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ABSTRACT

Existing graph embedding models often have weaknesses in exploiting graph
structure similarities, potential dependencies among nodes and global network
properties. To this end, we present U2GNN, a novel embedding model leveraging
on the strength of the recently introduced universal self-attention network (De-
hghani et al., 2019), to learn low-dimensional embeddings of graphs which can be
used for graph classification. In particular, given an input graph, U2GNN first ap-
plies a self-attention computation, which is then followed by a recurrent transition
to iteratively memorize its attention on vector representations of each node and
its neighbors across each iteration. Thus, U2GNN can address the weaknesses in
the existing models in order to produce plausible node embeddings whose sum is
the final embedding of the whole graph. Experimental results in both supervised
and unsupervised fashions show that our U2GNN produces new state-of-the-art
performances on a range of well-known benchmark datasets for the graph classi-
fication task.

1 INTRODUCTION

Many real-world and scientific data are represented in forms of graphs, e.g. data from knowledge
graphs, recommender systems, social and citation networks as well as telecommunication and bi-
ological networks (Battaglia et al., 2018; Zhang et al., 2018c). In general, a graph can be viewed
as a network of nodes and edges, where nodes correspond to individual objects and edges encode
relationships among those objects. For example, in online forum, each discussion thread can be con-
structed as a graph where nodes represent users and edges represent commenting activities between
users (Yanardag & Vishwanathan, 2015).

Early approaches focus on computing the similarities among graphs to build a graph kernel for graph
classification (Gärtner et al., 2003; Kashima et al., 2003; Borgwardt & Kriegel, 2005; Shervashidze
et al., 2009; Vishwanathan et al., 2010; Shervashidze et al., 2011; Yanardag & Vishwanathan, 2015;
Narayanan et al., 2017; Ivanov & Burnaev, 2018). These graph kernel-based approaches treat each
atomic substructure (e.g., subtree structure, random walk or shortest path) as an individual feature,
and count their frequencies to construct a numerical vector to represent the entire graph, hence they
ignore node attributes, substructure similarities and global network properties.

One recent notable strand is to learn low-dimensional continuous embeddings of the whole graphs
(Hamilton et al., 2017b; Zhang et al., 2018a; Zhou et al., 2018), and then use these learned embed-
dings to train a classifier to predict graph labels (Wu et al., 2019). Advanced approaches in this
direction have attempted to exploit graph neural network (Scarselli et al., 2009), capsule network
(Sabour et al., 2017) or graph convolutional neural network (Kipf & Welling, 2017; Hamilton et al.,
2017a) for supervised learning objectives (Li et al., 2016; Niepert et al., 2016; Zhang et al., 2018b;
Ying et al., 2018; Verma & Zhang, 2018; Xu et al., 2019; Xinyi & Chen, 2019; Maron et al., 2019b;
Chen et al., 2019). These graph neural network (GNN)-based approaches usually consist of two
common phases: the propagating phase and the readout phase. The former phase aims to iteratively
update vector representation of each node by recursively aggregating representations of its neigh-
bors, and then the latter phase applies a pooling function (e.g., mean, max or sum pooling) on output
node representations to produce an embedding of each entire graph; and this graph embedding is
used to predict the graph label. We find that these approaches are currently showing very promis-
ing performances, nonetheless the dependency aspect among nodes, which often exhibit strongly
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in many kinds of real-world networks, has not been exploited effectively due to lack of advanced
computations within the propagating phase.

Very recently, the universal self-attention network (Dehghani et al., 2019) has been shown to be
very powerful in NLP tasks such as question answering, machine translation and language model-
ing. Inspired by this new attention network, we propose U2GNN – a novel universal self-attention
graph neural network to learn plausible node and graph embeddings. Our intuition comes from an
observation that the recurrent attention process in the universal self-attention network can memorize
implicit dependencies between each node and its neighbors from previous iterations, which can be
then aggregated to further capture the dependencies among substructures into latent representations
in subsequent iterations; this process, hence, can capture both local and global graph structures. Al-
gorithmically, at each timestep, our proposed U2GNN iteratively exchanges a node representation
with its neighborhood representations using a self-attention mechanism (Vaswani et al., 2017) fol-
lowed by a recurrent transition to infer node embeddings. We finally take the sum of all learned node
embeddings to obtain the embedding of the whole graph. Our main contributions are as follows:

• In our proposed U2GNN, the novelty of memorizing the dependencies among nodes implies that
U2GNN can explore the graph structure similarities locally and globally – an important feature
that most of existing approaches are unable to do.

