
Under review as a conference paper at ICLR 2019

IMAGE SCORE: HOW TO SELECT USEFUL SAMPLES

Anonymous authors
Paper under double-blind review

ABSTRACT

There has long been debates on how we could interpret neural networks and under-
stand the decisions our models make. Specifically, why deep neural networks tend
to be error-prone when dealing with samples that output low softmax scores. We
present an efficient approach to measure the confidence of decision-making steps
by statistically investigating each unit’s contribution to that decision. Instead of
focusing on how the models react on datasets, we study the datasets themselves
given a pre-trained model. Our approach is capable of assigning a score to each
sample within a dataset that measures the frequency of occurrence of that sample’s
chain of activation. We demonstrate with experiments that our method could se-
lect useful samples to improve deep neural networks in a semi-supervised leaning
setting.

1 INTRODUCTION

Since its development two decades ago, Convolutional Neural Networks (LeCun et al., 1998) grad-
ually dominate in tasks such as image classification and object detection. Various network architec-
tures (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014; He et al., 2016) all prove the power
of CNNs. On the other hand, many people believe that the end-to-end training approach makes the
network a black box. However, recent efforts in visualizing (Zeiler & Fergus, 2014; Mahendran
& Vedaldi, 2015) and understanding (Bau et al., 2017; Koh & Liang, 2017) CNNs reveal that de-
spite the large number of hidden parameters, convolutional networks show intrinsic patterns during
training.

The idea of explainable artificial intelligence suggests that in order to further improve deep models,
we should first be able to understand the intrinsic structures that the models learned from training, i.e.
why the model classify a certain image to a specific class, and how did the model make that decision.
Recently more researchers focus on the aforementioned problem and try to interpret CNNs. The
network dissection method, proposed by Bau et al., is an efficient way to score unit interpretability in
terms of trained CNNs operating on Broden dataset. The method considers each image’s activation
map and defines an intersection over union score to quantify each concept’s interpretability. In
another paper (Zhou et al., 2014), it is suggested that each individual unit behaves as detectors in
a network trained to classify scenes. There are also papers that employ inverse method to study
networks (Nguyen et al., 2016), where the authors suggest that instead of trying to interpret CNNs,
we should synthesize images base on the models, and interpretability of networks could be judged
by the quality of synthesized images. Beyond simply analyzing convolutional neural networks,
there are also models designed to learn a better representation of semantic meanings, which are
encoded by specificity and generality of neurons in each layer (Yosinski et al., 2014). Dynamic
routing between capsules (Sabour et al., 2017) could parse images into capsules where each capsule
encodes a specific semantic meaning. Zhang et al. proposed an interpretable convolutional neural
network where high convolutional layers represent certain object parts (Zhang et al., 2018).

However, almost all of the existed works investigate only the models and ignore the relationship be-
tween models and samples. The network dissection method (Bau et al., 2017) focuses on the amount
of units that could be interpreted, while the neural activation constellation method (Simon & Rod-
ner, 2015) could learn part models in an unsupervised manner. Different than the above-mentioned
approached, we believe that sampling distributions, i.e. datasets, encode their own features; and that
no network would work on all distributions. As a consequence, relationships between models and
samples should examined more carefully.

1



Under review as a conference paper at ICLR 2019

Unlike traditional supervised learning that requires fully labeled data to train a classifier, semi-
supervised learning requires only a portion of data to be labeled, which demands less effort in data
preparation and is more practical in real life. Consider a semi-supervised leaning task where both
the labeled and the unlabeled data come from the same sampling distribution. A straightforward
technique is that we first train a model on the labeled data, and then use this model to classify
the unlabeled parts of the dataset to enlarge the training set. After this, all the data are labeled
regardless of correctness. The model could then be re-trained by iteratively performing the above
steps. However, experiments have shown that this approach does not work well on CNNs (see
section 3 for details). The reason is two-fold:

• Parts of the data are labeled by our model correctly with extreme confidence, i.e. probabil-
ity generated by softmax layer is close to 1. This could happen only if our model already
learned the features during training, therefore adding these data into the training set will
not provide any improvement.

• The model does not pick up some of the features that are contained in the unlabeled data
during training. Therefore, those data are doomed to be labeled incorrectly and could
potentially weaken our model upon added into the training set.

