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ABSTRACT

State-of-the-art face super-resolution methods employ deep convolutional neural
networks to learn a mapping between low- and high-resolution facial patterns by
exploring local appearance knowledge. However, most of these methods do not
well exploit facial structures and identity information, and struggle to deal with fa-
cial images that exhibit large pose variations and misalignments. In this paper, we
propose a novel face super-resolution method that explicitly incorporates 3D facial
priors which grasp the sharp facial structures. Firstly, a 3D face rendering branch
is set up to obtain 3D priors of salient facial structures and identity knowledge.
Secondly, the Spatial Attention Mechanism is used to better exploit this hierarchi-
cal information (i.e., intensity similarity, 3D facial structure, and identity content)
for the super-resolution problem. Extensive experiments demonstrate that the pro-
posed algorithm achieves superior face super-resolution results and outperforms
the state-of-the-art.

1 INTRODUCTION

Face images provide crucial clues for human observation as well as computer analysis (Fasel &
Luettinb, 2003; Zhao et al., 2003). However, the performance of most face image tasks, such as face
recognition and facial emotion detection (Han et al., 2018; Thies et al., 2016), degrades dramatically
when the resolution of a facial image is relatively low. Consequently, face super-resolution, also
known as face hallucination, was coined to restore a low-resolution face image to its high-resolution
counterpart.

A multitude of deep learning methods (Zhou & Fan, 2015; Yu & Porikli, 2016; 2017a; 2018; Zhu
et al., 2016; Cao et al., 2017; Dahl et al., 2017a; Yu et al., 2018b) have been successfully applied in
face Super-Resolution (SR) problems and achieve state-of-the-art results. But super-resolving arbi-
trary facial images, especially at high magnification factors, is still an open and challenging problem
due to the ill-posed nature of the SR problem and the difficulty in learning and integrating strong pri-
ors into a face hallucination model. Some researches (Grm et al., 2018; Yu et al., 2018a; Ren et al.,
2019) on exploiting the face priors to assist neural networks to capture more facial details have been
proposed recently. A face hallucination model incorporating identity priors is presented in Grm
et al. (2018). But the identity prior is extracted only from the multi-scale up-sampling results in the
training procedure and therefore cannot provide enough extra priors to guide the network to achieve
a better result. Yu et al. (2018a) employ facial component heatmaps to encourage the upsampling
stream to generate super-resolved faces with higher-quality details, especially for large pose varia-
tions. Although heatmaps can provide global component regions, it cannot learn the reconstruction
of detailed edges, illumination or expression priors. Besides, all of these aforementioned face SR
approaches ignore facial structure and identity recovery.

In contrast to previous methods, we propose a novel face super-resolution method that embeds 3D
face structures and identity priors. Firstly, a deep 3D face reconstruction branch is set up to explicitly
obtain 3D face render priors which facilitate the face super-resolution branch. Specifically, the
3D face render prior is generated by the ResNet-50 network (He et al., 2016). It contains rich
hierarchical information, such as low-level (e.g., sharp edge, illumination) and perception level (e.g.,
identity). The Spatial Attention Mechanism is proposed here to adaptively integrate the 3D facial
prior into the network. Specifically, we employ the Spatial Feature Transform (SFT) (Wang et al.,
2018) to generate affine transformation parameters for spatial feature modulation. Afterwards, it
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encourages the network to learn the spatial interdepenencies of features between 3D facial priors
and input images after adding the attention module into the network.

The main contributions of this paper are: 1. A novel face SR model is proposed by explicitly
exploiting facial structure in the form of facial-prior estimation. The estimated 3D facial prior pro-
vides not only spatial information of facial components but also their visibility information, which
are ignored by the pixel-level content. 2. We propose a feature-fusion-based network to better ex-
tract and integrate the face rendered priors by employing the Spatial Attention Mechanism (SAM).
3. We qualitatively and quantitatively explore multi-scale face super-resolution, especially at very
low input resolutions. The proposed network achieves better SR criteria and superior visual quality
compared to state-of-the-art face SR methods.

2 RELATED WORK

Face hallucination relates closely to the natural image super-resolution problem. Thus, in this sec-
tion, we discuss recent research on super-resolution and face hallucination to illustrate the necessary
context for our work.

