
Under review as a conference paper at ICLR 2019

MILE: A Multi-Level Framework for Scal-
able Graph Embedding

Anonymous authors
Paper under double-blind review

Abstract

Recently there has been a surge of interest in designing graph embedding
methods. Few, if any, can scale to a large-sized graph with millions of nodes
due to both computational complexity and memory requirements. In this
paper, we relax this limitation by introducing the MultI-Level Embedding
(MILE) framework – a generic methodology allowing contemporary graph
embedding methods to scale to large graphs. MILE repeatedly coarsens
the graph into smaller ones using a hybrid matching technique to maintain
the backbone structure of the graph. It then applies existing embedding
methods on the coarsest graph and refines the embeddings to the origi-
nal graph through a graph convolution neural network that it learns. The
proposed MILE framework is agnostic to the underlying graph embedding
techniques and can be applied to many existing graph embedding methods
without modifying them. We employ our framework on several popular
graph embedding techniques and conduct embedding for real-world graphs.
Experimental results on five large-scale datasets demonstrate that MILE
significantly boosts the speed (order of magnitude) of graph embedding
while generating embeddings of better quality, for the task of node classi-
fication. MILE can comfortably scale to a graph with 9 million nodes and
40 million edges, on which existing methods run out of memory or take too
long to compute on a modern workstation.

1 Introduction

In recent years, graph embedding has attracted much interest due to its broad applicability
for various tasks (Perozzi et al., 2014; Wang et al., 2016; Henderson et al., 2012). However,
such methods rarely scale to large datasets (e.g., graphs with over 1 million nodes) since
they are computationally expensive and often memory intensive. For example, random-walk-
based embedding techniques require a large amount of CPU time to generate a sufficient
number of walks and train the embedding model. As another example, embedding meth-
ods based on matrix factorization, including GraRep (Cao et al., 2015) and NetMF (Qiu
et al., 2018), requires constructing an enormous objective matrix (usually much denser than
adjacency matrix), on which matrix factorization is performed. Even a medium-size graph
with 100K nodes can easily require hundreds of GB of memory using those methods. On
the other hand, many graph datasets in the real world tend to be large-scale with millions
or even billions of nodes. To the best of our knowledge, none of the existing efforts exam-
ines how to scale up graph embedding in a generic way. We make the first attempt to
close this gap. We are also interested in the related question of whether the quality of such
embeddings can be improved along the way. Specifically, we ask:
1) Can we scale up the existing embedding techniques in an agnostic manner so that they
can be directly applied to larger datasets?
2) Can the quality of such embedding methods be strengthened by incorporating the holistic
view of the graph?
To tackle these problems, we propose a MultI-Level Embedding (MILE) framework for
graph embedding. Our approach relies on a three-step process: first, we repeatedly coarsen
the original graph into smaller ones by employing a hybrid matching strategy; second, we

1



Under review as a conference paper at ICLR 2019

compute the embeddings on the coarsest graph using an existing embedding techniques -
and third, we propose a novel refinement model based on learning a graph convolution
network to refine the embeddings from the coarsest graph to the original graph – learning
a graph convolution network allows us to compute a refinement procedure that levers the
dependencies inherent to the graph structure and the embedding method of choice. To
summarize, we find that:

• MILE is generalizable : Our MILE framework is agnostic to the underlying graph
embedding techniques and treats them as black boxes.
• MILE is scalable : MILE can significantly improve the scalability of the embedding
methods (up to 30-fold), by reducing the running time and memory consumption.
• MILE generates high-quality embeddings : In many cases, we find that the quality
of embeddings improves by levering MILE (in some cases is in excess of 10%).

2 Related Work
Many techniques for graph or network embedding have been proposed in recent years. Deep-
Walk and Node2Vec generate truncated random walks on graphs and apply the Skip Gram
by treating the walks as sentences (Perozzi et al., 2014; Grover & Leskovec, 2016). LINE
learns the node embeddings by preserving the first-order and second-order proximities (Tang
et al., 2015). Following LINE, SDNE leverages deep neural networks to capture the highly
non-linear structure (Wang et al., 2016). Other methods construct a particular objective
matrix and use matrix factorization techniques to generate embeddings, e.g., GraRep (Cao
et al., 2015) and NetMF (Qiu et al., 2018). This also led to the proliferation of network
embedding methods for information-rich graphs, including heterogeneous information net-
works (Chang et al., 2015; Dong et al., 2017) and attributed graphs (Pan et al., 2016; Liang
et al., 2018; Yang et al., 2015; Kipf & Welling, 2017).
On the other hand, there are very few efforts, focusing on the scalability of network embed-
ding (Yang et al., 2017; Huang et al., 2017). First, such efforts are specific to a particular
embedding strategy and do not generalize. Second, the scalability of such efforts is limited
to moderately sized datasets. Finally, and notably, these efforts at scalability are actually
orthogonal to our strategy and can potentially be employed along with our efforts to afford
even greater speedup.
The closest work to this paper is the very recently proposed HARP (Chen et al., 2018),
which proposes a hierarchical paradigm for graph embedding based on iterative learning
methods (e.g., DeepWalk and Node2Vec). However, HARP focuses on improving the quality
of embeddings by using the learned embeddings from the previous level as the initialized
embeddings for the next level, which introduces a huge computational overhead. Moreover,
it is not immediately obvious how a HARP like methodology would be extended to other
graph embedding techniques (e.g., GraRep and NetMF) in an agnostic manner since such
an approach would necessarily require one to modify the embedding methods to preset their
initialized embeddings. In this paper, we focus on designing a general-purpose framework
to scale up embedding methods treating them as black boxes.

3 Problem Formulation
Let G = (V,E) be the input graph where V and E are respectively the node set and edge
set. Let A be the adjacency matrix of the graph and we assume G is undirected, though
our problem can be easily extended (Chung, 2005; Gleich, 2006; Satuluri & Parthasarathy,
2011) to directed graph. We first define graph embedding:

Definition 3.1 Graph Embedding Given a graph G = (V,E) and a dimensionality d
(d � |V |), the problem of graph embedding is to learn a d-dimension vector representation
for each node in G so that graph properties are best preserved.

Following this, a graph embedding method is essentially a mapping function f : R|V |×|V | 7→
R|V |×d, whose input is the adjacency matrix A (or G) and output is a lower dimension
matrix. Motivated by the fact that the majority of graph embedding methods cannot scale

2



Under review as a conference paper at ICLR 2019

Coarsening Refining

Base Embedding ℰ"

Input graph 𝒢$

𝒢%

𝒢"

Final Embedding ℰ$

ℰ%

(a) An overview of the multi-level em-
bedding framework.

(b) Architecture of the embeddings refinement
model.

Figure 1: MILE framework
to large datasets, we seek to speed up existing graph embedding methods without sacrificing
quality. We formulate the problem as:
Given a graph G = (V,E) and a graph embedding method f(·), we aim to realize a strength-
ened graph embedding method f̂(·) so that it is more scalable than f(·) while generating
embeddings of comparable or even better quality.

4 Methodology
MILE framework consists of three key phases: graph coarsening, base embedding, and
embeddings refining. Figure 1a shows the overview.