To summarize these two problems: could we use a particular sample to improve our model; and
could we trust our model to label a particular sample correctly. We propose a method to automat-
ically assign scores to data that represents both confidence (could we trust it) and interpretability
(could we use it) based on a pre-trained network. Our approach mainly focuses on activations of
individual neurons within a network. For a pre-trained CNN and some images within one cate-
gory, we focus on images’ activation maps generated by all of the convolutional and linear layers.
The activation maps contain information about each image’s relationship with the activated neurons.
Then our method could identify neurons that are commonly activated and thereby assigning scores
to each individual image based on it’s chain of activation. Samples with high scores are assumed to
be interpretable and experiments have shown that they are also trustworthy. This entire procedure is
unsupervised, i.e. our approach does not need label information to assign image scores. Therefore,
we could apply our method to semi-supervised learning tasks including image classification and
object detection.

Structure of this paper is the following: in section 2 we formally define image scores and then
examine some key properties of our approach; in section 3 we conduct experiments in a semi-
supervised learning setting to demonstrate how scoring the images could help with improving a
pre-trained model, experiments are done in image classification and object detection tasks; section
4 concludes the entire work.

2 APPROACH

2.1 INTUITION

Given a pre-trained model and a dataset, we could say that the dataset consists of “good” and “bad”
images in the sense of interpretability (Figure 1). While filters in good images could learn object
themselves, filters in bad images would easily be confused with image background information,
as shown in Figure 1 (second row; first, third, fourth, sixth, and seventh from the left). It is also
possible that filters in bad images could not pick up feasible features at all, like these in Figure 1
(second row; second, and fifth from the left). In either of these two cases, we say the image could
not be interpreted by the current model, and thus we would assign a relatively low score. By this
definition of interpretability, if an image is assigned a high score, it’s chain of activation should
include little to no background information (see Figure 1; fourth row); this makes the connection to
confidence in that these images should be classified correctly.

Based on the principles above, we propose the image score method to measure interpretability of
individual images give a pre-trained model. The intuition is simple: all correctly classified images
should have similar chain of activation, while incorrectly classified images should have very different
activations both within themselves and with correctly classified images.

2



Under review as a conference paper at ICLR 2019

Figure 1: From top to bottom: bad images, bad features, good images, good features. Features are
feature maps generated by one filter in the first convolutional layer of a pretrained CNN. Our method
assigns scores to automatically differentiate good and bad images.

2.2 IMAGE SCORE

Consider image set I that contains all the images in one specific class. Denote I ∈ I an image.

For each image I and layer l in a pre-trained CNN, we have a corresponding activation map XI,l.
By saying layer, we mean a collection of functions that consist of a convolution function for con-
volutional layers or a linear function for classification layers, (potentially) a normalization function,
an activation function, and (potentially) a pooling function. By saying activation map, we mean the
tensor generated by a specific layer.

LetX l =
∑

I∈I X
I,l and threshold tl = max(X l)/2. The idea here is that if a neuron is commonly

activated when processing a class of images I, sum of activation values across I should be large in
comparison with neurons that are not commonly activated. We choose the threshold to be related to
L∞ norm, but this could also be done with other norms such as L1 and L2.

Rather than the activation values, we care more about whether a specific neuron is activated by some
images at all. This is because after the softmax layer, we pick the index of the maximum element
to be our prediction, and it doesn’t matter whether this maximum value is 1 or 0.101 as long as
it is the largest. We create a binary mask of activation to reflect this. Denote M l the “correct”
activation mask of layer l, and each element M l

i of M l satisfies M l
i = 1{X l

i ≥ tl}, i.e. elements
in binary mask M l is 1 if and only if the corresponding activation value in X l is greater than the
threshold. Note that M l is a binary mask for all the images I ∈ I and it contains the information
of “important” activations. Similarly, denote M I,l the activation mask for image I in layer l and
M I,l

i = 1{XI,l
i ≥ tl}. As mentioned earlier, the intuition is that if some images are labeled

correctly, they are classified accurately in a similar fashion. The rest of the job is simply to compare
each image’s activation mask M I,l and the “correct” activation mask M l we constructed.