Super-Resolution Neural Networks: Recently, neural networks have demonstrated a remarkable
capability to improve SR results. Since the pioneering network can learn to map the relationship
between LR and HR (Dong et al., 2016a), a lot of CNN architectures have been proposed for SR
(Dong et al., 2016b; Shi et al., 2016; Lai et al., 2017; Haris et al., 2018; Kim et al., 2016; Tai
et al., 2017). Most of the existing high-performance SR networks have residual blocks (Jiwon Kim
& Lee, 2016) to go deeper in the network architecture, and achieve better performance. EDSR
(Lim et al., 2017) improves the performance by removing unnecessary batch normalization layers in
residual blocks. A residual dense network (RDN) (Zhang et al., 2018a) was proposed to exploit the
hierarchical features from all the convolutional layers. Zhang et al. (2018b) proposed the very deep
residual channel attention networks(RCAN) to discard abundant low-frequency information which
hinders the representational ability of CNNs. Wang et al. (2018) used a spatial feature transform
layer to introduce the semantic prior as an additional input of SR network. Huang et al. (2017)
presented a wavelet-based CNN approach that can ultra-resolve a very low resolution face image in a
unified framework. However, these networks require a lot of time to train the large-scale parameters
to obtain good results. In our work, we largely decrease the training parameters, but still achieve the
superior performance in SR criteria (SSIM and PSNR) and visible quality.

Facial Prior Knowledge: Exploiting facial priors in face hallucination, such as spatial configura-
tion of facial components, is the key factor that differentiates it from generic super-resolution tasks.
There are some face SR methods that use facial prior knowledge to better super-resolve LR faces.
Wang & Tang (2005) learned subspaces from LR and HR face images respectively, and then recon-
structed an HR output from the PCA coefficients of the LR input. Liu et al. (2007) set up a Markov
Random Field (MRF) to reduce ghosting artifacts because of the misalignments in LR images. These
methods are prone to generate severe artifacts, especially in large pose variations and misalignments
in LR images. Yu & Porikli (2017b) interweaved multiple spatial transformer networks (Jaderberg
et al., 2015) with the deconvolutional layers to handle unaligned LR faces. Dahl et al. (2017b) lever-
aged the framework of PixelCNN (Van Den Oord et al., 2016) to super-resolve very low-resolution
faces. Zhu et al. (2016) presented a cascade bi-network, dubbed CBN, to localize LR facial com-
ponents first and then upsample the facial components; however, CBN may produce ghosting faces
when localization errors occur. Recently, Yu et al. (2018a) used a multi-task convolutional neu-
ral network (CNN) to incorporate structural information of faces. Grm et al. (2018) built a face
recognition model that acts as identity priors for the super-resolution network during training. In
our paper, we used the 3D face reconstruction branch to extract the facial structure, detailed edges,
illumination, and identity priors. Furthermore, we recover these priors in an explicit way.

3D Face Reconstruction: The 3D shapes of facial images can be restored from unconstrained 2d
images by the 3D face reconstruction. In this paper, we employ the 3D Morphable Model (3DMM)
(Blanz & Vetter, 1999; Deng et al., 2019; Booth et al., 2016) based on the fusion of parametric
descriptions of face attributes (e.g., gender, identity, and distinctiveness) to reconstruct the 3D facial
priors. The reconstructed face will inherit the facial features and present the clear and sharp facial
components.
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(a) LR inputs (b) rendered priors (c) Ground truth (d) LR inputs (e) rendered priors (f) Ground truth

Figure 1: The rendered prior by our method. (a) and (d) low-resolution input. (b) and (e) our
rendered face structures. (c) and (f) ground-truths. As shown, the reconstructed facial structures
provide clear spatial locations and sharp visualization of facial components even for large pose
variations (e.g., left and right facial pose positions).

