar et al., 2018), and it also
works as a proof of concept that can potentially be generalized to more complex scenarios, such
as parallel imaging (Deshmane et al., 2012). We compare our method with five recently published
deep-learning-based models using MR raw data. We tested our model with acceleration factors of
4× and 5× (corresponding to reductions in data acquisition of 75% and 80%, respectively). Our
results indicate that the improvements in our hybrid cascade are statistically significant compared
to five other approaches.(Yang et al., 2018; Quan et al., 2018; Souza and Frayne, 2018; Schlemper
et al., 2018a; Eo et al., 2018a)

2. Brief Literature Review

In the past couple years, many deep-learning models were proposed for MR CS reconstruction.
Most of them were validated using private datasets and a single-coil acquisition setting. Initial
works on MR CS reconstruction proposed to use U-net (Ronneberger et al., 2015) architectures
with residual connections (Jin et al., 2017; Lee et al., 2017) to map from zero-filled k-space aliased
reconstructions to unialased reconstructions. Yu et al. (2017) proposed a deep de-aliasing network
that incorporated a perceptual and an adversarial component. Their work was further enhanced by
Yang et al. (2018). They proposed a deep de-aliasing generative adversarial network (DAGAN) that
uses a residual U-net as its generator combined with a loss function that incorporates image domain,
frequency domain, perceptual and adversarial information. Quan et al. (2018) proposed a generative
adversarial network with a cyclic loss (Zhu et al., 2017). The cyclic loss tries to enforce that the
mapping between input and output is a bijection, i.e. invertible.

The work of Schlemper et al. (2018a) moved away from U-nets. They proposed and imple-
mented a model that consists of a deep cascade (Deep-Cascade) of CNNs intercalated with data
consistency (DC) blocks that replace the network estimated k-space frequencies by frequencies ob-
tained in the sampling process. Seitzer et al. (2018) built upon Deep-Cascade by adding a visual
refinement network that is trained independently using the result of Deep-Cascade as its input. In
their experiments, their results improved in terms of semantic interpretability and mean opinion
scores, but Deep-Cascade was still better in terms of peak signal to noise ratio (PSNR). Schlemper
et al. (2018b) incorporated dilated convolutions and a stochastic component on the Deep-Cascade
model. All techniques discussed so far use the aliased zero-filled reconstruction as a starting point.
Frequency domain information is only used either in the network loss function computation (e.g.,
DAGAN) or in the DC blocks to recover the sampled frequencies.

Zhu et al. (2017) proposed a unified framework for reconstruction called automated transform
by manifold approximation (AUTOMAP). It tries to learn the transform from undersampled k-space
to image domain through fully connected layers followed by convolutional layers in image domain.
The major drawback of their proposal is that their parameter complexity grows quadratically with
the number of image pixels (voxels). For 256×256 images, AUTOMAP model has > 1010 trainable
parameters. Eo et al. (2018a) proposed a dual domain architecture that cascades k-space domain
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networks with image domain networks interleaved by data consistency layers and the appropriate
domain transform. The major advantage of KIKI-net is that it does not try to learn the domain
transform. Therefore, it reduces the number of trainable parameters compared to AUTOMAP by
a factor of 10,000, while still leveraging information from both k-space and image domains. In
their model, each of the four networks that compose KIKI-net is trained independently. KIKI-
net is the deepest model proposed so far for MR CS, it has one hundred convolutional layers and
reconstruction time of a single 256×256 slice is of 14 seconds on a NVIDIA GeForce GTX TITAN
graphics processing unit (GPU), which is prohibitive for real time reconstruction.

Souza and Frayne (2018) proposed the W-net model, which consists of a k-space U-net con-
nected to an image domain U-net through the inverse Fourier Transform (FT). The W-net model is
trained end-to-end as opposed to KIKI-net and it also does not try to learn the domain transform. W-
net reconstructions were shown to arguably work better (i.e. less process failures) with FreeSurfer
(Fischl, 2012) post-processing tool.