For each image I , define score sI as

sI =
∑
l

log
(∑

iM
I,l
i∑

iM
l
i

)
The image score sI we defined represents similarity between an image’s chain of activation and
the “correct” chain of activation. The “ground truth” that we established in turn reflects common
activations among all images.

2.3 PROPERTIES OF IMAGE SCORES

Convolutional neural networks are susceptible to bias such that even if the model achieve good
classification performance, it still encodes biased information. More often than not, a CNN might
extract image background information to perfect itself, i.e. it may identify cloud as a feature when

3



Under review as a conference paper at ICLR 2019

classifying airplanes. The encoded biased information is beneficial during training but problematic
during testing since the biased information in training set and testing set might not be the same. As
a matter of fact, this is why if we test on the training set, performance will supersede actual accuracy
significantly, as shown in Figure 2 (left). Yet regardless of dataset bias, both training accuracy and
testing accuracy increase as image score increases. On the other hand, observe that the number of
training and testing images fall into any interval of image scores do not show major difference.

Figure 2: Scores of images in CIFAR-10 (class 0) dataset, pre-trained 50 epochs on VGG16. Class
testing accuracy is 90.4%. Vertical axis in the left image represents labeling accuracy; vertical
axis in the right image represents proportion of images falls into a certain interval of image score.
Horizontal axis represents intervals of image scores. Notice that bars are grouped together, i.e.
the rightmost two bars represent testing images falling into score interval (−0.7, 0.0] and training
images falling into the same interval, respectively.

Figure 3: Scores of images in CIFAR-10 (class 0) dataset, pre-trained 500 epochs on VGG16. Class
testing accuracy is 90.9%.

Figure 4: Scores of images in CIFAR-10 (class 0) dataset, pre-trained 10 epochs on VGG16. Class
testing accuracy is 83.7%.

If we consider our model to be a classifier, as training proceeds more and more bias information will
be introduced, making classification more fine-grained. As a result, most of the images will have
minor differences in activation maps since we expect bias of each image to be different. Therefore,

4



Under review as a conference paper at ICLR 2019

we expect to see less images to have very high scores, as illustrated in Figure 2-4. In the meantime
we would expect images in all intervals to gain accuracy until the loss function convergences, which
is also revealed in the above figures.

3 EXPERIMENTS

3.1 IMAGE CLASSIFICATION

In the last section we conclude that throughout training phase, labeling accuracy of images with high
scores increases to nearly 100%. This provides us theoretical foundations for semi-supervised deep
learning tasks.

The intuition is that since we could achieve nearly 100% labeling accuracy for images with high
scores, we could simply treat the labels generated by our model as ground truth and add the labeled
images back into the training set for re-training. In section 1 we discussed that the output of softmax
layer is a probability distribution that represents likelihood of a certain image belongs to a certain
class. In this section we demonstrate that if we choose samples base only on that distribution, there
will not be any improvement to the model. However, if we choose samples base on image score,
labeling accuracy will show statistically significant improvement.

Dataset. There are two experiments done on CIFAR-10 dataset (Krizhevsky & Hinton, 2009). The
dataset contains 50,000 training images and 10,000 testing images; all of the data are labeled. There
are a total of 10 classes, where each class has exactly 5,000 training images and 1,000 testing images.
To apply semi-supervised learning, we manually separate the training dataset into two parts: one part
contains 30,000 images that we consider as labeled, and the other part contains 20,000 images that
we consider as unlabeled. We call the first part training set and the second part additional dataset.

Two baselines. We establish the first baseline by training on the training set and hope that we could
outperform this baseline by investigating the additional dataset. As discussed, utilizing output from
softmax layer is another approach to semi-supervised learning. We construct a second baseline,
which we call the softmax baseline. Our model is first trained on the training set and then use the
trained model to label the additional dataset. We then select all the images in the additional dataset
that we categorized as class c and observe the likelihood that each image actually belongs to class
c base on the probability distribution generated by the softmax layer. Then we choose some images
with high softmax score and put those images, together with the generated labels, into the training
set for re-training. The number of images we choose is αc × la, where la = 20, 000 is the size of
additional dataset and αc is a preselected constant, potentially different for each class c.