• U2GNN can be seen as a general framework where we prove the powerfulness of our model in
both supervised or unsupervised fashions. The experimental results on 9 well-known benchmark
datasets for the graph classification task show that both our supervised and unsupervised U2GNN
models produce new state-of-the-art (SOTA) accuracies in most of benchmark cases.

• To our best of knowledge, our work is the first to show that a unsupervised model can noticeably
outperform up-to-date supervised approaches by a large margin. Therefore, we suggest that future
GNN works should pay more attention to the unsupervised fashion as well as not comparing
supervised models with unsupervised models together. This is important in both industry and
academic applications in reality where expanding unsupervised GNN models is more suitable
due to the limited availability of class labels.

2 RELATED WORK

Early popular approaches are based on “graph kernel” which aims to recursively decompose each
graph into “atomic substructures” (e.g., graphlets, subtree structures, random walks or shortest
paths) in order to measure the similarity between two graphs (Gärtner et al., 2003). For this reason,
we can view each atomic substructure as a word token and each graph as a text document, hence
we represent a collection of graphs as a document-term matrix which describes the normalized fre-
quency of terms in documents. Then, we can use a dot product to compute the similarities among
graphs to derive a kernel matrix used to measure the classification performance using a kernel-based
learning algorithm such as Support Vector Machines (SVM) (Hofmann et al., 2008). We refer to an
overview of the graph kernel-based approaches in (Nikolentzos et al., 2019; Kriege et al., 2019).

Since the introduction of word embedding models i.e., Word2Vec (Mikolov et al., 2013) and
Doc2Vec (Le & Mikolov, 2014), there have been several efforts attempted to apply them for the
graph classification task. Deep Graph Kernel (DGK) (Yanardag & Vishwanathan, 2015) applies
Word2Vec to learn embeddings of atomic substructures to create the kernel matrix. Graph2Vec
(Narayanan et al., 2017) employs Doc2Vec to obtain embeddings of entire graphs in order to train a
SVM classifier to perform classification. Anonymous Walk Embedding (AWE) (Ivanov & Burnaev,
2018) maps random walks into “anonymous walks” which are considered as word tokens, and then
utilizes Doc2Vec to achieve the graph embeddings to produce the kernel matrix.

In parallel, another recent line of work has focused on using deep neural networks to perform the
graph classification in a supervised manner. PATCHY-SAN (Niepert et al., 2016) adapts a graph la-
beling procedure to generate a fixed-length sequence of nodes from an input graph, and orders k-hop
neighbors for each node in the generated sequence according to their graph labelings; PATCHY-SAN
then selects a fixed number of ordered neighbors for each node and applies a convolutional neural
network to classify the input graph. MPNN (Gilmer et al., 2017), DGCNN (Zhang et al., 2018b)
and DIFFPOOL (Ying et al., 2018) are end-to-end supervised models which share similar two-phase
process by (i) using stacked multiple graph convolutional layers (e.g., GCN layer (Kipf & Welling,
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2017) or GraphSAGE layer (Hamilton et al., 2017a)) to aggregate node feature vectors, and (ii) ap-
plying a graph-level pooling layer (e.g., mean, max or sum pooling, sort pooling or differentiable
pooling) to obtain the graph embeddings which are then fed to a fully-connected layer followed by
a softmax layer to predict the graph labels.

Graph neural networks (GNNs) (Scarselli et al., 2009) aim to iteratively update the vector represen-
tation of each node by recursively propagating the representations of its neighbors using a recurrent
function until convergence. The recurrent function can be a neural network e.g., gated recurrent unit
(GRU) (Li et al., 2016), or multi-layer perceptron (MLP) (Xu et al., 2019). Note that both stacked
GCN and GraphSAGE multiple layers can be seen as variants of the recurrent function in GNNs.
Other graph embedding models are briefly summarized in (Zhou et al., 2018; Zhang et al., 2018c;
Wu et al., 2019).

3 THE PROPOSED U2GNN

In this section, we detail how to construct our U2GNN and then present how U2GNN learns model
parameters to produce node and graph embeddings.

Figure 1: Illustration of our U2GNN learning process, e.g., for node 3 with d = 2 and N = 3.

Graph classification. Given a set of graphs {G1,G2, ...,GN} ⊆ G and their corresponding class
labels {y1, y2, ..., yN} ⊆ Y , our U2GNN aims to learn a plausible embedding oG of each entire
graph G in order to predict its label y.