4.1 Graph Coarsening

In this phase, the input graph G (or G0) is repeatedly coarsened into a series of smaller
graphs G1, G2, ..., Gm such that |V0| > |V1| > ... > |Vm|. In order to coarsen a graph from
Gi to Gi+1, multiple nodes in Gi are collapsed to form super-nodes in Gi+1, and the edges
incident on a super-node are the union of the edges on the original nodes in Gi. Here the
set of nodes forming a super-node is called a matching. We propose a hybrid matching
technique containing two matching strategies that can efficiently coarsen the graph while
retaining the global structure. An example is shared in Figure 2.

A

B C

D E

1 1

1 1

1

A

B C

DE

2

1 1

1

1
4 ∗ 2 

1
4 ∗ 2 

A

B C

DE
2

4 ∗ 2 

1
2 ∗ 2 

SEM Normalization
A

DE

BC

2

2

2

NHEM

(a) Using SEM and NHEM for graph coarsening

A BC DE

A
B
C
D
E

𝐴" = 𝑀%,"
' 𝐴%𝑀%," =

0 2 2
2 2 0
2 0 0

A B C D E

(b) Adjacency matrix and matching
matrix

Figure 2: Toy example for illustrating graph coarsening. (a) shows the process of applying Struc-
tural Equivalence Matching (SEM) and Normalized Heavy Edge Matching (NHEM) for graph
coarsening. (b) presents the adjacency matrix A0 of the input graph, the matching matrix M0,1
corresponding to the SEM and NHEM matchings, and the derivation of the adjacency matrix A1
of the coarsened graph using Eq. 2.

Structural Equivalence Matching (SEM) : Given two vertices u and v in an unweighted
graph G, we call they are structurally equivalent if they are incident on the same set of
neighborhoods. In figure 2a, node D and E are structurally equivalent. The intuition of
matching structually equivalent nodes is that if two vertices are structurally equivalent,
then their node embeddings will be similar.

Normalized Heavy Edge Matching (NHEM) : Heavy edge matching is a popular
matching method for graph coarsening (Karypis & Kumar, 1998). For an unmatched node
u in Gi, its heavy edge matching is a pair of vertices (u, v) such that the weight of the edge
between u and v is the largest. In this paper, we propose to normalize the edge weights

3



Under review as a conference paper at ICLR 2019

when applying heavy edge matching using the formula as follows

Wi(u, v) = Ai(u, v)√
Di(u, u) ·Di(v, v)

. (1)

Here, the weight of an edge is normalized by the degree of the two vertices on which the
edge is incident. Intuitively, it penalizes the weights of edges connected with high-degree
nodes. As we will show in Sec. 4.3, this normalization is tightly connected with the graph
convolution kernel.

Hybrid Matching Method : We use a hybrid of two matching methods above for
graph coarsening. To construct Gi+1 from Gi, we first find out all the structural equivalence
matching (SEM) M1, where Gi is treated as an unweighted graph. This is followed by
the searching of the normalized heavy edge matching (NHEM) M2 on Gi. Nodes in each
matching are then collapsed into a super-node in Gi+1. Note that some nodes might not be
matched at all and they will be directly copied to Gi+1.
Formally, we build the adjacency matrix Ai+1 of Gi+1 through matrix operations. To this
end, we define the matching matrix storing the matching information from graph Gi to Gi+1
as a binary matrix Mi,i+1 ∈ {0, 1}|Vi|×|Vi+1|. The r-th row and c-th column of Mi,i+1 is set
to 1 if node r in Gi will be collapsed to super-node c in Gi+1, and is set to 0 if otherwise.
Each column of Mi,i+1 represents a matching with the 1s representing the nodes in it. Each
unmatched vertex appears as an individual column in Mi,i+1 with merely one entry set to
1. Following this formulation, we construct the adjacency matrix of Gi+1 by using

Ai+1 = MT
i,i+1AiMi,i+1. (2)

4.2 Base Embedding on Coarsened Graph

The size of the graph reduces drastically after each iteration of coarsening, halving the size
of the graph in the best case. We coarsen the graph for m iterations and apply the graph
embedding method f(·) on the coarsest graph Gm. Denoting the embeddings on Gm as Em,
we have Em = f(Gm ). Since our framework is agnostic to the adopted graph embedding
method, we can use any graph embedding algorithm for base embedding.

4.3 Refinement of Embeddings

The final phase of MILE is the embeddings refinement phase. Given a series of coarsened
graph G0,G1,G2, ...,Gm, their corresponding matching matrix M0,1,M1,2, ...,Mm−1,m, and
the node embeddings Em on Gm, we seek to develop an approach to derive the node em-
beddings of G0 from Gm. To this end, we first study an easier subtask: given a graph Gi,
its coarsened graph Gi+1, the matching matrix Mi,i+1 and the node embeddings Ei+1 on
Gi+1, how to infer the embeddings Ei on graph Gi. Once we solved this subtask, we can
then iteratively apply the technique on each pair of consecutive graphs from Gm to G0 and
eventually derive the node embeddings on G0. In this work, we propose to use a graph-based
neural network model to perform embeddings refinement.
Graph Convolution Network for Refinement Learning : Since we know the match-
ing information between the two consecutive graphs Gi and Gi+1, we can easily project the
node embeddings from the coarse-grained graph Gi+1 to the fine-grained graph Gi using

Epi = Mi,i+1Ei+1 (3)

In this case, embedding of a super-node is directly copied to its original node(s). We call Epi
the projected embeddings from Gi+1 to Gi, or simply projected embeddings without ambiguity.
While this way of simple projection maintains some information of node embeddings, it has
obvious limitations that nodes will share the same embeddings if they are matched and
collapsed into a super-node during the coarsening phase. This problem will be more serious
when the embedding refinement is performed iteratively from Gm, ..., G0. To address this
issue, we propose to use a graph convolution network for embedding refinement. Specifically,
we design a graph-based neural network model Ei = R(Epi , Ai), which derives the embeddings
Ei on graph Gi based on the projected embeddings Epi and the graph adjacency matrix Ai.

4



Under review as a conference paper at ICLR 2019

Given graph G with adjacency matrix A, we consider the fast approximation of graph
convolution from (Kipf & Welling, 2017). The k-th layer of this neural network model is

H(k)(X,A) = σ
(
D̃−

1
2 ÃD̃−

1
2H(k−1)(X,A)Θ(k)

)
(4)

where σ(·) is an activation function, Θ(k) is a layer-specific trainable weight matrix, and
H(0)(X,A) = X. In this paper, we define our embedding refinement model as a l-layer
graph convolution model

Ei = R (Epi , Ai) ≡ H
(l) (Epi , Ai) . (5)

The architecture of the refinement model is shown in Figure 1b. The intuition behind this
refinement model is to integrate the structural information of the current graph Gi into the
projected embedding Epi by repeatedly performing the spectral graph convolution. Each
layer of graph convolution network in Eq. 4 can be regarded as one iteration of embedding
propagation in the graph following the re-normalized adjacency matrix D̃− 1

2 ÃD̃−
1
2 . Note

that this re-normalized matrix is well aligned with the way we conduct normalized heavy
edge matching in Eq. 1. We next discuss how the weight matrix Θ(k) is learned.
Intricacies of Refinement Learning : The learning of the refinement model is essen-
tially learning Θ(k) for each k ∈ [1, l] according to Eq. 4. Here we study how to design the
learning task and construct the loss function. Since the graph convolution model H(l)(·)
aims to predict the embeddings Ei on graph Gi, we can directly run a base embedding on
Gi to generate the “ground-truth” embeddings and use the difference between these embed-
dings and the predicted ones as the loss function for training. We propose to learn Θ(k) on
the coarsest graph and reuse them across all the levels for refinement. Specifically, we can
define the loss function as the mean square error as follows