The work of Eo et al. (2018b) proposes a multi-layer perceptron that estimates a target im-
age from a one-dimensional inverse FT of k-space followed by a CNN. Their method parameter
complexity grows linearly with the number of image pixels (voxels) as opposed to AUTOMAP’s
quadratic complexity.

Recently, the fastMRI initiative (Zbontar et al., 2018) made single-coil and multi-coil knee raw
MR data publicly available for benchmarking purposes. The Calgary-Campinas initiative (Souza
et al., 2017) has also added brain MR raw data to their dataset. Both initiatives aim to provide
a standardized comparison method that will help researchers to more easily compare and assess
potential improvements of new models.

3. Hybrid Cascade Model

Based on recent trends in the field of deep-learning-based MR reconstruction, we developed a model
that incorporates elements that have improved MR reconstruction. Our proposal is a hybrid unrolled
cascade structure with DC layers in between consecutive CNN blocks that is fully trained end-to-
end (Figure 1). We opted not to use an adversarial component in our model for two main reasons:
1) The model already outputs realistic images that are hard for an human expert to tell apart from
a fully sampled reconstruction (see results); 2) The discriminator block can always be incorporated
subsequently to the reconstruction (i.e., generator) network training.

Our hybrid cascade model receives as input the zero-filled reconstruction from undersampled
k-space, which is represented as a two channel image. One channel stores the real part and the other
stores the imaginary part of the complex number.

The first CNN block in the cascade, unlike KIKI-net, is an image domain CNN. The reason
for this is that k-space is usually heavily undersampled at higher spatial frequencies. If the cascade
started with a k-space CNN block, there would potentially be regions where the convolutional kernel
would have no signal to operate upon. Thus, a deeper network having a larger receptive field would
be needed, which would increase reconstruction times. By starting with an image domain CNN
block and because of the global property of the FT, the output of this network has a corresponding
k-space that is now complete. This allows the subsequent CNN block, which is in k-space domain,
to perform better due to the absence region without signal (i.e., because of zero-filling) without the
necessity of making the network deeper. The last CNN block of our architecture is also in image
domain. This decision was made empirically. Between the initial and final image domain CNN
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Figure 1: Architecture of the proposed Hybrid Cascade model. It has four image domain CNN
blocks and two k-space CNN blocks. We start and end the network using an image
domain CNN.

blocks, we alternate between k-space and image domain CNN blocks. Connecting the CNN blocks,
we have the appropriate domain transform (FT or inverse FT) and the DC operator. It is important
to emphasize that unlike AUTOMAP, we do not learn the FT.

Our CNN block architecture is independent of operating in the k-space or image domains. It is
a residual network with five convolutional layers. The first four layers have 48 convolutional filters
with 3×3 kernels. The activations are leaky rectifier linear units with α = 0.1. The final layer has
two convolutional filters with a 3×3 kernel size followed by a linear activation. All convolutional
layers include bias terms. This architecture was empirically determined.

Our hybrid cascade architecture (Figure 1) has a total of four image domain and two k-space
domain CNN blocks. We train it using the mean squared error cost function. It has 380,172 train-
able parameters, which is relatively small compared to other deep learning architectures, such as the
U-net that has > 20,000,000 parameters. The number of parameters of our hybrid cascade model is
in the same order of magnitude as Deep-Cascade (∼ 500,000) and KIKI-net (> 3.5 million) archi-
tectures. The main difference versus Deep-Cascade is our dual domain component. The distinction
to KIKI-net is that our network is trained end-to-end and the hybrid cascade starts operating in the
image domain as opposed to the k-space domain, allowing our network to have fewer layers and
consequently being able to reconstruct images faster.

The depth of our cascade was experimentally set. Our source code will be made public available
at https://github.com/rmsouza01/CD-Deep-Cascade-MR-Reconstruction. It allows you to experi-
ment with other cascade depths, CNN depths and select the domain of each CNN block.