Each graph G is defined as G = (V, E ,X), where V is a set of nodes, E is a set of edges, and
X ∈ R|V|×d represents feature vectors of nodes. In U2GNN, as illustrated in Figure 1, we use a
universal self-attention network (Dehghani et al., 2019) to learn a node embedding ov of each node
v ∈ V , and then oG is simply returned by summing all learned node embeddings as follows:1

oG = SUM ({ov,∀v ∈ V}) (1)

Constructing U2GNN. Formally, given an input graph G, we uniformly sample a set ofN neighbors
for each v ∈ V , and then use node v and its neighbors for the U2GNN learning process.2 For
example, as illustrated in Figure 1, we generate a set of N = 3 neighbors {1, 2, 4} for node 3, and
then consider {3, 1, 2, 4} as an input to U2GNN where we leverage on the universal self-attention
network (Dehghani et al., 2019) to learn an effective embedding of node 3.

Intuitively, the universal self-attention network can help to better aggregate feature vectors from
neighbors of a given node to produce its plausible embedding. In particular, each node and its
neighbors is transformed into a sequence of feature vectors which are then iteratively refined at each
timestep – using a self-attention mechanism (Vaswani et al., 2017) followed by a recurrent transition
(TRANS) with adding residual connection (He et al., 2016) and layer normalization (LNORM) (Ba
et al., 2016).

Given a node v ∈ V , we consider a sequence of (N +1) nodes {vi}N+1
i=1 where v1 = v and {vi}N+1

i=2

are N sampled neighbors of v. We obtain an input sequence of feature vectors {h0vi}
N+1
i=1 for which

1The experimental results in (Xu et al., 2019) show that the sum pooling performs better than the mean and
max poolings.

2We sample a different set of neighbors at each training step.
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h0vi = Xvi ∈ Rd. In U2GNN, at each step t, we feed {ht−1vi }
N+1
i=1 as an input sequence and produce

an output sequence {htvi}
N+1
i=1 for which htvi ∈ Rd as follows:

htvi = LNORM
(
xtvi + TRANS

(
xtvi
))

(2)

with xtvi = LNORM
(
ht−1vi + ATT

(
ht−1vi

))
(3)

where TRANS(.) and ATT(.) denote a feed-forward network and a self-attention network respec-
tively as follows:

TRANS
(
xtvi
)
= W2ReLU

(
W1x

t
vi + b1

)
+ b2 (4)

where W1 ∈ Rk×d and W2 ∈ Rd×k are weight matrices, and b1 and b2 are bias parameters, and:

ATT
(
ht−1vi

)
=

N+1∑
j=1

αi,j

(
V ht−1vj

)
(5)

where V ∈ Rd×d is a value-projection weight matrix; αi,j is an attention weight which is computed
using the softmax function over scaled dot products between the i-th and j-th input nodes:

αi,j = softmax

(Qht−1vi

)
·
(
Kht−1vj

)
√
d

 (6)

where Q ∈ Rd×d and K ∈ Rd×d are query-projection and key-projection matrices, respectively.3

Algorithm 1: The unsupervised learning process.
1 Input: G = (V, E ,X)
2 for v ∈ V do
3 SAMPLE {vi}N+1

i=1 where {vi}N+1
i=2 are N

sampled neighbors of v1 = v
4 for t = 1, 2, ..., T do
5 ∀i ∈ {1, 2, ..., (N + 1)}
6 xtvi ← LNORM

(
ht−1vi + ATT

(
ht−1vi

))
7 htvi ← LNORM

(
xtvi + TRANS

(
xtvi
))

8 ov ← hTv , ∀v ∈ V
9 oG = SUM ({ov,∀v ∈ V})

Algorithm 2: The supervised learning process.
1 Input: G = (V, E ,X) with its label y
2 for v ∈ V do
3 SAMPLE {vi}N+1

i=1 where {vi}N+1
i=2 are N

sampled neighbors of v1 = v
4 for t = 1, 2, ..., T do
5 ∀i ∈ {1, 2, ..., (N + 1)}
6 xtvi ← LNORM

(
ht−1vi + ATT

(
ht−1vi

))
7 htvi ← LNORM

(
xtvi + TRANS

(
xtvi
))

8 oG = SUM
(
{hTv ,∀v ∈ V}

)
9 y←WoG + b

Learning parameters of U2GNN in “unsupervised” fashion: After T steps, we use the vector
representation hTv1 to infer node embeddings ov1 . For example, as shown in Figure 1, we have
v1 = 3, v2 = 1, v3 = 2 and v4 = 4, and then consider hT3 to infer o3. We learn our model
parameters (including the weight matrices and biases as well as node embeddings ov) by minimizing
the sampled softmax loss function (Jean et al., 2015) applied to node v ∈ V as follows:

LU2GNN (v) = − log
exp(ov · hTv )∑

v′∈V′ exp(ov′ · hTv )
(7)

where V ′ is a subset sampled from V .