L = 1
|Vm|

∥∥∥Em −H(l)(Mm,m+1Em+1, Am)
∥∥∥2
. (6)

We refer to the learning task associated with the above loss function as double-base embed-
ding learning. We point out, however, there are two key drawbacks to this method. First
of all, the above loss function requires one more level of coarsening to construct Gm+1 and
an extra base embedding on Gm+1. These two steps, especially the latter, introduce non-
negligible overheads to the MILE framework, which contradicts our motivation of scaling
up graph embedding. More importantly, Em might not be a desirable “ground truth” for
the refined embeddings. This is because most of the embedding methods are invariant to
an orthogonal transformation of the embeddings, i.e., the embeddings can be rotated by an
arbitrary orthogonal matrix (Hamilton et al., 2017). In other words, the embedding spaces
of graph Gm and Gm+1 can be totally different since the two base embeddings are learned
independently. Even if we follow the paradigm in (Chen et al., 2018) and conduct base
embedding on Gm using the simple projected embeddings from Gm+1 (Epm) as initialization,
the embedding space does not naturally generalize and can drift during re-training. One
possible solution is to use an alignment procedure to force the embeddings to be aligned
between the two graphs (Hamilton et al., 2016). But it could be very expensive.
In this paper, we propose a very simple method to address the above issues. Instead of
conducting an additional level of coarsening, we construct a dummy coarsened graph by
simply copying Gm, i.e., Mm,m+1 = I and Gm+1 = Gm. By doing this, we not only reduce
one iteration of graph coarsening, but also avoid performing base embedding on Gm+1 simply
because Em+1 = Em. Moreover, the embeddings of Gm and Gm+1 are guaranteed to be in the
same space in this case without any drift. With this strategy, we change the loss function
for model learning as follows

L = 1
|Vm|

∥∥∥Em −H(l)(Em, Am)
∥∥∥2
. (7)

With the above loss function, we adopt gradient descent with back-propagation to learn
the parameters Θ(k), k ∈ [1, l]. In the subsequent refinement steps, we apply the same set
of parameters Θ(k) to infer the refined embeddings. We point out that the training of the
refinement model is rather efficient as it is done on the coarsest graph. The embeddings

5



Under review as a conference paper at ICLR 2019

refinement process involves merely sparse matrix multiplications using Eq. 5 and is relatively
affordable compared to conducting embedding on the original graph. With these different
components, we summarize the whole algorithm of our MILE framework in Algorithm 1.
The appendix contains the time complexity of the algorithm in Section A.2

Algorithm 1 Multi-Level Algorithm for Graph Embedding

Input: A input graph G0 = (V0, E0), # coarsening levels m, and a base embedding method f(·).
Output: Graph embeddings E0 on G0.
1: Coarsen G0 into G1,G2, ...,Gm using proposed hybrid matching method.
2: Perform base embedding on the coarsest graph Gm (See Section. 4.2).
3: Learn the weights Θ(k) using the loss function in Eq. 7.
4: for i = (m− 1)...0 do
5: Compute the projected embeddings Ep

i on Gi.
6: Use Eq. 4 and Eq. 5 to compute refined embeddings Ei.
7: Return graph embeddings E0 on G0.

5 Experiments and Analysis
5.1 Experimental Configuration

The datasets used in our experiments is shown in Table 1. Yelp dataset is preprocessed
by us following similar procedures in (Huang et al., 2017)1. To demonstrate that MILE
can work with different graph embedding methods , we explore several popular methods for
graph embedding, mainly, DeepWalk (Perozzi et al., 2014), Node2vec (Grover & Leskovec,
2016), Line (Tang et al., 2015), GraRep (Cao et al., 2015) and NetMF (Qiu et al., 2018).
To evaluate the quality of the embeddings, we follow the typical method in existing work to
perform multi-label node classification (Perozzi et al., 2014; Grover & Leskovec, 2016).

Dataset # Nodes # Edges # Classes
PPI 3,852 38,705 50
Blog 10,312 333,983 39
Flickr 80,513 5,899,882 195

YouTube 1,134,890 2,987,624 47
Yelp 8,938,630 39,821,123 22

Table 1: Dataset Information

5.2 MILE Framework Performance

We first evaluate the performance of our MILE framework when applied to different graph
embedding methods. Figure 3 summarizes the performance of MILE on different datasets
with various base embedding methods on various coarsening levels2 (exact numbers can be
seen in Table 3 of Appendix). Note that m=0 corresponds to original embedding method.
We make the following observations:

• MILE is scalable. MILE greatly boosts the speed of the explored embedding methods.
With a single level of coarsening (m=1), we are able to achieve speedup ranging from
1.5× to 3.4× (on PPI, Blog, and Flickr) while improving qualitative performance. Larger
speedups are typically observed on GraRep and NetMF. Increasing the coarsening level
m to 2, the speedup increases further (up to 14.4×), while the quality of the embeddings
is comparable with the original methods reflected by Micro-F1. On YouTube, for the
coarsening levels 6 and 8, we observe more than 10× speedup for DeepWalk, Node2Vec
and LINE. For NetMF on YouTube, the speedup is even larger – original NetMF runs out
of memory within 9.5 hours while MILE (NetMF) only takes around 20 minutes (m = 8).

• MILE improves quality. For the smaller coarsening levels across all the datasets and
methods, MILE-enhanced embeddings almost always offer a qualitative improvement over

1Raw data: https://www.yelp.com/dataset_challenge/dataset
2We discuss the results of Yelp later.

6

https://www.yelp.com/dataset_challenge/dataset


Under review as a conference paper at ICLR 2019

MILE (DeepWalk) MILE (Node2Vec) MILE (Line) MILE (GraRep) MILE (NetMF)

0 1 2 3 4
# Levels

0.18

0.20

0.22

0.24

0.26

0.28

0.30
M

icr
o-

f1

(a) PPI (Micro-F1)

0 1 2 3 4 5 6
# Levels

0.15
0.20
0.25
0.30
0.35
0.40
0.45

M
icr

o-
f1

(b) Blog (Micro-F1)

0 1 2 3 4 5 6 7 8
# Levels

0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
icr

o-
f1

(c) Flickr (Micro-F1)

0 1 2 3 4 5 6 7 8
# Levels

0.38
0.40
0.42
0.44
0.46
0.48
0.50
0.52

M
icr

o-
f1

(d) YouTube (Micro-F1)

0 1 2 3 4
# Levels

10 1

100

Ti
m

e 
(m

in
s)

(e) PPI (Time)

0 1 2 3 4 5 6
# Levels

100

101

Ti
m

e 
(m

in
s)

(f) Blog (Time)

0 1 2 3 4 5 6 7 8
# Levels

101

102

Ti
m

e 
(m

in
s)

(g) Flickr (Time)

0 1 2 3 4 5 6 7 8
# Levels

102

103

Ti
m

e 
(m

in
s)

(h) YouTube (Time)

Figure 3: Changes in performance as the number of coarsening levels in MILE increases
(best viewed in color). Micro-F1 and running-time are reported in the first and second row
respectively. Running time in minutes is shown in logarithm scale. Note that # level = 0
represents the original embedding method without using MILE. Lines/points are missing
for algorithms that use over 128 GB of RAM.

the original embedding method as evaluated by the Micro-F1 score (as high as 24.2% while
many others also show a 10%+ increase). Examples include MILE (DeepWalk, m = 1) on
Blog/PPI, MILE (Line, m = 1) on PPI and MILE (NetMF, m = 1) on PPI/Blog/Flickr.
Even with higher number of coarsening level (m = 2 for PPI/Blog/Flickr; m = 6, 8 for
YouTube), MILE in addition to being much faster can still improve, qualitatively, over
the original methods on most of the datasets, e.g., MILE(NetMF, m = 2) � NETMF on
PPI, Blog, and Flickr. We conjecture the observed improvement on quality is because the
embeddings begin to rely on a more holistic view of the graph.

