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ABSTRACT

Generative adversarial networks, or GANs, commonly display unstable behavior
during training. In this work, we develop a principled theoretical framework for
understanding the stability of various types of GANs. In particular, we derive
conditions that guarantee eventual stationarity of the generator when it is trained
with gradient descent, conditions that must be satisfied by the divergence that is
minimized by the GAN and the generator’s architecture. We find that existing
GAN variants satisfy some, but not all, of these conditions. Using tools from
convex analysis, optimal transport, and reproducing kernels, we construct a GAN
that fulfills these conditions simultaneously. In the process, we explain and clarify
the need for various existing GAN stabilization techniques, including Lipschitz
constraints, gradient penalties, and smooth activation functions.

1 INTRODUCTION: TAMING INSTABILITY WITH SMOOTHNESS

Generative adversarial networks (Goodfellow et al.| |2014), or GANs, are a powerful class of gen-
erative models defined through minimax game. GANSs and their variants have shown impressive
performance in synthesizing various types of datasets, especially natural images. Despite these suc-
cesses, the training of GANs remains quite unstable in nature, and this instability remains difficult
to understand theoretically.

Since the introduction of GANS, there have been many techniques proposed to stabilize GANs
training, including studies of new generator/discriminator architectures, loss functions, and regular-
ization techniques. Notably, |Arjovsky et al.| (2017) proposed Wasserstein GAN (WGAN), which
in principle avoids instability caused by mismatched generator and data distribution supports. In
practice, this is enforced by Lipschitz constraints, which in turn motivated developments like gradi-
ent penalties (Gulrajani et al., |2017) and spectral normalization (Miyato et al.| 2018)). Indeed, these
stabilization techniques have proven essential to achieving the latest state-of-the-art results (Karras
et al., 2018 Brock et al.,|[2019).

On the other hand, a solid theoretical understanding of training stability has not been established.
Several empirical observations point to an incomplete understanding. For example, why does apply-
ing a gradient penalty together spectral norm seem to improve performance (Miyato et al., |2018),
even though in principle they serve the same purpose? Why does applying only spectral normal-
ization with the Wasserstein loss fail (Miyatol 2018)), even though the analysis of |Arjovsky et al.
(2017) suggests it should be sufficient? Why is applying gradient penalties effective, even outside
their original context of the Wasserstein GAN (Fedus et al.,[2018))?

In this work, we develop a framework to analyze the stability of GAN training that resolves these
apparent contradictions and clarifies the roles of these regularization techniques. Our approach con-
siders the smoothness of the loss function used. In optimization, smoothness is a well-known con-
dition that ensures that gradient descent and its variants become stable (see e.g., Bertsekas|(1999)).
For example, the following well-known proposition is the starting point of our stability analysis:

Proposition 1 (Bertsekas| (1999), Proposition 1.2.3). Suppose f : RP — R is L-smooth and
bounded below. Let vy, 1 := x — £V f(xy). Then ||V f(zy)|| = 0 as k — oo.
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This proposition says that under a smoothness condition on the function, gradient descent with a
constant step size % approaches stationarity (i.e., the gradient norm approaches zero). This is a
rather weak notion of convergence, as it does not guarantee that the iterates converge to a point, and
even if the iterates do converge, the limit is a stationary point and not necessarily an minimizer.

Nevertheless, empirically, not even this stationarity is satisfied by GANs, which are known to fre-
quently destabilize and diverge during training. To diagnose this instability, we consider the smooth-
ness of the GAN’s loss function. GANs are typically framed as minimax problems of the form

i%fsupj(ﬂea@)7 (D

where J is a loss function that takes a genergtor distribution e and discriminator ¢, and § € R?
denotes the parameters of the generator. Unfortunately, the minimax nature of this problem makes
stability and convergence difficult to analyze. To make the analysis more tractable, we define J (1) =
sup,, J (i, ), so that () becomes simply

inf J(1u0)- 2)

This choice corresponds to the common assumption that the discriminator is allowed to reach opti-
mality at every training step. Now, the GAN algorithm can be regarded as simply gradient descent
on the R? — R function 6 — J(ug), which may be analyzed using Proposition |1} In particular,
if this function 8 — J(ug) satisfies the smoothness assumption, then the GAN training should be
stable in that it should approach stationarity under the assumption of an optimal discriminator.

In the remainder of this paper, we investigate whether the smoothness assumption is satisfied for
various GAN losses. Our analysis answers two questions:

Q1. Which existing GAN losses, if any, satisfy the smoothness condition in Proposition[I]?

Q2. Are there choices of loss, regularization, or architecture that enforce smoothness in GANs?
As results of our analysis, our contributions are as follows:

1. We derive sufficient conditions for the GAN algorithm to be stationary under certain as-
sumptions (Theorem|[I). Our conditions relate to the smoothness of GAN loss used as well
as the parameterization of the generator.

2. We show that most common GAN losses do not satisfy the all of the smoothness conditions,
thereby corroborating their empirical instability.

3. We develop regularization techniques that enforce the smoothness conditions. These reg-
ularizers recover common GAN stabilization techniques such as gradient penalties and
spectral normalization, thereby placing their use on a firmer theoretical foundation.

4. Our analysis provides several practical insights, suggesting for example the use of smooth
activation functions, simultaneous spectral normalization and gradient penalties, and a par-
ticular learning rate for the generator.

1.1 RELATED WORK

Divergence minimization Our analysis regards the GAN algorithm as minimizing a divergence
between the current generator distribution and the desired data distribution, under the assumption of
an optimal discriminator at every training step. This perspective originates from the earliest GAN
paper, in which |Goodfellow et al.| (2014)) show that the original minimax GAN implicitly mini-
mizes the Jensen—Shannon divergence. Since then, the community has introduced a large number
of GAN or GAN-like variants that learn generative models by implicitly minimizing various di-
vergences, including f-divergences (Nowozin et al., [2016), Wasserstein distance (Arjovsky et al.,
2017), and maximum-mean discrepancy (Li et al., [2015; [Unterthiner et al., [2018). Meanwhile, the
non-saturating GAN (Goodfellow et al., [2014)) has been shown to minimize a certain Kullback—
Leibler divergence (Arjovsky & Bottou, 2017)). Several more theoretical works consider the topo-
logical, geometric, and convexity properties of divergence minimization (Arjovsky & Bottou, 2017}
Liu et al.|[2017; Bottou et al., 2018; |Farnia & Tse, [2018};|/Chu et al., 2019)), perspectives that we draw
heavily upon. |Sanjabi et al.| (2018) also prove smoothness of GAN losses in the specific case of the
regularized optimal transport loss. Their assumption for smoothness is entangled in that it involves a
composite condition on generators and discriminators, while our analysis addresses them separately.
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Table 1: Common GANS, their corresponding loss functions, and their optimal discriminators.

Loss function .J (1) Optimal discriminator ®,,(x)
Minimax GAN Djs (|| o) 1log %
Non-saturating GAN Dk, (540 + 110 || 110) —3log #&2(1)
Wasserstein GAN Wi(p, po) argmax e, By [f(Y)] = Eympo [f(y)]
GMMN, Coulomb GAN %MMD2(M, o) Eyn[K(2,9)] — Eympo [K (2, 9)]
IPM-GAN IPM £ (e, o) argmax pe r By [f(Y)] = Eympo [f ()]

Other approaches Even though many analyses, including ours, operate under the assumption of
an optimal discriminator, this assumption is unrealistic in practice. |Li et al.[(2017b) contrast this
optimal discriminator dynamics with first-order dynamics, which assumes that the generator and
discriminator use alternating gradient updates and is what is used computationally. As this is a
differing approach from ours, we only briefly mention some results in this area, which typically
rely on game-theoretic notions (Kodali et al.,|2017; |Grnarova et al., 2018 |Oliehoek et al., [2018]) or
local analysis (Nagarajan & Kolter, |2017; [Mescheder et al.| [2018). Some of these results rely on
continuous dynamics approximations of gradient updates; in contrast, our work focuses on discrete
dynamics.