We briefly describe the general learning process of our proposed U2GNN model in Algorithm 1.
Here, the learned node embeddings ov are used as the final representations of nodes v ∈ V . After
that, we obtain the plausible embedding oG of the graph G by summing all learned node embeddings
as mentioned in Equation 1. Finally, we employ a logistic regression classifier from LIBLINEAR
(Fan et al., 2008) to predict the graph labels.

3It is important to note that GAT (Veličković et al., 2018) borrows the standard attention technique from
(Bahdanau et al., 2015) in using a single-layer feedforward neural network parametrized by a weight vector and
then applying the LeakyReLU non-linearity function followed by the softmax function to compute importance
weights of neighbors of a given node. Therefore, GAT is much different with the self-attention mechanism.
More information about GCN, GraphSAGE and GAT can be found in Appendix A.
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Learning parameters of U2GNN in “supervised” fashion: We do not need to learn the node
embeddings separately, hence after T steps, we use hTv1 as the final embedding of node v1 ∈ V
(i.e., ov = hTv ). We then feed oG to a fully connected layer to predict the graph labels as briefly
presented in Algorithm 2. Finally, we learn the model parameters by minimizing the cross entropy
loss function.

Proof: In general, on the node level, each node and its neighbors are iteratively attended in the recur-
rent process with weight matrices shared across timesteps and iterations, thus U2GNN can memorize
the potential dependencies among nodes within substructures. On the graph level, U2GNN views
the shared weight matrices as memories to access the updated node-level information from previ-
ous iterations to further aggregate broader dependencies among substructures into implicit graph
representations in subsequent iterations. Therefore, U2GNN is advantageous to capture both global
and local graph structures to learn effective node and graph embeddings, leading to state-of-the-art
performances for the graph classification task.

4 EXPERIMENTAL SETUP

We prove the effectiveness of our U2GNN on the graph classification task using a range of well-
known benchmark datasets for both supervised and unsupervised fashions.

4.1 DATASETS

We use 9 well-known datasets consisting of 5 social network datasets (COLLAB, IMDB-B, IMDB-
M, RDT-B and RDT-M5K) (Yanardag & Vishwanathan, 2015) and 4 bioinformatics datasets (DD,
MUTAG, PROTEINS and PTC). We follow (Niepert et al., 2016; Zhang et al., 2018b) to use node
degrees as features on all social network datasets as these datasets do not have available node fea-
tures. Table 1 reports the statistics of these datasets.

Dataset #G #Cls A.NG A.NN d

COLLAB 5,000 3 74.5 65.9 –
IMDB-B 1,000 2 19.8 9.8 –
IMDB-M 1,500 3 13.0 10.1 –
RDT-B 2,000 2 429.6 2.3 –
RDT-M5K 5,000 5 508.5 2.3 –
DD 1,178 2 284.3 5.0 82
MUTAG 188 2 17.9 2.2 7
PROTEINS 1,113 2 39.1 3.7 3
PTC 344 2 25.6 2.0 19

Table 1: Statistics of the experimental benchmark
datasets. #G denotes the numbers of graphs. #Cls
denotes the number of graph classes. A.NG denotes
the average number of nodes per graph. A.NN de-
notes the average number of neighbors per node. d is
the dimension of node feature vectors (i.e. the num-
ber of node labels).

Social networks datasets. COLLAB is a
scientific dataset where each graph repre-
sents a collaboration network of a corre-
sponding researcher with other researchers
from each of 3 physics fields; and each graph
is labeled to a physics field the researcher be-
long to. IMDB-B and IMDB-M are movie
collaboration datasets where each graph is
derived from actor/actress and genre infor-
mation of different movies on IMDB, in
which nodes correspond to actors/actresses,
and each edge represents a co-appearance of
two actors/actresses in the same movie; and
each graph is assigned to a genre. RDT-
B and RDT-M5K are datasets derived from
Reddit community, in which each online dis-
cussion thread is viewed as a graph where
nodes correspond to users, two users are
linked if at least one of them replied to
another’s comment; and each graph is la-
beled to a sub-community the corresponding

thread belongs to.