• MILE supports multiple embedding strategies. We make some embedding-specific
observations here. We observe that MILE consistently improves both the quality and the
efficiency of NetMF on all four datasets (for YouTube, NetMF runs out of memory). For
the largest dataset, the speedups afforded exceed 30-fold. We observe that for GraRep,
while speedups with MILE are consistently observed, the qualitative improvements, if
any, are smaller (for both YouTube and Flickr, the base method runs out of memory).
For Line, even though its time complexity is linear to the number of edges (Tang et al.,
2015), applying MILE framework on top of it still generates significant speed-up (likely
due to the fact that the complexity of Line contains a larger constant factor k than
MILE). On the other hand, MILE on top of Line generates better quality of embeddings
on PPI and YouTube while falling a bit short on Blog and Flickr. For DeepWalk and
Node2Vec, we again observe consistent improvements in scalability (up to 11-fold on the
larger datasets) as well as quality using MILE with a few levels of coarsening. However,
when the coarsening level is increased, the additional speedup afforded (up to 17-fold)
comes at a mixed cost to quality (micro-F1 drops slightly).

• Impact of varying coarsening levels on MILE. When coarsening level m is small,
MILE tends to significantly improve the quality of embeddings while taking much less
time. From m = 0 to m = 1, we see a clear jump of the Micro-F1 score on all the datasets
across the base embedding methods. This observation is more evident on larger datasets
(Flickr and YouTube). On YouTube, MILE (DeepWalk) withm=1 increases the Micro-F1
score by 5.3% while only consuming half of the time compared to the original DeepWalk.
MILE (DeepWalk) continues to generate embeddings of better quality than DeepWalk
until m = 7, where the speedup is 13×. As the coarsening level m in MILE increases, the
running time drops dramatically while the quality of embeddings only decreases slightly.

7



Under review as a conference paper at ICLR 2019

PPI Blog
Mi-F1 Time Mi-F1 Time

DeepWalk (DW) 23.0 2.4 37.0 8.0
MILE (DW) 25.6 1.2 42.9 4.6
HARP (DW) 24.1 3.0 41.3 9.8

Node2Vec (NV) 24.3 4.0 39.1 13.0
MILE (NV) 25.9 1.7 42.8 6.9
HARP (NV) 22.3 3.9 36.2 13.16

Flickr YouTube
Mi-F1 Time Mi-F1 Time

DeepWalk 40.0 50.0 45.2 604.8
MILE (DW) 40.4 34.4 46.1 55.2
HARP (DW) 40.6 78.2 46.6 1727.7
Node2Vec 40.5 78.2 45.5 951.2
MILE (NV) 40.7 50.5 46.3 83.5
HARP (NV) 40.5 101.1 47.2 1981.3

Table 2: MILE vs. HARP

MILE (DeepWalk) MILE (Node2Vec) MILE (Line) MILE (GraRep) MILE (NetMF)

0 2 4 6 8 10 12 14 16 18 20 22
# Levels

0.60

0.62

0.64

0.66

0.68

0.70

M
icr

o-
f1

0 2 4 6 8 10 12 14 16 18 20 22
# Levels

102

103

Ti
m

e 
(m

in
s)

Figure 4: Running MILE on Yelp dataset.
The running time decreases at an almost exponential rate (logarithm scale on the y-axis in
the second row of Figure 3). On the other hand, the Micro-F1 score descends much more
slowly (the first row of Figure 3). most of which are still better than the original methods.
This shows that MILE can not only consolidates the existing embedding methods, but
also provides nice trade-off between effectiveness and efficency.

5.3 Comparing MILE with HARP
HARP is a multi-level method primarily for improving the quality of graph embeddings.
We compare HARP with our MILE framework using DeepWalk and Node2vec as the base
embedding methods3. Table 2 shows the performance of these two methods on the four
datasets (coarsening level is 1 on PPI/Blog/Flickr and 6 on YouTube). From the table we can
observe that MILE generates embeddings of comparable quality with HARP. MILE performs
much better than HARP on PPI and Blog, marginally better on Flickr and marginally
worse on YouTube. However, MILE is significantly faster than HARP on all the four
datasets (e.g. on YouTube, MILE affords a 31× speedup). This is because HARP requires
running the whole embedding algorithm on each coarsened graph, which introduces a huge
computational overhead. Note that for PPI and BLOG – MILE with NetMF (not shown)
as its base embeddings produces the best micro-F1 of 26.9 and 43.8, respectively. This shows
another advantage of MILE - agnostic to the base embedding when compared with HARP.
5.4 MILE: Large Graph Embedding
We now explore the scalability of MILE on the large Yelp dataset. None of the five graph
embedding methods studied in this paper can successfully conduct graph embedding on Yelp
within 60 hours on a modern machine with 28 cores and 128 GB RAM. Even extending the
run-time deadline to 100 hours, we see DeepWalk and Line barely finish. Leveraging the
proposed MILE framework now makes it much easier to perform graph embedding on this
scale of datasets (see Figure 4 for the results). We observe that MILE significantly reduces
the running time and improves the Micro-F1 score. For example, Micro-F1 score of original
DeepWalk and Line are 0.640 and 0.625 respectively, which all take more than 80 hours.
But using MILE with m = 4, the micro-F1 score improves to 0.643 (DeepWalk) and 0.642
(Line) while achiving speedups of around 1.6×. Moreover, MILE reduces the running time of
DeepWalk from 53 hours (coarsening level 4) to 2 hours (coarsening level 22) while reducing
the Micro-F1 score just by 1% (from 0.643 to 0.634). Meanwhile, there is no change in
the Micro-F1 score from coarsening level 4 to 10, where the running time is improved by a
factor of two. These results affirm the power of the proposed MILE framework on scaling
up graph embedding algorithms while generating quality embeddings.

6 Conclusion
In this work, we propose a novel multi-level embedding (MILE) framework to scale up
graph embedding techniques, without modifying them. Our framework incorporates existing
embedding techniques as black boxes, and significantly improves the scalability of extant
methods by reducing both the running time and memory consumption. Additionally, MILE
also provides a lift in the quality of node embeddings in most of the cases. A fundamental
contribution of MILE is its ability to learn a refinement strategy that depends on both the
underlying graph properties and the embedding method in use. In the future, we plan to
generalize MILE for information-rich graphs and employing MILE for more applications.