3 3D FACE RENDERING PRIOR

Given a low-resolution facial image, the 3D rendering branch aims to extract the 3D face coefficients
based on the 3D Morphable Model (3DMM). The high-resolution face rendered image is generated
after obtaining the 3D coefficients and regarded as the high-resolution facial priors which facilitate
the face super-resolution. The 3D coefficients contain abundant hierarchical knowledge, such as
identity, facial expression, texture, illumination, and face pose. The proposed face super-resolution
framework is presented in Figure 2, and it consists of two branches: the 3D rendering network
to extract the facial prior and the Spatial Attention Mechanism aiming to exploit the prior for the
face super-resolution problem. It is still a challenge for state-of-the-art edge prediction methods to
acquire very sharp facial structures from low-resolution images. Therefore, a 3DMM-based model
is proposed to localize the precise facial structure by generating the 3D facial images which are
constructed by the 3D coefficient vector. Besides, there exist large face pose variations, such as in-
plane and out-of-plane rotations. A large amount of data is needed to learn the representative features
varying with the facial poses. To address this problem, an inspiration came from the idea that the
3DMM coefficients can analytically model the pose variation with a simple math derivation (Booth
et al., 2016; Deng et al., 2019) and does not require a large training set, we utilize a face rendering
network based on ResNet-50 to regress a face coefficient vector. The output of the ResNet-50 is
the representative feature vector of x = (α,β, δ,γ, ζ) ∈ R239, where α ∈ R80,β ∈ R64, δ ∈
R80,γ ∈ R9, and ζ ∈ R6 represent the identity, facial expression, texture, illumination, and face
pose (Deng et al., 2019), respectively.

According to the Morphable model (Blanz & Vetter, 1999), we transform the face coefficients to a
3D shape S and texture T of the face image as

S = S(α,β) = S + Bidα+ Bexpβ, (1)

and
T = T(δ) = T + Btδ, (2)

where S and T are the average values of the S and T. Besides, Bt, Bid and Bexp denote the base
vector of texture, identity, and expression calculated by the PCA method. A modified L2 based loss
function for the 3D face reconstruction is presented based on a paired training set

`r =
1

L

L∑
j=1

∑
i∈M Ai

∥∥Iij −R(Bi
j(x))

∥∥
2∑

i∈M Ai
, (3)

where j is the paired image index, and L is the total number of training pairs. i and M denote the
pixel index and face region, respectively. A, I and B represent the skin color based attention mask,
the sharp image, and the up-sampling of low-resolution image, respectively. R(Bi

j(x)) denotes the
reconstructed face image based on the learned face vector by the ResNet-50 network.
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Figure 2: The proposed face super-resolution architecture. Our model consists of two branches:
the top block is a ResNet-50 Network to extract the 3D facial coefficients and restore a sharp face
rendered structure. The bottom block is dedicated to face super-resolution guided by the facial coef-
ficients and rendered sharp face structures which are concatenated by the Spatial Feature Transform.

Given the LR images, the generated 3D face rendered reconstructions are shown in Figure 1. The
rendered face predictions contain the clear spatial knowledge and good visual quality of facial com-
ponents which are very close to the information of the ground-truths. The 3D priors grasp very well
the pose variations and skin colour, and further embed pose variations into the SR networks which
improve the accuracy and stability in face images with large pose variations. Therefore, we concate-
nate the reconstructed face image as an additional feature in the SR network. The face expression,
identity, texture, illumination, and face pose are transformed into four feature maps and fed into the
spatial feature transform block of the SR network.

4 SPATIAL ATTENTION MECHANISM

As shown in Figure 2, our Spatial Attention Mechanism aims to exploit the 3D face rendered priors
which grasp the precise locations of face components and the facial identity. In order to explore the
interdependence and correlation of priors and input images between channels, the attention block
is added into the Spatial Attention Mechanism. The proposed network, also named the Spatial
Attention Mechanism (SAM), consists of three simple parts: a spatial transform block, an attention
block, and an upscale module.

4.1 SPATIAL FEATURE TRANSFORM BLOCK

We import the 3D face priors into the Spatial Attention Transform Block after a convolutional layer.
The 3D face priors consist of two parts: one directly from the rendered face images (as the RGB
input), and the other from the feature transformation of the coefficient parameters. The feature
transformation procedure is described as follows: firstly, the coefficients of (identity, expression,
texture, and the fusion of illumination and face pose) are reshaped to a matrix by setting extra
elements to zeros. Afterwards, it is expanded to the same size as the LR images by zero-padding,
and then scaled to the interval [0,1]. Finally, the coefficient features are concatenated with the priors
from the rendered face images. The Spatial Feature Transform (SFT) learns a mapping function Θ
that provides a modulation parameter pair (µ, ν) according to the priors ψ, such as segmentation
probability. Instead, the 3D face priors are taken as the input. The outputs of the SFT layer are
adaptively controlled by the modulation parameter pair by way of applying an affine transformation
spatially to each intermediate feature map. Specifically, the intermediate transformation parameters
(µ, ν) are derived from the priors ψ by a mapping function as:
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Bicubic VDSR RCAN RDN  Wavelet Ours(SAM) Ground truthSRCNN Ours(VDSR+)