Bioinformatics datasets. DD (Dobson & Doig, 2003) is a collection of 1,178 protein network struc-
tures with 82 discrete node labels, where each graph is classified into enzyme or non-enzyme class.
PROTEINS comprises 1,113 graphs obtained from (Borgwardt et al., 2005) to present secondary
structure elements (SSEs). MUTAG (Debnath et al., 1991) is a collection of 188 nitro compound
networks with 7 discrete node labels, where classes indicate a mutagenic effect on a bacterium. PTC
(Toivonen et al., 2003) consists of 344 chemical compound networks with 19 discrete node labels
where classes show carcinogenicity for male and female rats.
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4.2 TRAINING PROTOCOL TO LEARN GRAPH EMBEDDINGS

Coordinate embedding: The relative coordination among nodes might provide meaningful infor-
mation about graph structure. We follow Dehghani et al. (2019) to associate each position i at step
t a pre-defined coordinate embedding pti using the sinusoidal functions (Vaswani et al., 2017), thus
we can change Equation 3 in Section 3 to:

xtvi = LNORM
(
ht−1vi + ATT

(
ht−1vi + pti

))
(8)

with pti,2j = sin(i/100002j/d) + sin(t/100002j/d)

pti,2j+1 = cos(i/100002j/d) + cos(t/100002j/d)

From the preliminary experiments, adding coordinate embeddings enhances classification results on
MUTAG and PROTEINS in the unsupervised fashion, hence we use the coordinate embeddings
only for these two datasets.

Hyper-parameter setting to learn our model parameters for all experimental datasets: (i) Re-
garding the unsupervised fashion, we fix the hidden size of the feed-forward network in Equation
4 to 1024 (k = 1024), and the number of samples in the sampled loss function LU2GNN to 512
(|V ′| = 512) in Equation 7. We set the batch size to 512 for COLLAB, DD and RDT-B; 1024 for
RDT-M5K; and 128 for remaining datasets. (ii) Regarding the supervised fashion, we vary the the
hidden size k in {32, 128, 512, 1024} and the batch size in {1, 2, 4}. (iii) For both the unsupervised
and supervised fashions, we use the number N of neighbors sampled for each node from {4, 8, 16}
and the number T of steps from {1, 2, 3, 4, 5, 6}. We apply the Adam optimizer (Kingma & Ba,
2014) to train our U2GNN model and apply a grid search to select the Adam initial learning rate
lr ∈ {5e−5, 1e−4, 5e−4, 1e−3}. We run up to 50 epochs and evaluate the model as in what follows.

4.3 EVALUATION PROTOCOL

For each dataset, after obtaining the graph embeddings, we perform the same evaluation process
from (Yanardag & Vishwanathan, 2015; Niepert et al., 2016; Zhang et al., 2018b; Xu et al., 2019;
Xinyi & Chen, 2019), which is using 10-fold cross-validation scheme to calculate the classification
performance for a fair comparison.4

Baseline models: We compare our U2GNN with up-to-date strong baselines as follows:

• Unsupervised approaches: Graphlet Kernel (GK) (Shervashidze et al., 2009), Weisfeiler-
Lehman kernel (WL) (Shervashidze et al., 2011), Deep Graph Kernel (DGK) (Yanardag & Vish-
wanathan, 2015) and Anonymous Walk Embedding (AWE) (Ivanov & Burnaev, 2018).

• Supervised approaches: PATCHY-SAN (PSCN) (Niepert et al., 2016), Graph Convolutional
Network (GCN) (Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017a), Deep Graph
CNN (DGCNN) (Zhang et al., 2018b), Graph Capsule Convolution Neural Network (GCAPS)
(Verma & Zhang, 2018), Capsule Graph Neural Network (CapsGNN) (Xinyi & Chen, 2019),
Graph Isomorphism Network (GIN) (Xu et al., 2019), Graph Feature Network (GFN) (Chen et al.,
2019), Invariant-Equivariant Graph Network (IEGN) (Maron et al., 2019b), Provably Powerful
Graph Network (PPGN) (Maron et al., 2019a) and Discriminative Structural Graph Classification
(DSGC) (Seo et al., 2019).

We report the baseline results taken from the original papers or published in (Ivanov & Burnaev,
2018; Verma & Zhang, 2018; Xinyi & Chen, 2019; Chen et al., 2019; Seo et al., 2019).

5 EXPERIMENTAL RESULTS

Table 2 presents the experimental results on the 9 benchmark datasets. We use “Unsupervised” to
denote the unsupervised graph embedding models that can access all nodes from the whole dataset,
but not the graph labels; and we use “Supervised” to denote the supervised models that use the
graph labels of training graphs during training.