1.2 NOTATION

Let R := R U {00, —oc}. We let P(X) denote the set of all probability measures on a compact
set X C R We let M(X) and C(X) denote the dual pair consisting of the set of all finite signed
measures on X and the set of all continuous functions X — R. For any statement A, we let x{ A} be
0 if A is true and oo if A is false. For a Euclidean vector z, its Euclidean norm is denoted by ||z||2,
and the operator norm of a matrix A is denoted by || A2, i.e., [[All2 = sup,, <1 [|[Azll2/|z[[2. A
function f : X — Y between two metric spaces is a-Lipschitz if dy (f (1), f(z2)) < adx (21, z2).
A function f : RY — R is 3-smooth if its gradients are 3-Lipschitz, that is, for all z,y € R,

IVf(z) = VIl < Bllz =yl

2 SMOOTHNESS OF GAN LOSSES

This section presents Theorem [T} which provides concise criteria for the smoothness of GAN losses.

In order to keep our analysis agnostic to the particular GAN used, let J : P(X) — R be an arbitrary
convex loss function, which takes a distribution over X C R? and outputs a real number. Note
that the typical minimax formulation of GANs can be recovered from just the loss function J using
convex duality. In particular, recall that the convex conjugate J* : C(X) — R of J satisfies the
following remarkable duality, known as the Fenchel-Moreau theorem:

7= s [el@de- e, Jw= sw [e@di- T 6

HEM(X) peC(X)
Based on this duality, minimizing J can be framed as the minimax problem
inf J(u)= inf sup / x)dp — J* ;= inf sup J(u, ), 4)
REP(X) () HEP(X) pec(X) plw)dp (?) rEP(X) pec(X) (b ¢)

recovering the well-known adversarial formulation of GANs. We now define the notion of an opti-
mal discriminator for an arbitrary loss function .J, based on this convex duality:

Definition 1 (Optimal discriminator). Let J : M(X) — R be a convex, Ls.c., proper function. An
optimal discriminator for a probability distribution . € P(X) is a continuous function ®,, : X —
R that attains the maximum of the second equation in (), i.e., J(p) = [ @, (x) dp — J* (D).

This definition recovers the optimal discriminators of many existing GAN and GAN-like algorithms
(Farnia & Tsel [2018; [Chu et al., 2019)), most notably those in Tablem Our analysis will apply to any
algorithm in this family of algorithms. See Appendix [B]for more details on this perspective.
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We also formalize the notion of a family of generators:

Definition 2 (Family of generators). A family of generators is a set of pushforward probability
measures {pg = fopw : 0 € RP}, where w is a fixed probability distribution on Z (the latent
variable) and fy : Z — X is a measurable function (the generator).

Now, in light of Proposition [I} we are interested in the smoothness of the mapping 6 +— J(up),
which would guarantee the stationarity of gradient descent on this objective, which in turn implies
stationarity of the GAN algorithm under the assumption of an optimal discriminator. The following
theorem is our central result, which decomposes the smoothness of § — J(ug) into conditions on
optimal discriminators and the family of generators.

Theorem 1 (Smoothness decomposition for GANs). Let J : M(X) — R be a convex function
whose optimal discriminators ®,, : X — R satisfy the following regularity conditions:

(D1) z — O, (x) is a-Lipschitz,

D2) z+— V.8, (x) is B1-Lipschitz,

M3) u— VP H(x) is Ba-Lipschitz w.r.t. the 1-Wasserstein distance.
Also, let pg = fouw be a family of generators that satisfies:

(G1) 0 — fo(2) is A-Lipschitz in expectation for z ~ w, i.e., E,o,[l|fo,(2) — fo,(2)]l2] <
A||91 — 92 2, and

(G2) 0 — Dgyfy(z) is B-Lipschitz in expectation for z ~ w, ie., E, u[||Do, fo,(2) —
Do, fo,(2) 2] < Bl|0r — 2]|2.

Then 0 — J(ug) is L-smooth, with L = aB + A%(B1 + Ba).

Theorem|[T|connects the smoothness properties of the loss function J with the smoothness properties
of the optimal discriminator ®,,, and once paired with Proposition|[T} it suggests a quantitative value
% for a stable generator learning rate. In order to obtain claims of stability for practically sized
learning rates, it is important to tightly bound the relevant constants.

In Sections [ to[6] we carefully analyze which GAN losses satisfy (D1), (D2), and (D3), and with
what constants. We summarize our results in Table [2} it turns out that none of the listed losses,
except for one, satisfy (D1), (D2), and (D3) simultaneously with a finite constant. The MMD-based
loss satisfies the three conditions, but its constant for (D1) grows as o = O(+/d), which is an
unfavorable dependence on the data dimension d that forces an unacceptably small learning rate.
See for complete details of each condition. This failure of existing GANS to satisfy the stationarity
conditions corroborates the observed instability of GANs.

Table 2: Regularity of common GAN losses.

(D1) ([D2) (D3)

Minimax GAN X
Non-saturating GAN X
Wasserstein GAN v
IPMg X
MMD? v

NN X X X
NV Y X X

Theorem [I] decomposes smoothness into conditions on the generator and conditions on the dis-
criminator, allowing a clean separation of concerns. In this paper, we focus on the discriminator
conditions (D1), (D2), and (D3) and only provide an extremely simple example of a generator that
satisfies (G1) and (G2), in Section[7} Because analysis of the generator conditions may become quite
complicated and will vary with the choice of architecture considered (feedforward, convolutional,
ResNet, etc.), we leave a detailed analysis of the generator conditions (G1) and (G2) as a promising
avenue for future work. Indeed, such analyses may lead to new generator architectures or generator
regularization techniques that stabilize GAN training.
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3 ENFORCING SMOOTHNESS WITH INF-CONVOLUTIONS

In this section, we present a generic regularization technique that imposes the three conditions suf-
ficient for stable learning on an arbitrary loss function J, thereby stabilizing training. In Section [2]
we observe that the Wasserstein, [PM, and MMD losses respectively satisfy (D1), (D2), and (D3)
individually, but not all of of them at the same time. Using techniques from convex analysis, we
convert these three GAN losses into three regularizers that, when applied simultaneously, causes the
resulting loss to satisfy all the three conditions. Here, we only outline the technique; the specifics of
each case are deferred to Sections @] to

We start with an arbitrary base loss function J to be regularized. Next, we take an existing GAN
loss that satisfies the desired regularity condition and convert it into a regularizer function R :
M(X) — R. Then, we consider J & R, which denotes the inf-convolution defined as

(JoR)(& = _inf J(E)+R(E-D. (5)
EEM(X)

This new function J @ R inherits the regularity of R, making it a stable candidate as a GAN loss.
Moreover, because the inf-convolution is a commutative operation, we can sequentially apply multi-
ple regularizers Ry, R, and R3 without destroying the added regularity. In particular, if we carefully

choose functions R, Rs, and R3, then J = J @ Ry & Ry @& R3 will satisfy (D1), (D2), gnd (D3)
simultaneously. Moreover, under some technical assumptions, this composite function .J inherits
the original minimizers of .J, making it a sensible GAN loss:

Proposition 2 (Invariance of minimizers). Let R1(§) := ||€|lxr, R2(§) = ||¢|ls« and R3(§) =
L1113, be the three regularizers defined by @), (I2), and respectively. Assume that J :
M(X) — R has a unique minimizer at po with J(uo) = 0, and J(p) > c||fp — fuo||n for some
c > 0. Then the inf-convolution J = J & Ry & Ry & Rs has a unique minimizer at [ with
J(po) = 0.

The duality formulation @) provides a practical method for minimizing this composite function. We
leverage the duality relation (J & Ry @ Re ® R3)* = J* + R} + R} + R} and apply (@):

%HJ@RﬁM%@RQWFﬂgﬂmfwwaW@*RK@*R%@*RH@ ©)
]

= infsup 7 (1, ¢) ~ Bi(¢) ~ R3(9) ~ i) )

This minimax problem can be seen as a GAN whose discriminator objective has three added regu-
larization terms.