3https://github.com/GTmac/HARP

8

https://github.com/GTmac/HARP


Under review as a conference paper at ICLR 2019

References
Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. A latent
variable model approach to pmi-based word embeddings. In TACL, 2016.

Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations with
global structural information. In CIKM, 2015.

Shiyu Chang, Wei Han, Jiliang Tang, Guo-Jun Qi, Charu C Aggarwal, and Thomas S
Huang. Heterogeneous network embedding via deep architectures. In KDD, pp. 119–128.
ACM, 2015.

Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. Harp: Hierarchical represen-
tation learning for networks. In AAAI, 2018.

Fan Chung. Laplacians and the cheeger inequality for directed graphs. Annals of Combina-
torics, 9(1):1–19, 2005.

Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. metapath2vec: Scalable represen-
tation learning for heterogeneous networks. In KDD, 2017.

David Gleich. Hierarchical directed spectral graph partitioning. Information Networks,
2006.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
KDD, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NIPS, 2017.

William L Hamilton, Jure Leskovec, and Dan Jurafsky. Diachronic word embeddings reveal
statistical laws of semantic change. In ACL, 2016.

Keith Henderson, Brian Gallagher, Tina Eliassi-Rad, Hanghang Tong, Sugato Basu, Leman
Akoglu, Danai Koutra, Christos Faloutsos, and Lei Li. Rolx: structural role extraction &
mining in large graphs. In KDD, pp. 1231–1239. ACM, 2012.

Xiao Huang, Jundong Li, and Xia Hu. Accelerated attributed network embedding. In SDM,
2017.

George Karypis and Vipin Kumar. Multilevel k-way partitioning scheme for irregular graphs.
In JPDC, 1998.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factorization.
In NIPS, 2014.

Jiongqian Liang, Peter Jacobs, Jiankai Sun, and Srinivasan Parthasarathy. Semi-supervised
embedding in attributed networks with outliers. In SDM, 2018.

Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Yang Wang. Tri-party deep network
representation. In IJCAI, 2016.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations. In KDD, 2014.

Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network em-
bedding as matrix factorization: Unifying deepwalk, line, pte, and node2vec. In WSDM,
2018.

Venu Satuluri and Srinivasan Parthasarathy. Symmetrizations for clustering directed graphs.
In Proceedings of the 14th International Conference on Extending Database Technology,
pp. 343–354. ACM, 2011.

9



Under review as a conference paper at ICLR 2019

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line:
Large-scale information network embedding. In WWW, 2015.

Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In KDD,
2016.

Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y Chang. Network
representation learning with rich text information. In IJCAI, 2015.

Cheng Yang, Maosong Sun, Zhiyuan Liu, and Cunchao Tu. Fast network embedding en-
hancement via high order proximity approximation. In IJCAI, 2017.

10



Under review as a conference paper at ICLR 2019

A Appendix

A.1 Experimental Configuration Details

A.1.1 Datasets

The details about the datasets used in our experiments are :

• PPI is a Protein-Protein Interaction graph constructed based on the interplay activity
between proteins of Homo Sapiens, where the labels represent biological states.

• Blog is a network of social relationship of bloggers on BlogCatalog and the labels indicate
interests of the bloggers.

• Flickr is a social network of the contacts between users on flickr.com with labels denoting
the interest groups.

• YouTube is a social network between users on YouTube, where labels represent genres
of groups subscribed by users.

• Yelp is a social network of friends on Yelp and labels indicate the business categories on
which the users review.

A.1.2 Baseline Methods

Baseline Methods: To demonstrate that MILE can work with different graph embedding
methods, we explore several popular methods for graph embedding.

• DeepWalk (DW) (Perozzi et al., 2014): Following the original work (Perozzi et al., 2014),
we set the length of random walks as 80, number of walks per node as 10, and context
windows size as 10.

• Node2Vec (NV) (Grover & Leskovec, 2016): We use the same setting as DeepWalk
for those common hyper-parameters while setting p = 4.0 and q = 1.0, which we found
empirically to generate better results across all the datasets.

• Line (LN) (Tang et al., 2015): This method aims at preserving first-order and second-
order proximities and has been applied on large-scale graph. We learn the first-order and
second-order embeddings respectively and concatenate them to a unified embedding.

• GraRep (GR) (Cao et al., 2015): This method considers different powers (up to k) of
the adjacency matrix to preserve higher-order graph proximity for graph embedding. It
uses SVD decomposition to generate the low-dimensional representation of nodes. We set
k = 4 as suggested in the original work.

• NetMF (NM) (Qiu et al., 2018): It is a recent effort that supports graph embedding via
matrix factorization. We set the window size to 10 and the rank h to 1024, and lever the
approximate version, as suggested and reported by the authors.

A.1.3 MILE-specific Settings

For all the above base embedding methods, we set the embedding dimensionality d as 128.
When applying our MILE framework, we vary the coarsening levelsm from 1 to 10 whenever
possible. For the graph convolution network model, the self-loop weight λ is set to 0.05, the
number of hidden layers l is 2, and tanh(·) is used as the activation function, the learning
rate is set to 0.001 and the number of training epochs is 200. The Adam Optimizer is used
for model training.

A.1.4 System Specification

The experiments were conducted on a machine running Linux with an Intel Xeon E5-2680
CPU (28 cores, 2.40GHz) and 128 GB of RAM. We implement our MILE framework in
Python. Our code and data are will be available for the replicability purpose. For all the

11



Under review as a conference paper at ICLR 2019

five base embedding methods, we adapt the original code from the authors4. We additionally
use TensorFlow package for the embeddings refinement learning component. We lever the
available parallelism (on 28 cores) for each method (e.g., the generation of random walks in
DeepWalk and Node2Vec, the training of the refinement model in MILE, etc.).

A.1.5 Evaluation Metrics

To evaluate the quality of the embeddings, we follow the typical method in existing work
to perform multi-label node classification (Perozzi et al., 2014; Grover & Leskovec, 2016).
Specifically, after the graph embeddings are learned for nodes (label is not used for this
part), we run a 10-fold cross validation using the embeddings as features and report the
average Micro-F1 and average Macro-F1. We also record the end-to-end wallclock time
consumed by each method for scalability comparisons.

A.2 Time Complexity

It is non-trivial to derive the exact time complexity of MILE as it is dependent on the
graph structure, the chosen base embedding method, and the convergence rate of the GCN
model training. Here, we provide a rough estimation of the time complexity. For simplicity,
we assume the number of vertices and the number of edges are reduced by factor α and
β respectively at each step of coarsening (α > 1.0 and β > 1.0), i.e., Vi = 1

αVi−1 and
Ei = 1

βEi−1. (we found α and β in range [1.5, 2.0], empirically). Withm levels of coarsening,
the coarsening complexity is approximately O((1− 1/βm)/(1− 1/β)×E)) and since 1/βm

is small, the complexity reduces to O( β
β−1 × E). For the base embedding phase, if the

embedding algorithm has time complexity of T (V,E), the complexity of the base embedding
phase is T ( V

αm ,
E
βm ). For the refinement phase, the time complexity can be divided into

two parts, i.e. the GCN model training and the embedding inference applying the GCN
model. The former has similar complexity as the original GCN and can be denoted as
O(k1 ∗ E