4Regarding the unsupervised fashion, we use the logistic regression classifier from LIBLINEAR (Fan et al.,
2008) with setting the termination criterion to 0.001.
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In general, our unsupervised U2GNN achieves state-of-the-art performances on a range of bench-
marks for the graph classification task, hence this demonstrates a high impact of the unsupervised
U2GNN in inferring the plausible node and graph embeddings. It is to note that several existing
works (Xinyi & Chen, 2019; Xu et al., 2019; Chen et al., 2019; Maron et al., 2019b; Seo et al.,
2019) compared the supervised models with the unsupervised models together due to the use of
the same 10-fold cross-validation scheme. However, our unsupervised U2GNN significantly out-
performs the supervised methods in most of benchmark cases by a large margin of 18+%, thus we
suggest that future GNN works should separate two training fashions.

Model COLLAB IMDB-B IMDB-M RDT-B RDT-M5K

U
ns

up
er

vi
se

d GK (2009) 72.84 ± 0.28 65.87 ± 0.98 43.89 ± 0.38 77.34 ± 0.18 41.01 ± 0.17
WL (2011) 79.02 ± 1.77 73.40 ± 4.63 49.33 ± 4.75 81.10 ± 1.90 49.44 ± 2.36
DGK (2015) 73.09 ± 0.25 66.96 ± 0.56 44.55 ± 0.52 78.04 ± 0.39 41.27 ± 0.18
AWE (2018) 73.93 ± 1.94 74.45 ± 5.83 51.54 ± 3.61 87.89 ± 2.53 50.46 ± 1.91
U2GNN 95.62 ± 0.92 93.50 ± 2.27 74.80 ± 4.11 84.80 ± 1.53 77.25 ± 1.46

Su
pe

rv
is

ed

DSGC (2019) 79.20 ± 1.60 73.20 ± 4.90 48.50 ± 4.80 92.20 ± 2.40 –
GFN (2019) 81.50 ± 2.42 73.00 ± 4.35 51.80 ± 5.16 – 57.59 ± 2.40
PPGN (2019a) 81.38 ± 1.42 73.00 ± 5.77 50.46 ± 3.59 – –
GIN (2019) 80.20 ± 1.90 75.10 ± 5.10 52.30 ± 2.80 92.40 ± 2.50 57.50 ± 1.50
IEGN (2019b) 77.92 ± 1.70 71.27 ± 4.50 48.55 ± 3.90 – –
CapsGNN (2019) 79.62 ± 0.91 73.10 ± 4.83 50.27 ± 2.65 – 50.46 ± 1.91
GCAPS (2018) 77.71 ± 2.51 71.69 ± 3.40 48.50 ± 4.10 87.61 ± 2.51 50.10 ± 1.72
DGCNN (2018b) 73.76 ± 0.49 70.03 ± 0.86 47.83 ± 0.85 76.02 ± 1.73 48.70 ± 4.54
GCN (2017) 81.72 ± 1.64 73.30 ± 5.29 51.20 ± 5.13 – 56.81 ± 2.37
GraphSAGE (2017a) 79.70 ± 1.70 72.40 ± 3.60 49.90 ± 5.00 89.10 ± 1.90 –
PSCN (2016) 72.60 ± 2.15 71.00 ± 2.29 45.23 ± 2.84 86.30 ± 1.58 49.10 ± 0.70
U2GNN 77.84 ± 1.48 79.40 ± 4.35 56.20 ± 3.35 80.25 ± 2.38 50.90 ± 2.31

Model DD PROTEINS MUTAG PTC

U
ns

up
er

vi
se

d GK (2009) 78.45 ± 0.26 71.67 ± 0.55 81.58 ± 2.11 57.26 ± 1.41
WL (2011) 79.78 ± 0.36 74.68 ± 0.49 82.05 ± 0.36 57.97 ± 0.49
DGK (2015) 73.50 ± 1.01 75.68 ± 0.54 87.44 ± 2.72 60.08 ± 2.55
AWE (2018) 71.51 ± 4.02 – 87.87 ± 9.76 –
U2GNN 95.67 ± 1.89 78.07 ± 3.36 81.34 ± 6.56 84.59 ± 5.12