The concrete form of these regularizers are summarized in Table Notably, we observe that we
recover standard techniques for stabilizing GANs:

e (D1) is enforced by Lipschitz constraints (i.e., spectral normalization) on the discrimi-
nator.

e (D2) is enforced by spectral normalization and a choice of Lipschitz, smooth activation
functions for the discriminator.

Table 3: Smoothness-inducing regularizers and their convex conjugates. To enforce a regularity
condition on a loss function J, we take a source loss that satisfies it and view it as a regularizer R.
We then consider the inf-convolution J & R, which corresponds to an added regularization term R*
on the discriminator (. These regularization terms correspond to existing GAN techniques.

Purpose  Sourceloss  R(§) R*(p) GAN techniques
(D) Wi l€llkr  x{ll¢llLip <1}  spectral norm
(D2) IPMs [1€]] s x{y € S} smooth activations, spectral norm
(D3) MMD*  1||¢])3, el gradient penalties
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e (D3) is enforced by gradient penalties on the discriminator.

Our analysis therefore puts these regularization techniques on a firm theoretical foundation (Propo-
sition[T]and Theorem [T)) and provides insight into their function.

4 ENFORCING (D1) WITH LIPSCHITZ CONSTRAINTS

In this section, we show that enforcing (D1) leads to techniques and notions commonly used to sta-
bilize GANSs, including the Wasserstein distance, Lipschitz constraints and spectral normalization.
Recall that (D1) demands that the optimal discriminator ®,, is Lipschitz:

(D1) = — @, (x) is a-Lipschitz for all i € P(X), i.e., |Pu(x) — Pu(y)| < aflz —yl|o

If ®,, is differentiable, this is equivalent to that the optimal discriminator has a gradient with bounded
norm. This is a sensible criterion, since a discriminator whose gradient norm is too large may push
the generator too hard and destabilize its training.

To check (D1), the following proposition shows that it suffices to check whether |J(u) — J(v)| <
aWi (u, v) for all distributions p, v:

Proposition 3. (D1) holds if and only if J is a-Lipschitz w.r.t. the Wasserstein-1 distance.

Arjovsky et al.|(2017) show that this property does not hold for common divergences based on the
Kullback-Leibler or Jensen—Shannon divergence, while it does hold for the Wasserstein-1 distance.
Indeed, it is this desirable property that motivates their introduction of the Wasserstein GAN. Framed
in our context, their result is summarized as follows:

Proposition 4. The minimax and non-saturating GAN losses do not satisfy (D1) for some py.

Proposition 5. The Wasserstein GAN loss satisfies (D1) with o = 1 for any py.

Our stability analysis therefore deepens the analysis of |Arjovsky et al.| (2017) and provides an alter-
native reason that the Wasserstein distance is desirable as a metric: it is part of a sufficient condition
that ensures stationarity of gradient descent.

4.1 FROM WASSERSTEIN DISTANCE TO LIPSCHITZ CONSTRAINTS

Having identified the Wasserstein GAN loss as one that satisfies (D1), we next follow the strategy
outlined in Section [3|to convert it into a regularizer for an arbitrary loss function. Towards this, we
define the regularizer R; : M(X) — R and compute its convex conjugate R} : C(X) — R:

0 [lelluip <
oo otherwise.

Ri€) = allghen = o swp [ fae. fﬁw»:{ ®)
fec(X)

[1f]lLip<1
This norm is the Kantorovich—-Rubinstein norm (KR norm), which extends the Wasserstein-1
distance to M (X); it holds that ||p — v||xkr = Wi (s, v) for g, v € P(X). Then, its inf-convolution
with an arbitrary function inherits the Lipschitz property held by R;:
Proposition 6 (Pasch-Hausdorff). Let J : M(X) — R be a function, and define J := J&R;. Then

J is a-Lipschitz w.r.t. the distance induced by the KR norm, and hence the Wasserstein-1 distance
when restricted to P(X).

Due to Proposition we now obtain a transformed loss function J that automatically satisfies (D1).
This function is a generalization of the Pasch—-Hausdorff envelope (see Chapter 9 in|Rockafeller &
Wets|(1998)), also known as Lipschitz regularization or the McShane—Whitney extension (McShane}
1934; |Whitney} [1934; [Kirszbraun, (1934} |Hiriart-Urruty, |1980).

The convex conjugate computation in (8) shows that J can be minimized in practice by imposing
Lipschitz constraints on discriminators. Indeed, by @),

inf (7 & o ca) (1) = infsup Ee ()] —7*(9) = Xl lhsp < 1) ©
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=inf sup  J(u, ). (10)
Hog: flellLip<a
Farnia & Tse|(2018) consider this loss .J in the special case of an f-GAN with J (1) = D (s, j10);
they showed that minimizing J corresponds to training a f-GAN normally but constraining the
discriminator to be a-Lipschitz. We show that this technique is in fact generic for any J: minimizing
the transformed loss can be achieved by training the GAN as normal, but imposing a Lipschitz
constraint on the discriminator.

Our analysis therefore justifies the use of Lipschitz constraints, such as spectral normalization (Miy-
ato et al.,|2018)) and weight clipping (Arjovsky & Bottoul 2017), for general GAN losses. However,
Theorem [I| also suggests that applying only Lipschitz constraints may not be enough to stabilize
GAN:S, as (D1) alone does not ensure that the GAN objective is smooth.

5 ENFORCING (D2) WITH DISCRIMINATOR SMOOTHNESS

(D2) demands that the optimal discriminator ®,, is smooth:
(D2) z — V&, () is B;-Lipschitz for all p € P(X), i.e., VO, (z) — V@, (y)|2 < billz — yll2-

Intuitively, this says that for a fixed generator y, the optimal discriminator ®,, should not provide
gradients that change too much spatially.

Although the Wasserstein GAN loss (D1), we see that it, along with the minimax GAN and the
non-saturating GAN, do not satisfy (D2):

Proposition 7. The Wasserstein, minimax, and non-saturating GAN losses do not satisfy (D2) for
some [ig.

We now construct a loss that by definition satisfies (D2). Let S be the class of 1-smooth functions,
that is, for which ||V f(x) — Vf(y)]l2 < || — y||2, and consider the integral probability metric
(IPM) (Miiller, [1997) w.r.t. S, defined by

IPMs(p,v) := sup/fd,u—/fdy. (11)
fes

The optimal discriminator for the loss IPMgs (1, o) is the function that maximizes the supremum in
the definition. This function by definition belongs to S and therefore is 1-smooth. Hence, this IPM
loss satisfies (D2) with 81 = 1 by construction.

5.1 FROM INTEGRAL PROBABILITY METRIC TO SMOOTH DISCRIMINATORS

Having identified the IPM-based loss as one that satisfies (D2), we next follow the strategy outlined
in Section 3| to convert it into a regularizer for an arbitrary loss function. To do so, we define a
regularizer Ry : M(X) — R and compute its convex conjugate R} : C(X) — R:

Ra(€) = pilels: =pusw [ a5 Ryt = {0 £l
fes

oo otherwise.
The norm is the dual norm to S, which extends the IPM to signed measures; it holds that
IPMs(p,v) = ||u — v||s= for u,v € P(X). Similar to the situation in the previous section,
inf-convolution preserves the smoothness property of Rs:

(12)

I:roposition 8. Let J : M(X) — R be a convex, proper, lower semicontinuous function, and define
J := J @ Ry. Then the optimal discriminator for J is [31-smooth.

Applying @) and (12)), we see that we can minimize this transformed loss function by restricting the
family of discriminators to only 3;-smooth discriminators:

inf (J @ Bu|-[ls-) () = nfsup Eonplo(@)] = J*(9) = x{p € 1S} (13)
©
=inf sup J(u,¢). (14)
P peprS

In practice, we can enforce this by applying spectral normalization (Miyato et al., 2018)) and using a
Lipschitz, smooth activation function such as ELU (Clevert et al., 2016) or sigmoid.
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Proposition 9. Ler f : R — R be a neural network consisting of k layers whose linear transfor-
mations have spectral norm 1 and whose activation functions are 1-Lipschitz and 1-smooth. Then f
is k-smooth.