βm ) (Kipf & Welling, 2017), where k1 is a small constant related to embedding
dimensionality and the number of training epochs. The embedding inference part is simply
sparse matrix multiplication using Eq. 4 with time complexity O(k2 ∗Ei) when refining the
embeddings on graph Gi, where k2 is an even smaller constant (k2 < k1). As a result, the time
complexity of the whole refinement phase is O(k1 ∗ E

βm +k2 ∗ (E+ E
β1 ...+ E

βm−1 )) ≈ O(k3 ∗E)
where k3 is a small constant.
Overall, for an embedding algorithm of time complexity T (V,E), the MILE framework can
reduce it to be T ( V

αm ,
E
βm )+O(k∗E). This is a significant improvement considering T (V,E)

is usually very large. The reduction in time complexity is attributed to the fact that we run
the embedding learning and refinement model training at the coarsest graph. In addition,
the overhead introduced by the coarsening phase and recursive embedding refinement is
relatively small (linear to the number of edges E). Note that the constant factor k in the
complexity term is usually small and we empirically found it to be in the scale of tens.
Because of this, even when the complexity of the original embedding algorithm is linear to
E, our MILE framework could still potentially speed up the embedding process because the
complexity of MILE contains a smaller constant factor k (see Sec. 5.2 for the experiment of
applying MILE on LINE).
Furthermore, it is worth noting that many of the existing embedding strategies involve
hyperparameters tunning for the best performance, especially for those methods based on
neural networks (e.g., DeepWalk, Node2Vec, etc.). This in turn requires the algorithm to
be run repeatedly – hence any savings in runtime by applying MILE are magnified across
multiple runs of the algorithm with different hyper-parameter settings.

4DeepWalk: https://github.com/phanein/deepwalk;
Node2Vec: http://snap.stanford.edu/node2vec/;
Line: https://github.com/tangjianpku/LINE ;
GraRep: https://github.com/thunlp/OpenNE;
NetMF: https://github.com/xptree/NetMF

12

https://github.com/phanein/deepwalk
http://snap.stanford.edu/node2vec/
https://github.com/tangjianpku/LINE
https://github.com/thunlp/OpenNE
https://github.com/xptree/NetMF


Under review as a conference paper at ICLR 2019

A.3 MILE Performance

The detailed information about performance evaluation is available in Table 3.

Method Micro-F1 Macro-F1 Time (mins)
DeepWalk 23.0 18.6 2.42
MILE (DeepWalk, m = 1) 25.6(11.3%↑) 20.4(9.7%↑) 1.22(2.0×)
MILE (DeepWalk, m = 2) 25.5(10.9%↑) 20.7(11.3%↑) 0.67(3.6×)
Node2Vec 24.3 19.6 4.01
MILE (Node2Vec, m = 1) 25.9(6.6%↑) 20.6(5.1%↑) 1.77(2.3×)
MILE (Node2Vec, m = 2) 26.0(7.0%↑) 21.1(7.7%↑) 0.98(4.1×)
Line 25.0 19.5 2.27
MILE (Line, m = 1) 25.8 (3.2%↑) 19.8 (1.5%↑) 1.22 (1.9×)
MILE (Line, m = 2) 24.7 (-1.2%↓) 19.0 (-2.6%↓) 0.68 (3.3×)
GraRep 25.5 20.0 2.99
MILE (GraRep, m = 1) 25.6(0.4%↑) 19.8(-1.0%↓) 1.11(2.7×)
MILE (GraRep, m = 2) 25.3(-0.8%↓) 19.5(-2.5%↓) 0.43(6.9×)
NetMF 24.6 20.1 0.65
MILE (NetMF, m = 1) 26.9(9.3%↑) 21.6(7.5%↑) 0.27(2.5×)
MILE (NetMF, m = 2) 26.7(8.5%↑) 21.1(5.0%↑) 0.17(3.9×)

(a) PPI Dataset

Method Micro-F1 Macro-F1 Time (mins)
DeepWalk 37.0 21.0 8.02
MILE (DeepWalk, m = 1) 42.9(15.9%↑) 27.0(28.6%↑) 4.69(1.7×)
MILE (DeepWalk, m = 2) 39.4(6.5%↑) 23.5(11.9%↑) 2.71(3.0×)
Node2Vec 39.1 23.0 13.04
MILE (Node2Vec, m = 1) 42.8(9.5%↑) 26.4(14.8%↑) 6.99(1.9×)
MILE (Node2Vec, m = 2) 40.2(2.8%↑) 23.9(3.9%↑) 3.89(3.4×)
Line 39.1 22.6 5.95
MILE (Line, m = 1) 38.4 (-1.8%↓) 21.0 (-7.0%↓) 3.84 (1.55×)
MILE (Line, m = 2) 37.3 (-4.6%↓) 19.6 (-13.2%↓) 2.58 (2.31×)
GraRep 40.6 23.3 28.76
MILE (GraRep, m = 1) 41.7(2.7%↑) 24.0(3.0%↑) 12.25(2.3×)
MILE (GraRep, m = 2) 38.3(-5.7%↓) 20.4(-12.4%↓) 4.22(6.8×)
NetMF 41.4 25.0 2.64
MILE (NetMF, m = 1) 43.8(5.8%↑) 27.6(10.4%↑) 1.98(1.3×)
MILE (NetMF, m = 2) 42.4(2.4%↑) 25.5(2.0%↑) 1.27(2.1×)

(b) Blog Dataset

Method Micro-F1 Macro-F1 Time (mins)
DeepWalk 40.0 26.5 50.08
MILE (DeepWalk, m = 1) 40.4(1.0%↑) 27.3(3.0%↑) 34.48(1.5×)
MILE (DeepWalk, m = 2) 39.3(-1.8%↓) 26.1(-1.5%↓) 26.88(1.9×)
Node2Vec 40.5 27.3 78.21
MILE (Node2Vec, m = 1) 40.7(0.5%↑) 27.7(1.5%↑) 50.54(1.5×)
MILE (Node2Vec, m = 2) 38.8(-4.2%↓) 25.8(-5.5%↓) 36.85(2.1×)
Line 34.0 14.5 60.42
MILE (Line, m = 1) 33.9 (-0.3%↓) 13.8 (-4.8%↓) 30.24 (2.00×)
MILE (Line, m = 2) 33.3 (-2.1%↓) 12.9 (-11.0%↓) 19.05 (3.17×)
GraRep N/A N/A > 2343.37
MILE (GraRep, m = 1) 36.7 18.6 697.39(>3.4×)
MILE (GraRep, m = 2) 36.3 18.6 163.05(>14.4×)
NetMF5 31.8 14.0 69.72
MILE (NetMF, m = 1) 39.3(23.6%↑) 24.5(75.0%↑) 24.03(2.9×)
MILE (NetMF, m = 2) 39.5(24.2%↑) 25.9(85.0%↑) 15.84(4.4×)