Su
pe

rv
is

ed

DSGC (2019) 77.40 ± 6.40 74.20 ± 3.80 86.70 ± 7.60 –
GFN (2019) 78.78 ± 3.49 76.46 ± 4.06 90.84 ± 7.22 –
PPGN (2019a) – 77.20 ± 4.73 90.55 ± 8.70 66.17 ± 6.54
GIN (2019) – 76.20 ± 2.80 89.40 ± 5.60 64.60 ± 7.00
IEGN (2019b) – 75.19 ± 4.30 84.61 ± 10.0 59.47 ± 7.30
CapsGNN (2019) 75.38 ± 4.17 76.28 ± 3.63 86.67 ± 6.88 –
GCAPS (2018) 77.62 ± 4.99 76.40 ± 4.17 – 66.01 ± 5.91
DGCNN (2018b) 79.37 ± 0.94 75.54 ± 0.94 85.83 ± 1.66 58.59 ± 2.47
GCN (2017) 79.12 ± 3.07 75.65 ± 3.24 87.20 ± 5.11 –
GraphSAGE (2017a) 65.80 ± 4.90 65.90 ± 2.70 79.80 ± 13.90 –
PSCN (2016) 77.12 ± 2.41 75.89 ± 2.76 92.63 ± 4.21 62.29 ± 5.68
U2GNN 81.24 ± 1.84 78.53 ± 4.07 89.97 ± 3.65 79.36 ± 4.06

Table 2: Graph classification results (% accuracy). The best scores are in bold.

Regarding our supervised U2GNN, on the social network datasets, our model produces new state-
of-the-art performances on IMDB-B and IMDB-M, especially U2GNN significantly achieves 4+%
absolute higher accuracies than all supervised baselines. In addition, U2GNN obtains promising
scores on COLLAB, RDT-B and RDT-M5K. On the bioinformatics datasets, our U2GNN obtains
new highest accuracies on DD, PROTEINS and PTC. Moreover, U2GNN produces a competitive
accuracy compared with those of baseline models on MUTAG, for which there are no significant
differences between our supervised U2GNN and some supervised baselines (e.g., GFN, GIN and

7
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PPGN). Note that there are only 188 graphs in the MUTAG dataset, which explains the high variance
in the results.

10 15 20 25 30 35 40 45 50
Epoch

92.5

93.0

93.5

94.0

94.5

95.0

95.5

Ac
cu

ra
cy

COLLAB
1
2
3
4
5
6

15 20 25 30 35 40 45 50
Epoch

66

68

70

72

74

Ac
cu

ra
cy

IMDB-M
1
2
3
4
5
6

10 20 30 40 50
Epoch

91

92

93

94

95

Ac
cu

ra
cy

DD
1
2
3
4
5
6

10 15 20 25 30 35 40 45 50
Epoch

93.0

93.5

94.0

94.5

95.0

95.5

Ac
cu

ra
cy

COLLAB
4
8
16

15 20 25 30 35 40 45 50
Epoch

64

66

68

70

72

74

Ac
cu

ra
cy

IMDB-M
4
8
16

10 20 30 40 50
Epoch

91.5

92.0

92.5

93.0

93.5

94.0

94.5

95.0

95.5

Ac
cu

ra
cy

DD
4
8
16

Figure 2: Effects of the number of steps (T ) (in the 3 top figures), and the number of neighbors
(N ) sampled for each node (in the 3 bottom figures) in the unsupervised fashion. Regarding each
dataset, for all 10 folds, we vary the value of either T or N while using the same fixed values of
other hyper-parameters.

Next we investigate the effects of hyper-parameters on the experimental datasets in the unsupervised
fashion in Figure 2.5 In general, our unsupervised U2GNN could consistently obtain better results
than those of baselines with any value of T andN , as long as the training process is stopped precisely
for all datasets. In particular, we find that higher T helps on most of the datasets, and especially
boosts the performance on bioinformatics data. A possible reason is that the bioinformatics datasets
comprise sparse networks where the average number of neighbors per node is below 5 as shown
in Table 1, hence we need to use more steps to learn graph properties. In addition, using small N
generally produces higher performances on the bioinformatics datasets, while using higher values
of N is more suitable for the social network datasets. Besides, the social network datasets are
much denser than the bioinformatics datasets, thus this is reason why we should use more sampled
neighbors on the social networks rather than the bioinformatics ones. Note that the similar findings
also occur in the supervised fashion.
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Figure 3: A visualization of the node and graph embeddings learned by our unsupervised U2GNN
on the DD dataset. We do not include the embedding visualization of other baselines because those
methods are significantly different from our unsupervised U2GNN.