6 ENFORCING (D3) WITH GRADIENT PENALTIES

(D3) is the following smoothness condition:

(D3) p— V@, (x) is fa-Lipschitz for any x € X, ie.,

Vo, (z) = VO, (2)|2 < B2Wi(p,v).

(D3) requires that the gradients of the optimal discriminator do not change too rapidly in response
to changes in p. Indeed, if the discriminator’s gradients are too sensitive to changes in the generator,
the generator may not be able to accurately follow those gradients as it updates itself using a finite
step size. In finite-dimensional optimization of a function f : R? — R, this condition is analogous
to f having a Lipschitz gradient.

We now present an equivalent characterization of (D3) that is easier to check in practice. We define
the Bregman divergence of a convex function J : M(X) — R by

Dy(v,p) :=Jw) —J(p) — /q)u(x) d(v — u), (15)

where @, is the optimal discriminator for J at p. Then, (D3) is characterized in terms of the
Bregman divergence and the KR norm as follows:

Proposition 10. Let J : M(X) — R be a convex function. Then J satisfies (D3) if and only if
Dy(v,p) < %H,u —v|kg forall p,v € M(X).

It is straightforward to compute the Bregman divergence corresponding to several popular GANSs:

Dpys(- 11 10) s 1) = Drr(3v + 340 || 31+ 310) + 3 Dxu(v || 1), (16)
D Dyer (4o | o) (Vs 1) = D52 + 540 || 31+ 3h0), (17)
Q%MMDZ(‘,/LO)(l@ .u“) = %MMDZ(V7 ,[L) (18)

The first two Bregman divergences are not bounded above by ||p—v||%y for reasons similar to those
discussed in Section 4} and hence:

Proposition 11. The minimax and non-saturating GAN losses do not satisfy (D3) for some .

Even so, the Bregman divergence for the non-saturating loss is always less than that of the minimax
GAN, suggesting that the non-saturating loss should be stable in more situations than the minimax
GAN. On the other hand, the MMD-based loss (Li et al., [2015) does satisfy (D3) when its kernel is

the Gaussian kernel K (z,y) = e~ llz=vI;
Proposition 12. The MMD loss with Gaussian kernel satisfies (D3) with B2 = 27 for all .

6.1 FROM MAXIMUM MEAN DISCREPANCY TO GRADIENT PENALTIES

Having identified the MMD-based loss as one that satisfies (D3), we next follow the strategy outlined
in Section 3| to convert it into a regularizer for an arbitrary loss function. To do so, we define the
regularizer Rz : M(X) — R and compute its convex conjugate R} : C(X) — R:

Ro©) = IR Rl = T lelie (19)

The norm is the norm of a reproducing kernel Hilbert space norm (RKHS) # with Gaussian
kernel; this norm extends the MMD to signed measures, as it holds that MMD(u, v) = || — D||»
for 1, v € P(X). Here, £ = [ K(z,-)&(dx) € H denotes the mean embedding of a signed measure
& € M(X); we also adopt the convention that ||¢||3 = oo if ¢ & H. Similar to the situation in the
previous sections, inf-convolution preserves the smoothness property of R3:

Proposition 13 (Moreau—Yosida regularization). Suppose J : M(X) — R is convex, and define
J := J @© Rs. Then J is convex, and D ;(v, j1) < %Hu —v||kg-
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By Proposition[I0] this transformed loss function satisfies (D3), having inherited the regularity prop-
erties of the squared MMD. This transformed function is a generalization of Moreau—Yosida regu-
larization or the Moreau envelope (see Chapter 1 in Rockafeller & Wets|(1998)). It is well-known
that in the case of a function f : R™ — R, this regularization results in a function with Lipschitz
gradients, so it is unsurprising that this property carries over to the infinite-dimensional case.

Applying (@) and (19), we see that the transformed loss function can be minimized as a GAN by
implementing an RKHS squared norm penalty on the discriminator:

inf (J & 2113 () = inf sup Bonyu[i0()] = 7 () = F Il (20)
©

Computationally, the RKHS norm is difficult to evaluate. We propose taking advantage of the fol-
lowing infinite series representation of || f||3, in terms of the derivatives of f (Fasshauer & Ye,[2011;
Novak et al.,|2018)):

Proposition 14. Let H be an RKHS with the Gaussian kernel K (xz,y) = e~ =9I Then for
fen,

oo

_ 1
1FB =D (4m™ > 105 2 flIZe e Q1)
k=0 ki4-Fkq=k Hi:l k!
= Hf||2L2(Rd) + ﬁ”fo%g(Rd) + ﬁHVQfH%z(Rd) + other terms. (22)

In an ideal world, we would use this expression as a penalty on the discriminator to enforce (D3). Of
course, as an infinite series, this formulation is computationally impractical. However, the first two
terms are very close to common GAN techniques like gradient penalties (Gulrajani et al., 2017 and
penalizing the output of the discriminator (Karras et al.|[2018)). We therefore interpret these common
practices as partially applying the penalty given by the RKHS norm squared, approximately enforc-
ing (D3). We view the choice of only using the leading terms as a disadvantageous but practical
necessity.

Interestingly, according to our analysis, gradient penalties and spectral normalization are not inter-
changeable, even though both techniques were designed to constrain the Lipschitz constant of the
discriminator. Instead, our analysis suggests that they serve different purposes: gradient penalties
enforce the variational smoothness (D3), while spectral normalization enforces Lipschitz continuity
(D1). This demystifies the puzzling observation of [Miyato| (2018)) that GANs using only spectral
normalization with a WGAN loss do not seem to train well; it also explains why using both spectral
normalization and a gradient penalty is a reasonable strategy. It also motivates the use of gradient
penalties applied to losses other than the Wasserstein loss (Fedus et al.|[2018).

7 VERIFYING THE THEORETICAL LEARNING RATE

In this section, we empirically test the theoretical learning rate given by Theorem|[TJand Proposition/[T]
as well as our regularization scheme based on inf-convolutions. We approximately implement
our composite regularization scheme (7) on a trivial base loss of J(u) = x{u = po} by alternating
stochastic gradient steps on

inf 50 Bar[(2)] — Bamalip0)] = T Eari [0 + IR @IP], 23

roop 62
where 1 is a random interpolate between samples from p and p, as used in|Gulrajani et al.| (2017).
The regularization term is a truncation of the series for the squared RKHS norm and approx-
imately enforces (D3). The discriminator is a 7-layer convolutional neural network with spectral
normalizatio and ELU activations, an architecture that enforces (D1) and (D2). We include a final
scalar multiplication by « so that by Proposition[9] 81 = 7a. We take two discriminator steps for
every generator step, to better approximate our assumption of an optimal discriminator.

"Whereas Miyato et al.[(2018) divide each layer by the spectral norm of the convolutional kernel, we divide
by the spectral norm of the convolutional operator itself, computed using the same power iteration algorithm
applied to the operator. This is so that the layers are truly 1-Lipschitz, which is critical for our theory.
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Figure 1: FID of simple particle generators with various learning rates. The horizontal axis shows
the ratio v/~ between the actual learning rate v and the theoretical learning rate o suggested by
Theoremm and Proposition E} The vertical axis shows the FID after 100,000 SGD iterations.

For the generator, we use an extremely simple particle-based generator which satisfies (G1) and
(G2), in order to minimize the number of confounding factors in our experiment. Let w be the
discrete uniform distribution on Z = {1,...,N}. For an N X d matrix 6 and z € Z, define
fo : Z — R%so that fy(z) is the zth row of 6. The particle generator 11y = fp4w satisfies (G1) with
A= \/#ﬁ, since

1 S ! 1 !
E-(llfo(z) = for(2)ll2] = > 16- = 0ll2 < TNIIG — 0, (24)
z=1

and it satisfies (G2) with B = 0, since Dy fy(z) is constant w.r.t. . With this setup, Theorem
suggests a theoretical learning rate of

1 1 N

=TT aB + A%(B + f52) T Ta+t By

(25)

We randomly generated hyperparameter settings for the Lipschitz constant «, the smoothness con-
stant 35, the number of particles N, and the learning rate . We trained each model for 100,000
steps on CIFAR-10 and evaluate each model using the Fréchet Inception Distance (FID) of |[Heusel
et al| (2017). We hypothesize that stability is correlated with image quality; Figure [T] plots the FID
for each hyperparameter setting in terms of the ratio of the true learning rate + and the theoretically
motivated learning rate ~yy. We find that the best FID scores are obtained in the region where /g
is between 1 and 1000. For small learning rates v/vo < 1, we observe that the convergence is
too slow to make a reasonable progress on the objective, whereas as the learning rate gets larger
/%0 > 1, we observe a steady increase in FID, signalling unstable behavior. It also makes sense
that learning rates slightly above the optimal rate produce good results, since our theoretical learning
rate is a conservative lower bound. Note that our intention is to test our theory, not to generate good
images, which is difficult due to our weak choice of generator. Overall, this experiment shows that
our theory and regularization scheme are sensible.