(c) Flickr Dataset

Method Micro-F1 Macro-F1 Time (mins)
DeepWalk 45.2 34.7 604.83
MILE (DeepWalk, m = 6) 46.1(2.0%↑) 38.5(11.0%↑) 55.20(11.0×)
MILE (DeepWalk, m = 8) 44.3(-2.0%↓) 35.3(1.7%↑) 37.35(16.2×)
Node2Vec 45.5 34.6 951.27
MILE (Node2Vec, m = 6) 46.3(1.8%↑) 38.3(10.7%↑) 83.52(11.4×)
MILE (Node2Vec, m = 8) 44.3(-2.6%↓) 35.8(3.5%↑) 55.55(17.1×)
Line 46.0 35.0 583.37
MILE (Line, m = 6) 46.2 (0.4%↑) 36.2 (3.4%↑) 53.97 (10.81×)
MILE (Line, m = 8) 44.4 (-3.5%↓) 35.7 (2.0%↑) 33.41 (17.46×)
GraRep N/A N/A > 3167.00
MILE (GraRep, m = 6) 43.2 32.7 1644.89(>1.9×)
MILE (GraRep, m = 8) 42.3 30.9 673.95(>4.7×)
NetMF N/A N/A > 574.75
MILE (NetMF, m = 6) 40.9 27.8 35.22(>16.3×)
MILE (NetMF, m = 8) 39.2 25.5 19.22(>29.9×)

(d) YouTube Dataset

Table 3: Performance of MILE. DeepWalk, Node2Vec, GraRep, and NetMF denotes the
original method without using our MILE framework. m is the number of coarsening levels.
The numbers within the parenthesis by the reported Micro-F1 and Macro-F1 scores are the
relative percentage of change compared to the original method Numbers along with “×” is
the speedup compared to the original method. “N/A” indicates the method runs out of
memory and we show the amount of running time spent when it happens.

A.4 MILE Drilldown: Design Choices

We now study the role of the design choices we make within the MILE framework related
to the coarsening and refinement procedures described. To this end, we examine alternative
design choices and systematically examine their performance. The alternatives we consider
are:

• Random Matching (MILE-rm): For each iteration of coarsening, we repeatedly pick
a random pair of connected nodes as a match and merge them into a super-node until no
more matching can be found. The rest of the algorithm is the same as our MILE.

• Simple Projection (MILE-proj): We replace our embedding refinement model with a
simple projection method. In other words, we directly copy the embedding of a super-node
to its original node(s) without any refinement (see Eq. 3).

• Averaging Neighborhoods (MILE-avg): For this baseline method, the refined embed-
ding of each node is a weighted average node embeddings of its neighborhoods (weighted
by the edge weights). This can be regarded as an embeddings propagation method. We
add self-loop to each node6 and conduct the embeddings propagation for two rounds.

• Untrained Refinement Model (MILE-untr): Instead of training the refinement
model to minimize the loss defined in Eq. 7, this baseline merely uses a fixed set of
values for parameters Θ(k) without training (values are randomly generated; other parts
of the model in Eq. 4 are the same, including Ã and D̃).

6Self-loop weights are tuned to the best performance.

13



Under review as a conference paper at ICLR 2019

PPI Blog Flickr YouTube
Mi-F1 Time Mi-F1 Time Mi-F1 Time Mi-F1 Time

DeepWalk 23.0 2.42 37.0 8.02 40.0 50.08 45.2 604.83
MILE (DW) 25.6 1.22 42.9 4.69 40.4 34.48 46.1 55.20
MILE-rm (DW) 25.3 1.01 40.4 3.62 38.9 26.67 44.9 55.10
MILE-proj (DW) 20.9 1.12 34.5 3.92 35.5 25.99 40.7 53.97
MILE-avg (DW) 23.5 1.07 37.7 3.86 37.2 25.99 41.4 55.26
MILE-untr (DW) 23.5 1.08 35.5 3.96 37.6 26.02 41.8 54.52
MILE-2base (DW) 25.4 2.22 35.6 6.74 37.7 53.32 41.6 94.74
MILE-gs (DW) 22.4 2.03 35.3 6.44 36.4 44.81 43.6 394.72
NetMF 24.6 0.65 41.4 2.64 31.8 69.72 N/A >574
MILE (NM) 26.9 0.27 43.8 1.98 39.3 24.03 40.9 35.22
MILE-rm (NM) 25.2 0.22 41.0 1.69 37.6 20.00 39.6 33.52
MILE-proj (NM) 23.5 0.12 38.7 1.06 34.5 15.10 26.4 26.48
MILE-avg (NM) 24.5 0.13 39.9 1.05 36.4 14.86 26.4 27.71
MILE-untr (NM) 24.8 0.13 39.4 1.08 36.4 15.23 30.2 27.20
MILE-2base (NM) 26.6 0.29 41.3 2.33 37.7 31.65 34.7 55.18
MILE-gs (NM) 24.8 1.08 40.0 3.70 35.1 34.25 36.4 345.28

Table 4: Comparisons of graph embeddings between MILE and its variants. Except for
the original methods (DeepWalk and NetMF), the number of coarsening level m is set to
1 on PPI/Blog/Flickr and 6 on YouTube. Mi-F1 is the Micro-F1 score in 10−2 scale while
Time column shows the running time of the method in minutes. “N/A” denotes the method
consumes more than 128 GB RAM.
• Double-base Embedding for Refinement Training (MILE-2base): This method

replaces the loss function in Eq. 7 with the alternative one in Eq. 6 for model training.
It conducts one more layer of coarsening and base embedding (level m + 1), from which
the embeddings are projected to level m and used as the input for model training.

• GraphSAGE as Refinement Model (MILE-gs): It replaces the graph convolution
network in our refinement method with GraphSAGE (Hamilton et al., 2017)7. We choose
max-pooling for aggregation and set the number of sampled neighbors as 100, as suggested
by the authors. Also, concatenation is conducted instead of replacement during the
process of propagation.

Table 4 shows the comparison of performance on these methods across the four datasets.
Here, we focus on using DeepWalk and NetMF for base embedding with a smaller coarsening
level (m = 1 for PPI, Blog, and Flickr; m = 6 for YouTube). Results are similar for the
other embedding options we consider. We hereby summarize the key information derived
from Table 4 as follows:

• The matching methods used within MILE offer a qualitative benefit at a
minimal cost to execution time. Comparing MILE with MILE-rm for all the datasets,
we can see that MILE generates better embeddings than MILE-rm using either DeepWalk
or NetMF as the base embedding method. Though MILE-rm is slightly faster than MILE
due to its random matching, its Micro-F1 score and Macro-F1 score are consistently lower
than of MILE.

• The graph convolution based refinement learning methodology in MILE is par-
ticularly effective. Simple projection-based MILE-proj, performs significantly worse
than MILE. The other two variants (MILE-avg and MILE-untr) which do not train
the refinement model at all, also perform much worse than the proposed method. Note
MILE-untr is the same as MILE except it uses a default set of parameters instead of
learning those parameters. Clearly, the model learning part of our refinement method
is a fundamental contributing factor to the effectiveness of MILE. Through training, the
refinement model is tailored to the specific graph under the base embedding method in
use. The overhead cost of this learning (comparing MILE with MILE-untr), can vary
depending on the base embedding employed (for instance on the YouTube dataset, it is

7Adapt code from https://github.com/williamleif/GraphSAGE

14

https://github.com/williamleif/GraphSAGE


Under review as a conference paper at ICLR 2019

0 1 2 3 4 5 6
Coarsening level

0

2

4

6

8

10

M
em

or
y 

in
 (G

B)

(a) MILE (GraRep)

0 1 2 3 4 5 6
Coarsening level

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
em

or
y 

in
 (G

B)

(b) MILE (NetMF)

Figure 5: Memory consumption of MILE (GraRep) and MILE (NetMF) on Blog with varied
coarsening levels.
an insignificant 1.2% on DeepWalk - while being up to 20% on NetMF) but is still worth
it due to qualitative benefits (Micro-F1 up from 30.2 to 40.9 with NetMF on YouTube).