4. Experimental setup

4.1. Dataset

We use the Calgary-Campinas brain MR raw data in this work (https://sites.google.
com/view/calgary-campinas-dataset/home). The dataset has 45 volumetric T1-weighted
fully sampled k-space datasets acquired on a clinical MR scanner (Discovery MR750; General Elec-
tric (GE) Healthcare, Waukesha, WI). The data was acquired with a 12-channel imaging coil, which
was combined to simulate a single-coil acquisition using vendor supplied tools (Orchestra Toolbox;
GE Healthcare). The inverse FT was applied in one dimension and Gaussian 2-dimensional sam-
pling was performed retrospectively on the other two dimensions. Our training set has 4,254 slices
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coming from 25 subjects. The validation and test sets have 1,700 slices each corresponding to the
remaining 20 subjects. These train, validation and test slices come from a disjoint set of subjects.

4.2. Metrics and statistical analysis

The metrics used in this work were normalized mean squared error (NRMSE), PSNR and Structural
Similarity (SSIM) (Wang et al., 2004). Low NRMSE and high PSNR and SSIM values represent
good reconstructions. The metrics are computed against the fully sampled reconstruction. These
metrics were chosen seeing that they are commonly used to assess CS MR reconstruction. We
assessed statistical significance using paired Wilcoxon signed-rank test with an alpha of 0.05.

4.3. Compared Methods

We compared our method, which we will refer to as Hybrid-Cascade, against four previously pub-
lished deep-learning-based methods that had publicly available source code and our own implemen-
tation of KIKI-net, which we will refer as KIKI-net-like. It has 6 CNN blocks alternating between
frequency-domain and image-domain CNNs interleaved by DC blocks. Our KIKI-net-like imple-
mentation has the same number of trainable parameters as Hybrid-Cascade. Our goal, when com-
paring to KIKI-net-like, is to gain empirical evidence that initiating the cascade on image-domain
can potentially lead to better reconstructions. The compared methods with public source code were:
DAGAN (Yang et al., 2018), RefineGAN (Quan et al., 2018), W-net (Souza and Frayne, 2018) and
Deep-Cascade (Schlemper et al., 2018a).

All networks were re-trained from scratch for two different sampling rates: 25% and 20% cor-
responding to speed-ups of 4× and 5×, respectively. We used fixed Gaussian sampling patterns
throughout training and testing (Figure 2).

(a) 25% sampling (b) 20% sampling

Figure 2: Gaussian sampling patterns used in the experiments.

5. Results and Discussion

Hybrid-Cascade was the top performing method for all metrics and acceleration factors. Although
Hybrid-Cascade results were close to Deep-Cascade and KIKI-net-like, the difference was statisti-
cally significant for NRMSE and PSNR (p < 0.05). DAGAN and RefineGAN achieved the poorer
results. W-net was ranked fourth best. Quantitative results are summarized in Table 1.

DAGAN and RefineGAN lose relevant brain structural information in their reconstructions. W-
net outputs visually pleasing reconstructions, but it lacks textural information which is encoded in
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the high frequencies. Hybrid-Cascade, Deep-Cascade and KIKI-net-like output very similar recon-
structions, but small differences can be noticed specially in the cerebellum region. Sample recon-
structions for each technique are depicted in Figure 3. Starting with an image-domain CNN lead to
a higher error reduction in the first block of the cascade as opposed to starting with a k-space CNN
(Figure 4).

It is interesting to notice that the top tree techniques in our analysis, Hybrid-Cascade, KIKI-net-
like and Deep-Cascade all use unrolled structures combined with DC. DAGAN, RefineGAN and
W-net all use some variation of a U-net architecture within their models. This make us conjecture
that flat unrolled CNN architectures may be better suited models for MR CS reconstruction.

Table 1: Summary of the results for the different architectures and different acceleration factors.
The best results for each metric and acceleration factor are emboldened.