8 FUTURE WORK

Inexact gradient descent In this paper, we employed several assumptions in order to regard the
GAN algorithm as gradient descent. However, real-world GAN algorithms must be treated as “in-
exact” descent algorithms. As such, future work includes: (i) relaxing the optimal discriminator
assumption (cf.|Sanjabi et al.|(2018)) or providing a stability result for discrete simultaneous gradi-
ent descent (cf. continuous time analysis in [Nagarajan & Kolter] (2017); Mescheder et al.| (2018)),
(ii) addressing stochastic approximations of gradients (i.e., SGD), and (iii) providing error bounds
for the truncated gradient penalty used in (23).

Generator architectures Another important direction of research is to seek more powerful gen-
erator architectures that satisfy our smoothness assumptions (G1) and (G2). In practice, generators
are often implemented as deep neural networks, and involve some specific architectures such as de-
convolution layers (Radford et alJ [2015) and residual blocks (e.g., |(Gulrajani et al.| (2017)); [Miyato
et al.| (2018))). In this paper, we did not provide results on the smoothness of general classes of gen-
erators, since our focus is to analyze stability properties influenced by the choice of loss function .J
(and therefore optimal discriminators). However, our conditions (G1) and (G2) shed light on how to
obtain smoothly parameterized neural networks, which is left for future work.

10
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A INF-CONVOLUTION IN R?

To gain intuition on the inf-convolution, we present a finite-dimensional analogue of the techniques
in Section [3] For simplicity of presentation, we will omit any regularity conditions (e.g., lower
semicontinuity). We refer readers to Chapter 12 of Bauschke & Combettes| (2011) for a detailed
introduction.

Let J and R be convex functions on R?. The inf-convolution of J and R is a function J * R defined
as
(J® R)(z) = inﬂ{d J(z) + R(z — z).
ze

The inf-convolution is often called the epigraphic sum since the epigraph of J x R coincides with the
Minkowski sum of epigraphs of J and R, as Figure 2]illustrates. The inf-convolution is associative
and commutative operation; that is, it is always true that (J; @ J2) @ J3 = J; @ (J2 @ J3) =:
JidJoPJgand J1 B Jy = Jo P Jq.

There are two important special cases of inf-convolutions: The first one is the Pasch—Hausdorff
envelope J,, which is the inf-convolution between J and «l|-||2 (o > 0). It is known that J,
becomes a-Lipschitz. The second important example is the Moreau envelope J? = J @ ﬁHH%,

i.e., the inf-convolution with the quadratic regularizer % |]|3. The Moreau envelope J# is always
differentiable, and the gradient of J B is [B-Lipschitz (thus J B s [-smooth).

It is worth noting that the set of minimizers does not change after these two operations. More
generally, we have the following result:

Proposition 15. Let J, R : R? — R be proper and lower semicontinuous functions with min J >
—o00 and min R = 0. Suppose R(0) = 0 and R(z) > o(||x||2) for some increasing function
¥ :R>9 — R. Then, min J ® R = min J and argmin J ® R = arg min J.
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Figure 2: Illustration of inf-convolutions and their convex conjugates in R. Top row: Generally,
inf-convolutions inherit the regularity of their parent functions. In this example, Ji(z) = |z] is
1-Lipschitz but not smooth, while J5(x) = 22 /2 is 1-smooth but not Lipschitz. The inf-convolution
J1 & Js is the well-known Huber function, which is both 1-Lipschitz and 1-smooth. Bottom row:
Convex conjugates of the functions in the top row. The conjugate of J; @ .J5 is given as the sum of
conjugates J5(2) = x{|z| < 1} and J5(z) = 22 /2.

To sum up, given a function J, we can always construct a regularized alternative .J? that is a-
Lipschitz and S-smooth and has the same minimizers as .J.

The next question is how to implement the inf-convolution in GAN-like optimization problems. For
this, it is convenient to consider the convex conjugate. Recall that the Fenchel-Moreau theorem
says that there is a duality between a convex function J and its convex conjugate J* as J(z) =
Sup,cpa (T, z) — J*(2) and J*(2) = sup,epa(z,2) — J(x). The important property is that the
convex conjugate of the inf-convolution is the sum of convex conjugates, that is, we always have

(J @ R)"(2) = J*(2) + R"(2).

This property can be useful for implementing the regularized objective .J, 5 as follows. First, we can
check that the convex conjugates of the norm and the squared norm are given as (||-||2)* = x{||-|| <

1} and (3]|[13)* = 3||/I3- Hence, we have

JB() = (J@a||-|2@;ﬁ||-||§)<x>= sup {a,2) — () — D),

z: ||z]|2<a 2

which means that minimizing J? can be recast in min-max problem with the norm clipping and
{5-regularization on the dual variable z.

B CoMMON GAN LOSSES

For completeness and clarity, we explicitly write out the expressions for the losses listed in Table[T]
For more detailed computations of optimal discriminators, see|Chu et al.|(2019); for more details on
the convex duality interpretation, see|Farnia & Tse|(2018)).

Minimax GAN |Goodfellow et al.|(2014) originally proposed the minimax GAN and showed that
the corresponding loss function for the minimax GAN is the Jensen—Shannon divergence, defined
as

1 1
J(1) == Dys(p |l o) = 5 Dxcr.(pe [ 31+ 30) + 5 Dcr. (o || 51+ 310),
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where 1o € P(X) is a fixed probability measure (usually the empirical measure of the data), and
Dxi,(p || v) is the Kullback—Leibler divergence between 4 and v. The optimal discriminator in the
sense of Definition[I]is given as

1 dp
P, () = §1og X

)

where m is the Radon—Nikodym derivative. If i and o have densities p(x) and o (z), then

dp _ (=)

Tt 1)) = @) + o)’

so our optimal discriminator matches that of |Goodfellow et al.|(2014) up to a constant factor and
logarithm. To recover the minimax formulation, the convex duality (4)) yields:

inf Dy (1, o) = inf sup By [p(2)] = (= 3 Eprpyo[log(1 — €951 11082)] — L1og 2)
" e

(Ds(+10))* ()
= igf S%p 1Es~pullog(l — D(2))] + $Eqp, [log D(z)],

using the substitution ¢ = 1 log(1 — D) — 3 log 2.

Non-saturating GAN |Goodfellow et al.|(2014)) also proposed the heuristic non-saturating GAN.
Theorem 2.5 of |Arjovsky & Bottou| (2017) shows that the loss function minimized is

1
T(1) = Dr (31 + 3p0 | po) = 5 Dt (i || o) = Das (] ).

The optimal discriminator is

dpo
®,(x) =—-log——(x

w0 = =518 Gt )
Wasserstein GAN |Arjovsky et al|(2017)) proposed the Wasserstein GAN, which minimizes the
Wasserstein-1 distance between the input x and a fixed measure pg:

J(N) = Wl(ﬂa ,U'O) = n;fE(af,y)Nﬂ'[H'T - y”]v

where the infimum is taken over all couplings m, probability distributions over X x X whose
marginals are p and 11 respectively. The optimal discriminator @, is called the Kantorovich poten-
tial in the optimal transport literature (Villani, 2009). The convex duality (E]) recover the Wasserstein
GAN:

inf Wi (1, a0) = inf sup By [0(2)] — (Earvunlip@)] + el < 1))
(]
(W1(-10))* ()

=inf sup Erwt[@(x)} *Erwto[%ﬁ(x)}v
ol luip<1

an expression of Kantorovich—Rubinstein duality. The Lipschitz constraint on the discriminator is
typically enforced by spectral normalization (Miyato et al.,2018)), less frequently by weight clipping
(Arjovsky et al.,|2017), or heuristically by gradient penalties (Gulrajani et al., 2017)) (although this
work shows that gradient penalties may serve a different purpose altogether).