• Graph convolution refinement learning outperforms GraphSAGE. Replacing the
graph convolution network with GraphSAGE for embeddings refinement, MILE-gs does
not perform as well as MILE. It is also computationally more expensive, partially due to
its reliance on embeddings concatenation, instead of replacement, during the process the
embeddings propagation (higher model complexity).

• Double-base embedding learning is not effective. In Sec. 4.3, we discuss the issues
with unaligned embeddings of the double-base embedding method for the refinement
model learning. The performance gap between MILE and MILE-2base in Table 4 provides
empirical evidence supporting our argument. This gap is likely caused by the fact that
the base embeddings of level m and level m + 1 might not lie in the same embedding
space (rotated by some orthogonal matrix) (Hamilton et al., 2017). As a result, using
the projected embeddings Epm as input for model training (MILE-2base) is not as good
as directly using Em (MILE). Moreover, Table 4 shows that the additional round of base
embedding in MILE-2base introduces a non-trivial overhead. On YouTube, the running
time of MILE-2base is 1.6 times as much as MILE.

A.5 MILE Drilldown: Memory Consumption

We also study the impact of MILE on reducing memory consumption. For this purpose, we
focus on MILE (GraRep) and MILE (NetMF), with GraRep and NetMF as base embedding
methods respectively. Both of these are embedding methods based on matrix factorization,
which possibly involves a dense objective matrix and could be rather memory expensive.
We do not explore DeepWalk and Node2Vec here since their embedding learning methods
generate truncated random walks (training data) on the fly with almost negligible memory
consumption (compared to the space storing the graph and the embeddings). Figure 5
shows the memory consumption of MILE (GraRep) and MILE(NetMF) as the coarsening
level increases on Blog (results on other datasets are similar). We observe that MILE
significantly reduces the memory consumption as the coarsening level increases. Even with
one level of coarsening, the memory consumption of GraRep and NetMF reduces by 64%
and 42% respectively. The dramatic reduction continues as the coarsening level increases
until it reaches 4, where the memory consumption is mainly contributed by the storage of
the graph and the embeddings. This memory reduction is consistent with our intuition,
since both # rows and # columns in the objective matrix reduce almost by half with one
level of coarsening.

A.6 MILE Drilldown: Discussion on reusing Θ(k) across all levels

Similar to GCN, Θ(k) is a matrix of filter parameters and is of size d ∗ d (where d is the
embedding dimensionality). Eq. 4 in this paper defines how the embeddings are propagated
during embedding refinements, parameterized by Θ(k) . Intuitively, Θ(k) defines how dif-
ferent embedding dimensions interact with each other during the embedding propagation.
This interaction is dependent on graph structure and base embedding method, which can
be learned from the coarsest level. Ideally, we would like to learn this parameter Θ(k) on
every two consecutive levels. But this is not practical since this could be expensive as the
graph get more fine-grained (and defeat our purpose of scaling up graph embedding). This
trick of “sharing” parameters across different levels is the trade-off between efficiency and

15



Under review as a conference paper at ICLR 2019

effectiveness. To some extent, it is similar to the original GCN (Kipf & Welling, 2017),
where the authors share the same filter parameters Θ(k) over the whole graph (as opposed
to using different Θ(k) for different nodes; see Eq (6) and (7) in(Kipf & Welling, 2017)).
Moreover, we empirically found this works good enough and much more efficient. Table 4
shows that if we do not share Θ(k) values and use random values for Θ(k) during refinements,
the quality of embedding is much worse (see baseline MILE-untr).

A.7 MILE Drilldown: Discussion on choice of embedding methods

We wish to point out that we chose the base embedding methods as they are either recently
proposed NetMF (introduced in 2018) or are widely used (DeepWalk, Node2Vec, LINE). By
showing the performance gain of using MILE on top of these methods, we want to ensure the
contribution of this work is of broad interest to the community. We also want to reiterate
that these methods are quite different in nature:

• DeepWalk (DW) and Node2vec (N2V) rely on the use of random walks for latent
representation of features.
• LINE learns an embedding that directly optimizes a carefully constructed objec-
tive function that preserves both first/second order proximity among nodes in the
embedding space.
• GraRep constructs multiple objective matrices based on high orders of random
walk laplacians, factories each objective matrix to generate embeddings and then
concatenates the generated embeddings to form final embedding.
• NetMF constructs an objective matrix based on random walk Laplacian and fac-
torizes the objective matrix in order to generate the embeddings.

Indeed NetMF (Qiu et al., 2018; Levy & Goldberg, 2014) with an appropriately constructed
objective matrix has been shown to approximate DW, N2V and LINE allowing such be
conducting implicit matrix factorization of approximated matrices. There are limitations to
such approximations (shown in a related context by (Arora et al., 2016)) - the most impor-
tant one is the requirement of a sufficiently large embedding dimensionality. Additionally,
we note that while unification is possible under such a scenario, the methods based on ma-
trix factorization are quite different from the original methods and do place a much larger
premium on space (memory consumption) - in fact this is observed by the fact we are unable
to run NetMF and GraRep in many cases without incorporating them within MILE.

A.8 MILE Drilldown: Discussion on extending MILE to directed graphs

Note that as pointed out by (Chung, 2005), one can construct random-walk Laplacians for
a directed graph thus incorporating approaches like NetMF to accommodate such solutions.
Another simple solution is to symmetrize the graph while accounting for directionality. Once
the graph is symmetrized, any of the embedding strategies we discuss can be employed
within the MILE framework (including the coarsening technique). There are many ideas
for symmetrization of directed graphs (see for example work described by (Gleich, 2006) or
(Satuluri & Parthasarathy, 2011).

A.9 MILE Drilldown: Discussion on effectiveness of SEM

The effectiveness of structurally equivalent matching (SEM) is highly dependent on graph
structure but in general 5% - 20% of nodes are structurally equivalent (most of which are
low-degree nodes). For example, during the first level of coarsening, YouTube has 172,906
nodes (or 86,453 pairs) out of 1,134,890 nodes that are found to be SEM (around 15%);
Yelp has 875,236 nodes (or 437,618 pairs) out of 8,938,630 nodes are SEM (around 10%).
In fact, more nodes are involved in SEM as SEM is run iteratively at each coarsening level.

16


	Introduction
	Related Work
	Problem Formulation
	Methodology
	Graph Coarsening
	Base Embedding on Coarsened Graph
	Refinement of Embeddings

	Experiments and Analysis
	Experimental Configuration
	MILE Framework Performance
	Comparing MILE with HARP
	MILE: Large Graph Embedding

	Conclusion
	Appendix
	Experimental Configuration Details
	Datasets
	Baseline Methods
	 MILE-specific Settings
	 System Specification
	 Evaluation Metrics

	Time Complexity
	MILE Performance
	MILE Drilldown: Design Choices
	MILE Drilldown: Memory Consumption
	MILE Drilldown: Discussion on reusing (k) across all levels
	MILE Drilldown: Discussion on choice of embedding methods
	MILE Drilldown: Discussion on extending MILE to directed graphs
	MILE Drilldown: Discussion on effectiveness of SEM