Training. We perform semi-supervised learning in a similar manner as we establish the softmax
baseline. We first train a model on the training set and use this trained model to label the additional
dataset. Then we choose all the images in the additional dataset that we labeled as class c, and
denote this image set Ia,c. Denote It,c all the images in training set that actually belongs to class
c. Note that Ia,c is error-prone while It,c is not because unlike the training set, we don’t have label
information about the additional dataset. We could then use It,c to build the “correct” activations
for each layer as described earlier and use the activation maps to score images in Ia,c. After this we
choose some images with high scores and put them into the training set for re-training, just like when
we build the softmax baseline. Here the number of images chosen is αc × lt where la = 20, 000 is
the size of additional dataset and αc is a preselected constant.

Implementation details. We use two different models and techniques to illustrate that our approach
is universal. The first experiment is done on VGG16 (Simonyan & Zisserman, 2014). In this ex-
periment we choose α1 = 0.5 and αc = 0.3 for every c 6= 1. The second experiment is done on
ResNet18 (He et al., 2016). During training we apply batch normalization (Ioffe & Szegedy, 2015)
and dropout (Srivastava et al., 2014) techniques. In this experiment we choose αc=[0.2, 0.3, 0.2,
0.1, 0.2, 0.2, 0.3, 0.2, 0.4, 0.2] where c = 0...9, respectively. In all of the experiments, we use
cross entropy loss and Adam (Kingma & Ba, 2014) as optimizer. The models are first trained on the
training set for 100 epochs, and then perform either baseline training, softmax baseline training, or
semi-supervised training for another 100 epochs. Note that we could control the time gap between
enlarging the training set, in this experiment the training set is updated once every epoch.

5



Under review as a conference paper at ICLR 2019

Data processing. Since baseline classification accuracy is already high, we apply statistical signif-
icance tests to determine if there’s any actual improvement to the network. In Table 1-2, wherever
it says “difference”, we actually suggest a difference in mean bootstrapping test. The following
column of p-values are generated by one-sided tests. We choose significance level to be α = 0.05,
i.e. one-sided 95% confidence interval could be constructed by the bootstrapping test.

Figure 5: Labeling accuracy of CIFAR-10 (class 0) dataset. The model is pre-trained on ResNet18
for 100 epochs and then re-trained for another 100 epochs via semi-supervised learning (top) and
softmax baseline training.

Table 1: Statistics of all ten classes of images in CIFAR-10 dataset, trained on VGG16. Column1
is class number; column2 is baseline accuracy; column3 is semi-supervised training accuracy; col-
umn4 is the difference between column3 and column2; column5 is significance test of column4;
column6 is softmax baseline accuracy; column7 is the difference between column6 and column2;
column8 is the significance test of column7; column9 is the difference between column3 and col-
umn6.

baseline train diff tb p-value tb softmax diff sb p-value sb diff ts
Class 0 85.800 87.200 1.399 0.0000 86.055 0.253 0.2380 1.142
Class 1 91.542 92.475 0.935 0.0037 92.039 0.499 0.0690 0.436
Class 2 74.422 78.288 3.873 0.0000 75.205 0.785 0.0650 3.083
Class 3 68.941 72.450 3.614 0.0000 69.669 0.725 0.1160 2.788
Class 4 82.605 84.458 1.850 0.0002 82.513 -0.094 0.5720 1.944
Class 5 75.318 77.342 2.032 0.0004 76.744 1.429 0.0058 0.609
Class 6 86.987 87.944 0.955 0.0008 87.453 0.464 0.1010 0.490
Class 7 86.690 87.439 0.746 0.0270 86.699 0.009 0.4880 0.742
Class 8 89.235 90.194 0.963 0.0002 89.970 0.729 0.0098 0.221
Class 9 89.369 90.396 1.023 0.0022 89.678 0.304 0.2060 0.721

Data analyze. Even without statistical significance tests, from Figure 5 we could observe that the
softmax baseline training doesn’t perfect our model while the semi-supervised training improves
the network. For VGG16, p-values reveal that when applying image scores, all the classes show
significant improvement than the baseline on a significance level of α = 0.05, while only class 5 and
class 8 suggest major perfection of the network when using softmax scores to select samples. Similar
circumstances occur when re-training a ResNet18 model: semi-supervised re-training resulted in 9
out of 10 classes improved; while the softmax baseline training method only improved 3 of the total
10 classes. From Table 3-4 we could also see that p-value is smaller for ResNet18 network, this is
natural because the additional two convolutional layers provided by ResNet18 make the model more