To qualitatively demonstrate the effectiveness of capturing the local and global graph properties,
we use t-SNE (Maaten & Hinton, 2008) to visualize the learned node and graph embeddings in the

5More figures can be found in Appendix B.
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unsupervised fashion on the DD dataset where the node labels are available. It can be seen from
Figure 3 that our unsupervised U2GNN can effectively capture the local structure wherein the nodes
are clustered according to the node labels, and the global structure wherein the graph embeddings are
well-separated from each other; verifying the plausibility of the learned node and graph embeddings.

6 CONCLUSION

In this paper, we introduce a novel graph neural network model U2GNN for the graph classification
task. Given an input graph, U2GNN applies a self-attention mechanism followed by a recurrent
transition to learn the node embeddings and then sums all the learned node embeddings to obtain
the embedding of the entire graph. Our U2GNN achieves new highest accuracies on most of 9
well-known benchmark datasets in both the supervised and unsupervised fashions, using the same
10-fold cross-validation scheme, against the up-to-date unsupervised and supervised baselines. In
future works, we plan to investigate the effectiveness of U2GNN on other important tasks such as
node classification and link prediction. Our code is available at: https://anonymous-url/.
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A GNN VARIANTS

Regarding GCN (Kipf & Welling, 2017), each node v ∈ V has a feature vector xv ∈ Rd1 , and GCN
infers a new vector representation hv ∈ Rd2 for node v from its neighbors as follows:

hv = g

 ∑
u∈Nv∪{v}

(Wxu + b)

 ,∀v ∈ V (9)

where W ∈ Rd2×d1 and b ∈ Rd2 are a weight matrix and a bias respectively, g is a non-linear
activation function, and Nv is the set of neighbors of node v. GCN can indirectly capture nodes at
many hops away by using multiple GCN layers stacked on top of each other as follows:

h(k+1)
v = g

 ∑
u∈Nv∪{v}

(
W (k)h(k)

u + b(k)
) ,∀v ∈ V (10)
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where k is the layer index, and h
(0)
u = xu. The vector outputs of the last GCN layer are used as the

final vector representations of nodes. GCN can be jointly trained with a classification classifier by
minimizing the cross-entropy loss function.

GraphSAGE (Hamilton et al., 2017a) is an extension of GCN, in which the representation h
(k+1)
v of

node v after k-th GraphSAGE layer is produced as follows:

h(k+1)
v = g

(
W

(k)
SAGE

[
h(k)
v ⊕ h

(k+1)
Nv

])
,∀v ∈ V (11)

where [⊕] denotes a vector concatenation operation, and h
(k+1)
Nv

can be computed in several ways
such as using the GCN computation as follows:

h
(k+1)
Nv

= g

(∑
u∈Nv

(
W

(k)
GCNh(k)

u + b(k)
))

,∀v ∈ V (12)

or applying an element-wise max-pooling operation as follows:

h
(k+1)
Nv

= max
(
{g
(
Wpoolh

(k)
u + b

)
,∀u ∈ Nv}

)
(13)

In addition, h(k+1)
Nv

can be computed by taking the mean (or sum) of all vectors in {h(k)
u ,∀u ∈ Nv}.

Nv is defined as a fixed-size, uniformly drawn from the set of all neighbor nodes of v, and uniformly
sampled differently through each layer. The vector outputs of the last GraphSAGE layer are used
to infer node embeddings. GraphSAGE employs the random walk algorithm (Perozzi et al., 2014)
to generate context nodes for each target node and then adapts the negative sampling technique
(Mikolov et al., 2013) to learn the model parameters.

GAT (Veličković et al., 2018) extends GCN in assigning importance weights to neighbors of a given
node by exploring the standard attention technique (Bahdanau et al., 2015). GAT induces a new
vector representation hv of node v from its neighbors as follows:

hv = g

 ∑
u∈Nv∪{v}

τv,uWxu

 ,∀v ∈ V (14)

where τv,u is an importance weight which is computed as follows:

τv,u =
exp

(
LeakyReLU

(
aT [Wxv ⊕Wxu]

))∑
u′∈Nv

exp (LeakyReLU (aT [Wxv ⊕Wxu′ ]))
(15)

B EFFECTS OF HYPER-PARAMETERS
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Figure 4: Effects of the number of steps (T ) in the unsupervised fashion. Regarding each dataset,
for all 10 folds, we vary the value of T while using the same fixed values of other hyper-parameters.
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Figure 5: Effects of the number of neighbors (N ) sampled for each node in the unsupervised fashion.
Regarding each dataset, for all 10 folds, we vary the value of N while using the same fixed values
of other hyper-parameters.
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