Bicubic VDSR RCAN RDN  Wavelet Ground truthSRCNN Ours(VDSR+) Ours(SAM)

Figure 3: Comparison of state-of-the-art methods: magnification factors×4 and the input resolution
32×32. Best viewed by zooming in the screen.

Bicubic VDSR RCAN RDN

TDAE  Wavelet Ours(SAM) Ground truth

SRCNN

Ours(VDSR+)

Figure 4: Comparison of state-of-the-art methods: magnification factors×8 and the input resolution
16×16. Best viewed by zooming in the screen.

(µ, ν) = Θ(ψ), (4)

and then
ỹ = Nθ(x|µ,ν), (5)

where N denotes the SR network, and θ represents trainable parameters of the network. The inter-
mediate feature maps are modified by scaling and shifting feature maps according to the transfor-
mation parameters:

SFT (F |µ,ν) = µ⊗ F + ν, (6)

where F denotes the feature maps, and ⊗ is referred to element-wise multiplication. At this step,
the SFT layer implements the spatial-wise transformation.

4.2 RESIDUAL CHANNEL ATTENTION BLOCK

Attention mechanism can be viewed as a guide to bias the allocation of available processing re-
sources towards the most informative components as input (Hu et al., 2017). Consequently, the
channel module is presented to explore the most informative components and the interdependency
between the channels. The attention module is composed of a series of residual channel attention
blocks (RCAB) shown in Figure 2. Inspired by the integration of channel attention and residual
blocks, we ensemble a series of residual channel attention blocks. For the b-th block, the output Fb

of RCAB is obtained by:
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Table 1: Quantitative results on the CelebA test dataset.The best results are highlighted in bold.
- CelebA

Scale x4 x8
PSNR SSIM PSNR SSIM

Bicubic 27.1650 0.8197 21.9001 0.6213
VDSR[1] 28.1393 0.8554 22.7634 0.6618
RCAN[2] 29.0410 0.8643 23.2671 0.7362
RDN[3] 29.0631 0.8650 23.6925 0.7484

SRCNN[4] 27.5775 0.8452 22.5161 0.6659
TDAE[5] - - 20.1001 0.5802

Wavelet-SRNet[6] 28.4292 0.8698 23.0874 0.7147
Ours(VDSR+) 29.2991 0.8727 24.6681 0.7127
Ours (SAM) 29.6942 0.8817 25.3921 0.7551

Fb = Fb−1 + Cb(Xb) ·Xb, (7)

where Cb denotes the channel attention function. Fb−1 is the block’s input, andXb is calculated by
two stacked convolutional layers.

5 EXPERIMENTAL RESULTS

In order to evaluate the performance of our priors and algorithms, we compare them with the start-
of-art methods qualitatively and quantitatively. The six most recent state-of-the-art super-resolution
and face hallucination models are listed as follows: the Very Deep Super Resolution Network
(VDSR[1]) from Jiwon Kim & Lee (2016), the Very Deep Residual Channel Attention Network
(RCAN[2]) (Zhang et al., 2018b), the Residual Dense Network (RDN[3]) (Zhang et al., 2018a),
the Super-Resolution Convolutional Neural Network (SRCNN[4]) from Dong et al. (2016a), the
Transformative Discriminative Autoencoder (TDAE[5]) (Yu & Porikli, 2017b), and the Wavelet-
based CNN for Multi-scale Face Super Resolution (Wavelet-SRNet[6]) (Huang et al., 2017). We
use open-resource implementations from the authors and train all the networks on the same dataset
for a fair comparison. We propose two models: first is the VDSR+ which is the basic VDSR model
embedded with the 3D facial prior as extra RGB channel information and the other is our SR net-
work incorporating facial priors by the Spatial Attention Mechanism (SAM). The implementation
code will be made available to the public. More results are shown in the supplementary material.