Acceleration factor Model NRMSE (%) PSNR (dB) SSIM

4×

DAGAN 2.925±1.474 31.330±3.112 0.84±0.11
RefineGAN 1.898±1.300 35.436±3.705 0.90±0.07

W-net 1.364±1.011 38.228±3.317 0.93±0.07
KIKI-net-like 1.178±1.022 39.640±3.355 0.95±0.06
Deep-Cascade 1.198±1.057 39.510±3.345 0.95±0.07

Hybrid-Cascade 1.151±1.022 39.871±3.380 0.96±0.06

5×

DAGAN 3.866±1.435 28.691±2.658 0.79±0.11
RefineGAN 2.273±1.401 33.844±3.825 0.87±0.09

W-net 1.645±1.085 36.501±3.226 0.92±0.09
KIKI-net-like 1.452±1.092 37.669±3.224 0.94±0.08
Deep-Cascade 1.453±1.106 37.668±3.202 0.94±0.08

Hybrid-Cascade 1.423±1.099 37.875±3.252 0.94±0.08

Intermediary outputs of Hybrid-Cascade in a sample subject are depicted in Figure 5. The input
zero-filled reconstruction has a NRMSE of 14.76% and it drops to 2.41% after the first CNN block,
which is the largest error drop throughout the cascade. The error keeps lowering consistently up to
the fifth CNN block. Then, the error goes up, but it immediately goes back down again in the final
CNN block. This finding was consistent across all test slices. Although an odd finding, it is not
unexpected. Since the network was optimized to minimize the mean squared error of the final CNN
block output, the error across intermediary outputs can potentially oscillate as it happened in this
case.

Concerning reconstruction times, we did not perform a systematic assessment. Our Hybrid-
Cascade and KIKI-net-like implementations take on average 22 milliseconds to reconstruct a 256×
256 slice on a NVIDIA GTX 1070 GPU, which is considerably faster than the 14 seconds that the
original KIKI-net proposal takes to reconstruct a same size slice. W-net, DAGAN and RefineGAN
also have reconstructions times in the order of a few milliseconds.

The Hybrid-Cascade model can be applied to multi-coil reconstruction by processing each coil
k-space independently, and then combining the resulting images through a sum of squares algorithm.
This approach would probably not be optimal, as it would disregard complementary information
across the k-spaces from each coil. The extension of DC to multi-coil data is not straightforward
and is still an open research question.
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(a) DAGAN (b) RefineGAN (c) W-net

(d) KIKI-net-like (e) Deep-Cascade (f ) Hybrid-Cascade (g) Reference

Figure 3: Sample reconstructions for all different reconstruction techniques assessed using a speed-
up factor of 5×. Visually, Hybrid-Cascade, Deep-Cascade and KIKI-net-like are the most
similar to the fully sampled reconstruction reference. W-net also presents a visually pleas-
ing reconstruction, but it lacks textural information, i.e. high frequencies information is
attenuated.

(a) (b)

(c) (d)

Figure 4: (a) Undersampled k-space and its corresponding zero-filled reconstruction
(NRMSE=15.2%). (b) Output of first CNN block of KIKI-net-like (NRMSE=4.0%). (c)
Output of first CNN block of Hybrid-Cascade (NRMSE=2.5%) and (d) reference fully
sampled k-space and its image reconstruction.

6. Conclusions

We proposed a hybrid frequency-domain/image-domain cascade of CNNs for MR CS reconstruc-
tion. We compared it with the current state-of-the-art of deep-learning-based reconstructions using
a public dataset. The differences between our model and the compared ones were statistically sig-
nificant (p < 0.05).
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Figure 5: From the top left to the bottom right: input zero-filled reconstruction for a speed-up factor
of 5×, output of each CNN block in the Hybrid-Cascade, and reference fully sampled
reconstruction. An interesting finding is that the NRMSE increases at the output of the
fifth CNN block in the cascade and than it decreases again after the sixth block. These
finding was consistent across all slices in the test set.