Maximum mean discrepancy Given a positive definite kernel K : X x X — R, the maximum
mean discrepancy (MMD, |Gretton et al.[(2012)) between . and v is defined by

T(h) = GMMDi () = 5 [ K (a) (= v)(do) (0 - 1) ().

where (H, ||-||%) is the reproducing kernel Hilbert space (RKHS) for K. The generative moment-
matching network (GMMN, |Li et al.| (2015)) and the Coulomb GAN (Unterthiner et al., [2018)) use
the squared MMD as the loss function. The optimal discriminator in this case is

Du(2) = By [K(2, )] = By [K (2, 9)],
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which in constrast to other GANs, may be approximated by simple Monte Carlo, rather than an
auxiliary optimization problem.

Note that MMD-GANSs (L1 et al., 2017a; |Arbel et al., 2018) minimize a modified version of the
MMD, the Optimized MMD (Sriperumbudur et al., 2009} |Arbel et al., 2018). These MMD-GANs
are adversarial in a way that does not arise from convex duality, so our theory currently does not
apply to these GANS.

Integral probability metrics An integral probability metric (Miiller} [1997) is defined by

J(1) = TPM A (1, o) = sup / fu— / f dpo,

feF

where F is a class of functions. The optimal discriminator is the function that maximizes the supre-
mum in the definition. The Wasserstein distance may be thought of as an IPM with F containing
all 1-Lipschitz functions. The MMD may be thought of as an IPM with F all functions with RKHS
norm at most 1, but no GANs based on MMD are actually trained this way, as it is difficult to
constrain the discriminator to such functions.

C OPTIMAL DISCRIMINATORS ARE FUNCTIONAL DERIVATIVES

Let J : P(X) — R be a convex function. Recall the definition of the optimal discriminator (Defini-
tion [I)):

P, € argmax/godu — J*(p).

pEC(X)

This definition can be understood as an infinite dimensional analogue of subgradients. In fact, in
finite-dimensional convex analysis, z is a subgradient of f : RY — R if and only if it can be written
as z € argmax,, (2, x) — f*(2’). The calculus of subgradients shares many properties with the
standard calculus of derivatives, such as chain rules (Rockafeller & Wets, |1998)). This motivate us
to investigate derivative-like features of optimal discriminators.
‘We introduce the functional derivative, also known as the von Mises influence function:

Definition 3 (Functional derivative). Let.J : P(X) — R be a function of probability measures. We
say that a continuous function ®,, : X — R is a functional derivative of J at 1 if

J(p+€€) = J(M)+6/‘1>Hd§+0(62)
holds for any § = v — pwithv € P(X).

Under this definition, optimal discriminators are actually functional derivatives.

Proposition 16 (Chu et al.[(2019), Theorem 2). Ler J : M(X) — R be a proper, lower semicon-
tinuous, and convex function. If there exists a maximizer ®,, of ¢ — [ pdp — J*(p), then @, is a
functional derivative of J at p in the sense of Definition 3]

The following result relates the derivative of the loss function with the derivative of the optimal
discriminator:

Proposition 17 (Chu et al.|(2019), Theorem 1). Let J : P(X) — R be continuously differentiable,
in the sense that the functional derivative ®, exists and (j1,v) +— By, [®,(2)] is continuous. Let
0 — g be continuous in the sense that m(,u@_m — o) converges to a weak limit as ||h|| — O.

Then, we have )
Vo (lg) = VoEz~p, [@(z)],

where & = ® o IS treated as a function X — R that is not dependent on 0.

We use this important computational tool in many of our proofs. For the case of the generator model
te = foxw, an important consequence of Proposition|17|is that

Vo (18) = VoEenw[®(f6(2))] = Eonw[Varfo(:)@pu(fo(2)) - Do fo(2)].
We use this fact in the proof of Theorem
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D PROOFS FOR SECTIONS [I] AND [2]

The following result is well known in the dynamical systems and the optimization literature. For the
sake of completeness, we provide its proof.

Proposition 1 (Bertsekas| (1999), Proposition 1.2.3). Suppose f : RP — R is L-smooth and
bounded below. Let xj,11 := x, — $V f(x). Then ||V f(z)]| — 0 as k — oc.

Proof. 1t is known that if f is L-smooth, then

L
F) < f(@) +(VF(@)y —2) + Slly — =]
holds for any =,y € R (see e.g. Lemma 3.4 in Bubeck| (2015)). Then, we have
L
Fl@rsr) < flaw) + (VF(zn), ther = z6) + S llowe - i|[?
1 1

< _ 2t M2 2
< fla) = VI @I + 519 @)l

= (@)~ 5z IV F @I

Summing this inequality over k, we have

n—1
1
7 IV F@RIP < (o) = flan),
k=0
from which we conclude that

min_ (197l < 2 (f(ao) — inf f(2)).

0<k<n—

Next, we move on to prove Theorem |1} which we restate here for readability.

Theorem 1 (Smoothness decomposition for GANs). Let J : M(X) — R be a convex function
whose optimal discriminators ®,, : X — R satisfy the following regularity conditions:

(D1) z +— O, (x) is a-Lipschitz,

(D2) z — V,,(x) is f1-Lipschitz,

(D3) p— V@, (x) is Bo-Lipschitz w.r.t. the 1-Wasserstein distance.
Also, let pg = fouw be a family of generators that satisfies:

(G1) 0 — fo(2) is A-Lipschitz in expectation for z ~ w, i.e., E. (|| fo,(2) — fo,(2)]l2] <
A||01 — 02 2, and

(G2) 0 — Dgyfy(z) is B-Lipschitz in expectation for z ~ w, i.e., E, u[||Des, fo,(2) —
Do, fo,(2)|2] < Bl|0r — 2]|2.

Then 0 — J(ug) is L-smooth, with L = aB + A?(B31 + B2).

Intuitively, Theorem|T|can be understood as the chain rule. For simplicity, let us consider the smooth-
ness of a composite function D o G, where D and G are functions on R. A sufficient condition for
DoG to be smooth is that its second derivative is bounded. For this, suppose that (i) D is a-Lipschitz
and -smooth and (ii) G is A-Lipschitz and B-smooth. By the chain rule, the second derivative is
bounded as (D o G)" = (D' o G)G" + (D" o G)(G")? < aB + A2%f3, which has the same form as
the consequence of Theoremm For GANs, we need somewhat more involved conditions; We need
two types of smoothness (D2) and (D3) for the optimal discriminators. To this end, we utilize the
functional gradient point of view that we explained in Appendix
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Proof of Theorem[I] First, using the functional gradient interpretation of the optimal discriminator,
we have

Hv91 J(/“%) - v92J(:U’92)||

= ||Ezni [V®pup, (f0,(2)) - Do, fo, — V®pus, (fo,(2)) - Do, fo,]|| Proposition [T7]
=||Ben [V®py, (fo,(2)) - (Do, fo, — D02f92)
+ (V®,u,, (fo,(2)) = V@, (fo,(2))) - Do, fo,
+ (V®pup, (fo,(2)) = V@, (f0,(2))) - Do, fo] ||
<N Eanws [Vps, (fo,(2)) - (Do, fo, — Do, fo,)]|| (a)
F B [(V®py, (fo, (2)) = VPp,, (fo, (2))) - Do, foo]|| (b)
+ [ [(V g, (fo, (2)) = V @y, (fo,(2))) - Do, fo]|| - (©)

By assumption, there are bounded non-negative numbers «, 31, 82, A, and B such that

(Dl/) Q= Sup sup ||‘I>u($)||2 )

HEP(X) T~
(D2 sup  [[Vg, @u(21) — Vi, @pu(@2) |y < Billzr — 222
HEP(X)
(D3") 51€1p Ve q)m( ) — V@, (‘r)HQ < BoWi(pa, pa),