5.1 DATASETS AND IMPLEMENTATION DETAILS

CelebA (Liu et al., 2015) and Menpo (Zafeiriou et al., 2017) dataset are used to verify the perfor-
mance of the algorithm. The training phase uses 162,080 images from the CelebA dataset. In the
testing phase, 40,519 images from the CelebA test set are used along with the large-pose-variation
test set from the Menpo dataset. The every facial pose test set of Menpo (left, right and semi-frontal)
contains 1000 images, respectively. The HR ground-truth images are obtained by center-cropping
the facial images and then resizing them to the 128×128 pixels. The LR face images are generated
by downsampling HR ground-truths to 32×32 pixels (4 scale) and 16×16 pixels (8 scale). In our
network, the ADAM optimizer is used with a batch size of 64 for training, and input images are
center-cropped as RGB channels. The initial learning rate is 0.0002 and is divided by 2 every 50
epochs. The whole training process takes 2 days with an NVIDIA Titan X GPU.

5.2 QUANTITATIVE RESULTS BY PSNR/SSIM

Quantitative evaluation of the network using PSNR and the structural similarity (SSIM) scores for
the CelebA test set are listed in Table 1. Furthermore, in order to analyze the proposed methods’
performance and stability regarding to large face pose variations, three case results corresponding to
different face poses (left, right, and semifrontal) of the Menpo test data are listed in Table 2.

CelebA Test: Ours (VDSR+) achieves significantly better results (1 dB higher than the remaining
best method and 2 db higher than the basic VDSR method in x8 SR) even for the large-scale pa-
rameter methods, such as RDN and RCAN. But it does perform slightly worse than ours (SAM). It
should be noted that ours (VDSR+) is the same as VDSR except for the extra 3D face priors as the
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Table 2: Quantitative results of different large facial pose variations (e.g., left, right, and semifrontal)
on the Menpo test dataset.The best results are highlighted in bold.

- Menpo
Scale x4 x8

Pose Left Right Semi-frontal Left Right Semi-frontal
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 26.3641 0.7923 26.1996 0.7791 24.9278 0.7608 22.0998 0.6423 21.9968 0.6251 20.6878 0.5770
VDSR[1] 26.9988 0.8024 26.8539 0.7908 25.6345 0.7794 22.2876 0.6315 22.2058 0.6163 20.9821 0.5752
RCAN[2] 27.4712 0.8259 27.2772 0.8145 26.1184 0.8080 21.9499 0.6543 21.8711 0.6381 20.6088 0.5938
RDN[3] 27.3953 0.8263 27.2186 0.8150 26.0646 0.8088 22.3068 0.6706 22.2422 0.6552 21.0214 0.6160
SRCNN[4] 26.9231 0.8038 26.7426 0.7913 25.5044 0.7782 22.3863 0.6408 22.3252 0.6272 21.0805 0.5857
TDAE[5] - - - - - - 21.2201 0.5678 20.2234 0.5620 19.8820 0.5521
Wavelet-
SRNet[6]

26.9794 0.8122 26.8146 0.8001 25.7239 0.7945 21.8649 0.6360 21.7296 0.6166 20.5787 0.5779

Ours(VDSR+) 28.6206 0.8439 28.8961 0.8326 26.9951 0.8236 23.4519 0.6845 23.2501 0.6653 21.8344 0.6239
Ours(SAM) 28.9810 0.8510 29.2988 0.8408 27.2978 0.8332 23.8003 0.7071 23.5724 0.6881 22.1507 0.6501

Bicubic VDSR RCAN RDN

TDAE Wavelet Ours(SAM)  Ground truth

SRCNN

Ours(VDSR+)

Bicubic VDSR RCAN RDN

TDAE Wavelet Ours(SAM) Ground truth

SRCNN

Ours(VDSR+)

Figure 5: Visual comparison with state-of-the-art methods(×8). The results from the proposed
method have less visual artifacts and more details on key face components (e.g., eyes, mouth, and
nose)

RGB channel inputs. It indicates that the 3D priors make a great contribution to the performance
improvement (average 1.6 db improvement) of face super-resolution.