6



Under review as a conference paper at ICLR 2019

Table 2: Statistics of all ten classes of images in CIFAR-10 dataset, trained on ResNet18.

baseline train diff tb p-value tb softmax diff sb p-value sb diff ts
Class 0 91.830 93.404 1.573 0.0000 92.277 0.455 0.0330 1.126
Class 1 95.638 96.515 0.878 0.0000 95.631 -0.005 0.5150 0.884
Class 2 86.274 88.000 1.731 0.0000 85.516 -0.756 0.9950 2.484
Class 3 80.371 81.831 1.457 0.0000 80.696 0.325 0.2210 1.131
Class 4 91.819 93.279 1.460 0.0000 91.433 -0.383 0.9660 1.844
Class 5 85.831 88.438 2.609 0.0000 86.647 0.817 0.0130 1.793
Class 6 93.435 94.571 1.137 0.0000 93.826 0.392 0.0300 0.741
Class 7 92.487 93.313 0.824 0.0000 92.617 0.133 0.2460 0.695
Class 8 94.377 95.827 1.450 0.0000 94.188 -0.186 0.8750 1.636
Class 9 93.958 94.260 0.306 0.0820 93.973 0.014 0.4810 0.286

error-endurance. This means that small error or bias will not affect our estimation to the “correct”
activation significantly.

Model Assembly. Our previous discussions involve training class-by-class. It is also possible to
assemble those trained networks with boosted labeling accuracy on different classes together in
order to enhance performance on the entire dataset. Suppose we have 10 models with boosted
performance on 10 different classes. Suppose model Mk focus on class k, i.e. Mk is trained to
categorize class k images with better accuracy. Then we useMk to label all the test images and keep
track of the images that are categorized as class k; we also record the image score assigned to an
image if it is labeled as class k. We do this for all the models. After this step, some of the images
will be labeled multiple times. We label those images based on which model assigns the highest
score. From Table 3 we could see that performance of our assembled model supersedes the baseline
accuracy by about 1%.

Table 3: Labeling accuracy of the assembled model. Semi-supervised training technique is applied
on VGG16 network.

epoch 10 20 30 40 50
baseline 82.78 82.57 82.79 82.85 82.9

train 83.65 84.37 84.04 84.34 83.69

3.2 OBJECT DETECTION

Besides image categorization, object detection is another well-studied topic in computer vision.
Since the development of region-bases CNN (Girshick et al., 2014), we now have better and faster
techniques such as (Girshick, 2015; Ren et al., 2015). In the previous sections we discussed how
to interpret convolutional neural networks and how to use interpretability to automatically select
samples in order to apply semi-supervised learning techniques. Since the foundation of faster R-
CNN (Ren et al., 2015) is still VGG and ResNet, we transfer our attention to object detection task
and investigate an end-to-end semi-supervised training technique without having to do per-class
training first.

Dataset. In this section, we apply faster R-CNN on Pascal VOC datasets. Both the VOC2007
and VOC2012 datasets have similar forms: each image in the dataset has ground truth bounding
boxes that denot objects, and each object is associated with a label that belongs to one of the twenty
categories. The only difference is that VOC2007 has a labeled testing set, while testing set of
VOC2012 is unlabeled. Therefore, it is natural to treat VOC2007 as training set and VOC2012 as
additional dataset, together we could apply semi-supervised learning techniques.

Baselines. In most of the papers examining pascal datasets there are two baselines. The first base-
line is that models are trained solely on VOC2007 training set and tested on VOC2007 testing set.
The second baseline is that models are trained on VOC2007+VOC2012 training sets and tested on

7



Under review as a conference paper at ICLR 2019

VOC2007 testing set. Since we are only utilizing parts of information from VOC2012 to do semi-
supervised learning, the assumption is that our final accuracy lays somewhere in between these
baselines.