As future work, we intend to investigate how to adapt our model to parallel imaging combined
with CS using the full spectrum of information across the coils. We also would like to explore
how our dual domain model potentially relates to commonly used parallel imaging methods, such
as Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) (Griswold et al., 2002),
which works on k-space domain, and Sensitivity Encoding for fast MR imaging (SENSE) (Pruess-
mann et al., 1999), which works on image domain.

Acknowledgments

The authors would like to thank the Natural Science and Engineering Council of Canada (NSERC)
for operating support, NVidia for providing a Titan V GPU, and Amazon Web Services for access
to cloud-based GPU services. We would also like to thank Dr. Louis Lauzon for setting up the
script to save the raw MR data at the Seaman Family MR Centre. R.S. was supported by an NSERC
CREATE I3T Award and currently holds the T. Chen Fong Fellowship in Medical Imaging from the
University of Calgary. R.F. holds the Hopewell Professorship of Brain Imaging at the University of
Calgary.

References

Anagha Deshmane, Vikas Gulani, Mark A Griswold, and Nicole Seiberlich. Parallel mr imaging.
Journal of Magnetic Resonance Imaging, 36(1):55–72, 2012. ISSN 1522-2586.

Taejoon Eo, Yohan Jun, Taeseong Kim, Jinseong Jang, Ho-Joon Lee, and Dosik Hwang. Kiki-
net: cross-domain convolutional neural networks for reconstructing undersampled magnetic res-
onance images. Magnetic resonance in medicine, 2018a. ISSN 0740-3194.

444



HYBRID CASCADE FOR MR RECONSTRUCTION

Taejoon Eo, Hyungseob Shin, Taeseong Kim, Yohan Jun, and Dosik Hwang. Translation of 1d
inverse fourier transform of k-space to an image based on deep learning for accelerating magnetic
resonance imaging. In International Conference on Medical Image Computing and Computer-
Assisted Intervention, pages 241–249. Springer, 2018b.

Bruce Fischl. Freesurfer. Neuroimage, 62(2):774–781, 2012.

Mark A Griswold, Peter M Jakob, Robin M Heidemann, Mathias Nittka, Vladimir Jellus, Jianmin
Wang, Berthold Kiefer, and Axel Haase. Generalized autocalibrating partially parallel acquisi-
tions (grappa). Magnetic Resonance in Medicine: An Official Journal of the International Society
for Magnetic Resonance in Medicine, 47(6):1202–1210, 2002. ISSN 0740-3194.

Kyong Hwan Jin, Michael T McCann, Emmanuel Froustey, and Michael Unser. Deep convolutional
neural network for inverse problems in imaging. IEEE Transactions on Image Processing, 26(9):
4509–4522, 2017. ISSN 1057-7149.

Dongwook Lee, Jaejun Yoo, and Jong Chul Ye. Deep residual learning for compressed sensing
MRI. In IEEE 14th International Symposium on Biomedical Imaging, pages 15–18. IEEE, 2017.
ISBN 1509011722.

Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio, Francesco
Ciompi, Mohsen Ghafoorian, Jeroen Awm Van Der Laak, Bram Van Ginneken, and Clara I
Sánchez. A survey on deep learning in medical image analysis. Medical image analysis, 42:
60–88, 2017.

Michael Lustig, David L Donoho, Juan M Santos, and John M Pauly. Compressed sensing MRI.
IEEE signal processing magazine, 25(2):72–82, 2008. ISSN 1053-5888.

Dwight G Nishimura. Principles of magnetic resonance imaging. Stanford Univ., 1996.

Klaas P Pruessmann, Markus Weiger, Markus B Scheidegger, and Peter Boesiger. Sense: sensitivity
encoding for fast mri. Magnetic resonance in medicine, 42(5):952–962, 1999. ISSN 1522-2594.