Menpo Test: To verify the effectiveness and stability of face priors and our proposed network
towards large pose variations, the PSNR and SSIM results of face poses are listed in Table 2. While
ours (SAM) is the best method superior than others, VDSR+ achieves 1.8db improvement compared
with the basic VDSR method in the magnification factors (×4).

5.3 QUALITATIVE EVALUATION

Super-resolution: The qualitative results of our methods at different magnifications (×4 and ×8)
are shown respectively in Figures 3 and 4. It can be observed that our proposed method recovers
clearer faces with finer component details (e.g., nose and eyes).

Artifacts: The outputs of most methods (e.g., RCAN, RDN, and Wavelet-SRNet) contain some
artifacts around facial components, such as the eyes, nose, and mouth shown in Figure 5. After
adding the rendered face priors, ours results show clear and sharp facial structures without any
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 (a) Input  (e) Input
 (b) w/o rend

 30.26/0.643

 (c) w/o SAM

  31.31/0.728

 (d) Ours

  32.14/0.787
 (f) w/o rend

 30.76/0.706

 (g) w/o SAM

  31.47/0.750

 (h) Ours

31.91/0.772

Figure 6: Ablation study results: Comparisons between our proposed model with different configu-
rations, with PSNR and SSIM relative to the ground truth. (a) and (e) are the inputs. (b) and (f) are
the SR results without using the rendered priors. (c) and (g) are the SR results without the Spatial
Attention Mechanism. (d) and (h) are our SR results.

Ours(SAM) Ours(SAM)

Figure 7: Performance vs. number of parameters. Results are evaluated on CelebA dataset. Left:
×4 scale; Right:×8 scale.

ghosting artifacts. It illustrates that the proposed 3D priors can help the network understand the
spatial location and the entire face structure.

5.4 ABLATION STUDY AND MODEL SIZE ANALYSIS

Ablation Study: In this section, we conduct an ablation study to demonstrate the effectiveness of
each module. We compare the proposed network with and without using the rendered 3D face priors
and the Spatial Attention Mechanism (SAM) in terms of PSNR and SSIM on the test data. As
shown in Figure 6 (b, f), the baseline method without rendered faces and SAM tends to generate
blurry faces that cannot capture sharp edges. Figure 6 (c and g) shows clearer and sharper facial
structures after adding the rendered priors. By using SAM, the visual quality is further improved
in Figure 6 (d and h). The quantitative comparisons between (VDSR, our VDSR+, and our SAM)
in Tables 1 and 2 also illustrate the effectiveness of the rendered priors and the Spatial Attention
Mechanism.

Model Size Analysis: Figure 7 shows comparisons of model size and performance. Our networks,
VDSR+ and SAM, embedded with 3D priors are more lightweight while still achieving the best
performance even compared with other state-of-the-art methods (e.g., RCAN and RDN) with a
larger scale of parameters.

6 CONCLUSION

In this paper, we proposed a novel network that incorporates 3D facial priors of rendered faces and
identity knowledge. The 3D rendered branch utilizes the face rendering loss to encourage a high-
quality guided image providing clear spatial locations of facial components and other hierarchical
information (i.e., expression, illumination, and face pose). To well exploit 3D priors and consider the
channel correlation between priors and inputs, the Spatial Attention Mechanism is presented by em-
ploying the Spatial Feature Transform and Attention block. The comprehensive experimental results
have demonstrated that the proposed method can deliver the better performance and largely decrease
artifacts in comparison with the state-of-the-art methods by using significantly fewer parameters.
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A APPENDIX

A.1 VISUALIZATION QUALITY OF SUPER-RESOLUTION

Semi-Frontal Facial Pose Visualization: For the semi-frontal pose, the SR results of RCAN, RDN
and Wavelet-SRNet have a lot of artifacts around facial components (e.g., eyes, teeth, nose, mouth).
Fortunately, after incorporating the rendered face priors, it largely avoids the appearance of ghosting
artifacts, seen in Figure.8 (ours).

Bicubic VDSR RCAN RDN  Wavelet Ground truthSRCNN Ours(VDSR+)

Bicubic VDSR RCAN RDN  Wavelet Ground truthSRCNN Ours(VDSR+)

Bicubic VDSR RCAN RDN  Wavelet Ground truthSRCNN Ours(VDSR+)

Bicubic VDSR RCAN RDN  Wavelet Ground truthSRCNN Ours(VDSR+)

Ours(SAM)

Ours(SAM)

Ours(SAM)

Ours(SAM)

Figure 8: Comparison of state-of-the-art methods on Semi-frontal facial pose:magnification factor
×4 and the input resolution 32×32.