(Gl/) A:Ezww Sl;pHDOfQ(Z)HOpv and

(Gzl) Ez~w||D91f91(2) - D92f92(2)|‘0p < BH91 - 92”

Here, we wrote sup,,., f(z) for the essential supremum of f w.r.t. u. From (D1’) and (G2'), the
first term (a) is bounded as

H]EZNw [V(I)Mel (f91 (Z)) ’ (D91 f91 - D92f92)] H < aB||91 - 92”
From (D3’), (G1’), and the Cauchy-Schwarz inequality, the second term (b) is bounded as
HEZNW [(vq)usl (f91 (Z)) - vq)usz (f91 (Z))> : D92 f92] H

§A52W1 (M915,u92)
SAB2E. s fo, (2) = fou (2)]| < A%Ba|61 — 62|,

where the second inequality holds from the following optimal transport interpretation of Wi:

Wituoopo) = it [l =yl dy < Eeeollfo(2) = S 2]
coupling of pg,; and g,

Lastly, from (D2’), (G1’) and the Cauchy-Schwarz inequality, the term (c) is bounded as
[Eenw[(V @y, (fo,(2)) = Y@y, (f0,(2))) - Doy foo]|| < AB1Ezu|l fo, (2)—fo, ()] < A?B1|01—02].
Combining the above upper bounds for (a)—(c), we conclude that

V0, J (1,) = Vo, (110,)|| < (B + A%(B1 + B2)) 101 — o] -

E PROOFS FOR SECTION[3]

In the finite-dimensional case, Proposition [I3] says that taking inf-convolution with a “coercive”
regularizer does not change the set of minimizers of the original objective. A similar invariance
holds for GAN objectives, which are defined on infinite-dimensional space of signed measures, for
the regularizers R, Ry and R3 introduced in Sections@to@
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Proposition 2 (Invariance of minimizers). Let Ry (€) := ||{||xr, R2(§) = ||€]|ss and R3(§) =
111€113, be the three regularizers defined by ), (I2), and (19) respectively. Assume that J :
M(X) — R has a unique minimizer at po with J(uo) = 0, and J(p) > c||ft — fuo||n for some
c > 0. Then the inf-convolution J = J @& Ry & Ro & R3 has a unique minimizer at pg with
J (o) = 0.

Proof. In the following, we endow M (X)) with the Gaussian RKHS norm || ° ||, and for conve-
nience || - || will refer to this norm if not otherwise specified. To show the result, we apply Lemmal[l]
three times, first on 3 and 1, and then again on R3® 1 and R, and then finally on R3® R1 P Ro

and J(- + p10). The result follows from noting that J (1) = [Rs ® Ry @ Ro @ J(- + o)) (1t — po).

In order to apply the lemma, it suffices to show that R3 is uniformly continuous on bounded sets and
coercive, and that there exist constants ¢; and ¢ such that Ry (£) > ¢1]|€|| and R (&) > c2||€|l- Rs
is uniformly continuous on bounded sets: suppose ||£]| < C and ||¢’|| < C; then |R3(¢) — R3(£)| =
1LIIEI12 =3I 11P = [5(€ =€, £+€)| < C[|€—¢| by the Cauchy-Schwarz and triangle inequality.
Rj is also coercive, as R3(£) = L[|€]|?> — oo when ||¢]| — oco. Ry satisfies Ri(€) > ¢1[|€]| by
Lemmal[7] R, satisfies Ro(§) > c;\)\f || by Lemmal3] O

Recall that a function F' is said to be coercive if F(§) — oo when ||| — oo.

Lemma 1. Suppose F' : M(X) — R has a unique minimizer at 0 with F'(0) = 0, and is uniformly
continuous on bounded sets and coercive. Suppose G : M(X) — R has a unique minimizer at 0
with G(0) = 0, and G(-) > ¢| - || for some ¢ > 0. Then the inf-convolution F' & G has a unique
minimizer at 0 with (F' & G)(0) = 0, and is uniformly continuous on bounded sets, coercive, and
real-valued.

Proof. From Theorem 2.3 of [Stromberg| (1996), inf F' & G = 0, and 0 € argmin F' & G. To show
that 0 is the unique minimizer, let £ € argmin F' & G. From the definition of inf-convolution, for
every n there exists an &, € M(X) that satisfies

Jim F(§n) + G(E = &) = (FaG)(E) = 0.

Since F' and G are non-negative, F'(¢,) — 0 and G(§ — &,) — 0. By our assumption that G(-) >
¢l - ||, the latter limit implies that || — &,| — 0, which implies that F'(§,) — F(§) by continuity
of F. Comparing our two expressions for the limit of F'(&,,), we find that F'(£) = 0, which implies
that £ = 0, since F has a unique minimizer at 0. Hence arg min F' & G = {0}.

From Theorem 2.10 of [Stromberg| (1996), F' & G is uniformly continuous on bounded sets and
real-valued. To show that F' @ G is coercive, we show the equivalent condition its sublevel sets are
bounded (see Proposition 11.11 of [Bauschke & Combettes| (2011)). That is, we show that for all
a > 0, there exists a constant b such that if (F' & G)(€) < a, then ||£]| < b. Let a > 0, and let
& € M(X) be such that (F & G)(§) < a. Let € > 0; from the definition of inf-convolution, there

exists a £ € M(X) such that

FEO)+CGE-<(Fa@) () +e<a+e

Because F' and G are non-negative, we have that

F(¢) <a-+e, G(§—£)§a+e.

Using the fact that F' is coercive and hence its sublevel sets are bounded, let b’ be such that if
F(v) < a+e, then ||v| < V. By the triangle inequality and our assumption that G(-) > ¢|| - ||,

G(f—é) < b/ +
70 >

el < €N+ e — €Il < b + i

Because this constant is independent of £, this shows that F' & G is coercive.
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F PROOFS FOR SECTION [
Proposition 3. (D1) holds if and only if J is a-Lipschitz w.r.t. the Wasserstein-1 distance.

Proof. First, we check the forward implication:

() = JW)| < aWi(p,v) = sup [Va®yu(2)], < a.

T

From the duality between L*°- and L'-norms, we have

Sup [ Vo @, (@) = V2%, )] oty = [ @) vl duta). o)

T H HLl(M md)

Below, we will abbreviate [||| 1 (,,; ra) as ||-[[z1. We utilize the fact that the optimal discriminator
®,, is the functional gradient of J in the sense of Deﬁnition Forany t > 0, let o, = (id + tv)xp
be the law of = + tv(x) with  ~ p. Then, p; converges weakly to 4 = pg as t — 0 since
Wi (e, ) < tljv|lr¢uy — 0. Applying Propositionto J and p;, we have

d

aJ(Mt)

— %/@M(mﬂv(x))du(ﬂf)

= /V@)M(az) ~v(x) dp.
t=0

In particular, the right-hand side of (26)) is bounded from above as

su Vo, (x) - o(x) duz
|v|L1(IZ>=1/ (@) - v(@) du(x)

t=0

d
= sup ()
HU”LI(H) 1 t=0
J(pe) — J
O A (L A )
Hv”Ll(M):lt%O t
Wi (g,
< sup  lim (n)
oll 1.,y =1%70 t
at||v
< sup lim 7” HLl(“)
ol 1,y =1 470 t
:a,

which proves the first half of the statement.

For the converse, we borrow some techniques from the optimal transport theory. Let p > 1, and let
W, (1, v) denote the Wasserstein-p distance between p and v. Suppose that p; : [0,1] — P(X)
is an P, (X)-absolutely continuous curve, that is, every pi; has a finite p-moment and there exists

v € L([0,1]) such that W (ué,ut ) < f r)dr holds for any 0 < s < t < 1. Then, the limit

| lw, () == limp o [B] =Wy (petn, pe) ex1sts for almost all ¢ € [0, 1] (see Ambrosio et al.|(2008),
Theorem 1.1.2). Such |4/ |y, is called the metric derivative of ;.