Tran Minh Quan, Thanh Nguyen-Duc, and Won-Ki Jeong. Compressed sensing MRI reconstruction
using a generative adversarial network with a cyclic loss. IEEE transactions on medical imaging,
37(6):1488–1497, 2018. ISSN 0278-0062.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pages 234–241. Springer, 2015.

Jo Schlemper, Jose Caballero, Joseph V Hajnal, Anthony N Price, and Daniel Rueckert. A deep cas-
cade of convolutional neural networks for dynamic mr image reconstruction. IEEE transactions
on Medical Imaging, 37(2):491–503, 2018a. ISSN 0278-0062.

Jo Schlemper, Guang Yang, Pedro Ferreira, Andrew C. Scott, Laura-Ann McGill, Zohya Khalique,
Margarita Gorodezky, Malte Roehl, Jennifer Keegan, Dudley Pennell, David N. Firmin, and
Daniel Rueckert. Stochastic deep compressive sensing for the reconstruction of diffusion ten-
sor cardiac mri. In MICCAI, 2018b.

445



HYBRID CASCADE FOR MR RECONSTRUCTION

Maximilian Seitzer, Guang Yang, Jo Schlemper, Ozan Oktay, Tobias Würfl, Vincent Christlein,
Tom Wong, Raad Mohiaddin, David Firmin, and Jennifer Keegan. Adversarial and perceptual
refinement for compressed sensing mri reconstruction. In International Conference on Medical
Image Computing and Computer-Assisted Intervention, pages 232–240. Springer, 2018.

Roberto Souza and Richard Frayne. A hybrid frequency-domain/image-domain deep network for
magnetic resonance image reconstruction. arXiv preprint arXiv:1810.12473, 2018.

Roberto Souza, Oeslle Lucena, Julia Garrafa, David Gobbi, Marina Saluzzi, Simone Appenzeller,
Letı́cia Rittner, Richard Frayne, and Roberto Lotufo. An open, multi-vendor, multi-field-strength
brain mr dataset and analysis of publicly available skull stripping methods agreement. NeuroIm-
age, 2017. ISSN 1053-8119.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–
612, 2004. ISSN 1057-7149.

Guang Yang, Simiao Yu, Hao Dong, Greg Slabaugh, Pier Luigi Dragotti, Xujiong Ye, Fangde Liu,
Simon Arridge, Jennifer Keegan, and Yike Guo. DAGAN: Deep de-aliasing generative adver-
sarial networks for fast compressed sensing MRI reconstruction. IEEE transactions on medical
imaging, 37(6):1310–1321, 2018. ISSN 0278-0062.

Simiao Yu, Hao Dong, Guang Yang, Greg Slabaugh, Pier Luigi Dragotti, Xujiong Ye, Fangde Liu,
Simon Arridge, Jennifer Keegan, and David Firmin. Deep de-aliasing for fast compressive sens-
ing mri. arXiv preprint arXiv:1705.07137, 2017.

Jure Zbontar, Florian Knoll, Anuroop Sriram, Matthew J Muckley, Mary Bruno, Aaron Defazio,
Marc Parente, Krzysztof J Geras, Joe Katsnelson, Hersh Chandarana, et al. fastmri: An open
dataset and benchmarks for accelerated mri. arXiv preprint arXiv:1811.08839, 2018.

Pengyue Zhang, Fusheng Wang, Wei Xu, and Yu Li. Multi-channel generative adversarial network
for parallel magnetic resonance image reconstruction in k-space. In International Conference on
Medical Image Computing and Computer-Assisted Intervention, pages 180–188. Springer, 2018.

Bo Zhu, Jeremiah Z Liu, Stephen F Cauley, Bruce R Rosen, and Matthew S Rosen. Image recon-
struction by domain-transform manifold learning. Nature, 555(7697):487, 2018. ISSN 1476-
4687.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. arXiv preprint, 2017.

446


	Introduction
	Brief Literature Review
	Hybrid Cascade Model
	Experimental setup
	Dataset
	Metrics and statistical analysis
	Compared Methods

	Results and Discussion
	Conclusions