Left Facial Pose Visualization: For the left pose, the high-resolution results of the proposed method
perform much better. Ours (VDSR+) results which exploiting the 3D facial priors can grasp the
facial structure knowledge and restore the high-resolution facial components (e.g. mouth) much
closer to the ground-truth compared with the basic VDSR method without priors.

Right Facial Pose Visualization: For the right pose, the high-resolution results of the proposed
method are still the best. Adding the facial structure priors can help network to learn the location of
facial components even for the large pose variation.

High Magnification Factor × 8 Visualization: It is still a challenge to generate the sharp super-
resolution images for a large magnification factor (×8). The 3D rendered facial priors provide extra
facial structure knowledge that are crucial for SR problems. As shown in Figure 12 and 13, the
proposed method generates a high visible quality of SR images even for the large magnification
factor.

A.2 ABLATION STUDY

Learning Curves with Different Ablation Configurations:To verify the effectiveness of 3D facial
structure priors, we design the three different configurations (w/o 3D priors, w/o Spatial Attention
Mechanism): baseline methods (i.e., VDSR, SRCNN); baseline incorporating 3D facial priors (i.e.,
VDSR+,SRCNN+); the method using the Spatial Attention Mechanism and 3D priors (our proposed
method: +priors and +SAM). The learning curves of each configuration are plotted to show the
effectiveness of the each block. The priors are easy to insert into any network without increasing
any parameters, but largely improve the accuracy and the convergence of the algorithms shown in
Figure 14.
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VDSR RCAN RDN

 Wavelet Ours(SAM) Ground truth

SRCNN

Ours(VDSR+)

Figure 9: Comparison of state-of-the-art methods on left facial pose:magnification factor ×4 and
the input resolution 32×32.

Quantitative Results with Different Ablation Configurations: As shown in Table 3, each block
boosts the accuracy of baseline algorithms: the average performance improvement stemming from
3D facial priors and from Spatial Attention Mechanism are 1.6db and 0.57db, respectively.

Table 3: Quantitative results (PSNR/SSIM) with different ablation configurations. Priors denotes
the 3D rendered structure priors; SAM denotes the Spatial Attention Mechanism.

Factor SRCNN VDSR SRCNN+prior VDSR+prior ours(+prior+SAM)
4scale 27.57/0.8452 28.13/0.8554 28.66/0.8501 29.29/0.8727 29.69/0.8817
8scale 22.51/0.6659 22.76/0.6618 24.18/0.6959 24.66/0.7127 25.39/0.7551

Qualitative Evaluation with different ablation configurations: The baseline incorporated with
the facial rendered priors tends to avoid some artifacts around the key facial components and gener-
ate more sharp edges compared with the basic baseline method without the facial priors. By adding
the Spatial Attention Mechanism, it could help the network better exploit the priors and is easier to
generate more sharp facial structures, shown in Figure 15.
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VDSR RCAN RDN
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Figure 10: Comparison of state-of-the-art methods on left facial pose:magnification factor ×4 and
the input resolution 32×32.
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Figure 11: Comparison of state-of-the-art methods on right facial pose:magnification factor ×4 and
the input resolution 32×32.
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Bicubic

Ours(SAM) Ground truthOurs(VDSR+)

SRCNNRDNRCANVDSR

TDAE Wavelet

Figure 12: Comparison of state-of-the-art methods: magnification factor×8 and the input resolution
16×16.
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Figure 13: Comparison of state-of-the-art methods: magnification factor×8 and the input resolution
16×16.
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(a)4scale

(b)8scale

Figure 14: Learning curves with different ablation configurations: baseline + denotes the baseline
(SRCNN and VDSR) incorporating the 3D facial priors.
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SRCNN VDSR VDSR+ Our(+SAM)LR input SRCNN+

Figure 15: Qualitative evaluation with different ablation configurations: baseline + denotes the
baseline (SRCNN and VDSR) incorporating the 3D facial priors; +SAM means adding the Spatial
Attention Mechanism.
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