Implementation. Implementation in this experiment is essentially the same as the one used in
image categorization. Our approach only needs a feed forward step to calculate “correct” activation,
image score, etc. Therefore, no matter how difficult a task is, as long as the basic architecture of
the convolutional neural network remains the same, modifications to adapt the task is minimal. The
only difference in this experiment is that instead of building activation maps for each class, we build
a general “correct” activation for the entire dataset. Consequently, instead of selecting images base
on which class it is assigned to, we simply select images with the highest scores. In this experiment
we use an ImageNet pre-trained VGG16 network, and train the model on VOC2007 for 60,000
iterations, where each iteration only process one image. Then we use this trained network and the
training set of VOC2007 to build “correct” activation. After this we use the constructed activation
mask to score all the images in VOC2012 training set, and select images with top 30% score. After
all ground truth labels of selected images are replaced by predicted labels, we put those images into
our training set for re-training. The re-training process lasts for another 10,000 iterations. Note that
we only update the training set once during the entire training process.

Table 4: Mean AP of faster R-CNN model. The model is a VGG16 that is already trained for
60,000 iterations. Here “train” stands for semi-supervised training that utilizes part of VOC2012,
and “baseline” stands for model only uses VOC2007 training set.

iter 61000 62000 63000 64000 65000
train 0.713 0.715 0.711 0.718 0.719

baseline 0.706 0.706 0.705 0.710 0.707
iter 66000 67000 68000 69000 70000

train 0.717 0.716 0.715 0.716 0.719
baseline 0.709 0.710 0.711 0.709 0.707

From Table 4 we could observe that our semi-supervised training method increases mAP about
1%. On the other hand, a model trained on both VOC2007 and VOC2012 training sets yields mAP
0.742, which is well above both our approach and the baseline. This is exactly what we expected.
Our approach is above the baseline, and since we only use 30% of (potentially incorrectly labeled)
data from VOC2012 training set, it is plausible that the image score method is not comparable to the
ideal model.

4 CONCLUSION

With growing interests in interpreting convolutional neural networks, we propose an alternative
measure. Instead of focusing on the models, we focus on the interactions between models and data.
There are two problems mentioned in section 1 when applying semi-supervised leaning techniques:
some data are useless since their features were already learned; and some data are labeled incorrectly
which could weaken the model. Our image score approach could efficiently select samples that are
proven to be useful in a forward pass. The two mentioned problems could be resolved simultane-
ously by our approach; and the image score method has shown statistically significant improvements
in comparison with the softmax baseline.

Semi-supervised leaning has proven to be efficient in multiple scenarios. However, when applying
to deep learning, the traditional and naive way does not work well. Unlike softmax score which only
encodes confidence, image score represents both interpretability and confidence. We could there-
fore select explainable and trustworthy samples from additional datasets to apply semi-supervised
learning methods.

REFERENCES

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
Quantifying interpretability of deep visual representations. In Computer Vision and Pattern

8



Under review as a conference paper at ICLR 2019

Recognition, 2017.

Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision,
pp. 1440–1448, 2015.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for ac-
curate object detection and semantic segmentation. In Computer Vision and Pattern Recognition,
2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 1885–1894,
International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR. URL http://
proceedings.mlr.press/v70/koh17a.html.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical report, Citeseer, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations by inverting
them. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
5188–5196, 2015.

Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, and Jeff Clune. Synthesizing the
preferred inputs for neurons in neural networks via deep generator networks. In Advances in
Neural Information Processing Systems, pp. 3387–3395, 2016.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Advances in neural information processing systems,
pp. 91–99, 2015.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. In
Advances in Neural Information Processing Systems, pp. 3856–3866, 2017.

Marcel Simon and Erik Rodner. Neural activation constellations: Unsupervised part model dis-
covery with convolutional networks. In Proceedings of the IEEE International Conference on
Computer Vision, pp. 1143–1151, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? In Advances in neural information processing systems, pp. 3320–3328, 2014.

9

http://proceedings.mlr.press/v70/koh17a.html
http://proceedings.mlr.press/v70/koh17a.html


Under review as a conference paper at ICLR 2019

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pp. 818–833. Springer, 2014.

Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. Interpretable convolutional neural networks.
In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Object detectors
emerge in deep scene cnns. arXiv preprint arXiv:1412.6856, 2014.

10


	Introduction
	Approach
	Intuition
	Image Score
	Properties of image scores

	Experiments
	Image Classification
	Object Detection

	Conclusion