Lemma 2 (Ambrosio et al.{(2008), Theorem 8.3.1). Let 1, : [0, 1] — P(X) be an P, (X)-absolutely
continuous curve, and let |p/|w,, € L'([0,1]) be its metric derivative. Then, there exists a vector

field v : (x,t) v+ vi(x) € R? such that

ve € LP(pe; X), - loell < |w'lw, (8)
for almost all t € [0, 1], and

/ PTAd o(x, ) (de)dt = / (ve(x), Vao(x, t)) pe (da)dt

holds for any cylindrical function p(z,t).
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Given p > 1, let iy be a P, (X )-absolutely continuous curve such that 19 = p and p; = v. Then
1
d
—J () dt
[ e

1
/ /’Ut . V@m d/l,t dt’
0

1
S/O Ve || Lo () ||V®Ht||LQ(Mt) dt

T(n) — T(v)] =

1
< [ il dt-sup V@3l
m

1
< [ i, it sup [V
m

where [1;] is the metric derivative. The existence of v; and the bound |[v|| v (,,) < |1 |w, is due
to Lemma Taking the infimum over all possible such curves, we find that

1T(5) = JW)| < Wi, v) - 50p [V Bz -
[

To conclude, we consider the limit p — 1. Using the fact that ¢ ~ || f||1q(,) is increasing in ¢, we
have

| (1) = J@)| < Wyp(p,v) - sup [Vl e )y < @Wp (11, ).
n

Then
[J(p) — J(v)| < inf aW, (1, v)
p>1
_ T .
O‘ﬂeﬁhy);&”x Yl e ()

=a inf T — -
WEH(M’V)H Yl ()

= an(MaV)~

Proposition 4. The minimax and non-saturating GAN losses do not satisfy (D1) for some py.

Proposition 5. The Wasserstein GAN loss satisfies (D1) with a = 1 for any pyg.

Proof for Propositiond and Proposition[5] The counterexample for Proposition]is a slight simpli-
fication of Example 1 of |Arjovsky et al.(2017). Let §, denote the distribution that outputs x € R
with probability 1. Then, we have

log2 x#0
0 z=0,

oo x#0

0 z=o0 and Wy (0z,d0) = |z|.

Das(o. 1160) = { Dra (b3 l160) = {
Therefore, for J (i) = Djys(p || do), the inequality |.J(d,) — J(do)| < aW1(d4, dp) cannot hold for
sufficiently small = # 0, because the left-hand side equals log 2 while the right-hand side equals
alz|. For J(p) = Dxr(31 + 300 || 8). the inequality will not hold for any = # 0.

Next, we verify Proposition [5} For J(u) = Wi(u, o), we have J(u) — J(v) = Wi(p, o) —
Wi (v, mo) < Wi(u,v) by the triangle inequality (see e.g., Section 6 in [Villani (2009)). Reversing
the roles of u and v, we can conclude that |J(u) — J(v)| < Wi(p,v). The result follows from
Proposition O

Proposition 6 (Pasch-Hausdorff). Let J : M(X) — R be a function, and define J := J®R;. Then

J is a-Lipschitz w.r.t. the distance induced by the KR norm, and hence the Wasserstein-1 distance
when restricted to P(X).
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Proof. Observe that by the triangle inequality,
J(p) — J(v) = Sl;p inﬂf J(@) + oWy (u, ) — J(0) — aWq (v, D)
<supaWi(u,7) — aWi(v, )
< Slgp aWi(p,v)

=aW (/La V)'
Interchanging the roles of p and v completes the proof. O

Lemma 3. The convex conjugate of p — «||p||kr is given as ¢ — x{||¢|lLip < a}.

Proof. The convex conjugate is

Sip{/fdu—alulKR] = sup :/fdu—a sup /gdﬂ}

llgllLip<1

= sup /fdli* sup /gdu
meos llgllLip<er :

= sup inf /fdu—/gdu
p Lllglluip<e -

= inf sup /fd,u—/gd,u_
lgllLip<e -
= inf_x{f=g}

llgllLip<a
= x{llflluip <},

where Sion’s minimax theorem ensures that we can swap the inf and the sup. O

G PROOFS FOR SECTION[3

Proposition 7. The Wasserstein, minimax, and non-saturating GAN losses do not satisfy (D2) for
some .

Proof. First, we prove the statement for the Wasserstein GAN. Consider J(u) = Wy (u, do) evalu-
ated at p = %6,1 + %61, a mixture of spikes at +1. The optimal discriminator of J at this mixture
is the Kantorovich potential that transfers j to &g, which is ®,(x) = |z|. The gradient of this
Kantorovich potential is discontinuous at 0, and hence not Lipschitz.

For the minimax GAN J(u) = Djs(p ), let ;1 and po be probability distributions on R
whose densities are p(x) o< exp(—|z|/2) and po(x) o exp(—|z|), respectively (i.e., Laplace

distributions). Then, the optimal discriminator at £ is given as ®,(z) = %log% =

—3log(1 + 2exp(—|z|/2)). By elementary calculations, we can see that this function is not differ-
entiable at x = 0, which implies that the minimax GAN does not satisfy (D2). For the non-saturating
GAN, we obtain a similar result by swapping the role of 1 and . O

PropOSItlon 8. Let J : M(X) — R be a convex, proper, lower semicontinuous function, and define
J :=J & Ry. Then the optimal discriminator for J is B1-smooth.

Proof. J is convex, proper, lower semicontinuous. Hence

T) = (@ Al )) =sup [ o= I*(0) = x{e € F).
[}
Then by the envelope theorem, %= is the ¢ that maximizes the right-hand side, and hence i gi €

F.
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Lemma 4. The convex conjugate of p+— B1||plls+ is o = x{p € f1S}

Proof. The proof of Lemma]is nearly identical to the proof of Lemma[3] O

Proposition 9. Let f : R? — R be a neural network consisting of k layers whose linear transfor-
mations have spectral norm 1 and whose activation functions are 1-Lipschitz and 1-smooth. Then f
is k-smooth.

Proof. In this section, let £(f) and s(f) denote the Lipschitz constant of f and V f respectively.

This inequality holds
s(f og) < s()l(9)* +£(f)s(9), 27)
since
1d(f o g)(z) —d(f o g)(W)|| = [ldf (9(x))dg(x) — df (9(y))dg(y)]|
= ||df (9(x))dg(z) — df (9(y))dg(x) + df (9(y))dg(z) — df (9(v))
<de(g(x)) df (gl 1dg(@)[| + lldf (g(y)II |dg(z) — dg(y)l]
<s(f) \ o f)s(g)llx =yl

|
g (=) = 9(¥)lle(g) +
< (s(Ne(9)* +L(H)s(@)llz = yll-
Let o be an elementwise activation function with ¢(0) = s(o) = 1, and let A be a linear layer with
spectral norm 1. Then £(A4) = 1 and s(A) =0, so

LooA)</L(o)l(A) =1

s(o o0 A) < s(0)l(A)* + 4(0)s(A) = 1.

We note that we can use the same value of s(o) whether we consider o : R — R or elementwise as
o : R% — R? since for an elementwise o, we have

ldo(x) — do(y)|l2 = || diag o’ (x) — diag o’ (y)]]2
= || diag(o’(z) — o’ (y))|]2

= max |0’ (z;) — o' (ys)

IN

max s(o)|x; — yil

(@)1 = ylloo
< s(@)llz = ylla-

We apply the inequality (27) recursively for all k layers to obtain that the entire network is k-
smooth. O

Proof. Tt follows from 8555) = (f, aK(I’ )> that, for f € H,

of(x)  af) |
0z 0y;

d
IVf(z) = VIIP =

i=1

d
<> I
i=1
; ) _
PK(x,7) _0?°K(x,y) 0?°K(y,7)
= 2 - - 2 7 7
IIf115 ; { 01,07, dx;0y; + 0y, 0Y; }

< fl3 - (C(,y) + Ty, 2)),
where = and g denote copies of x and y, and

aK(.’E7) _ 8K(y7) 2
y;

H

d

xy Z
=1

0?K (z,7) 82K(x7y)
0x,0%; 0x;0%; |
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From (30), we find that for a Gaussian kernel,
1 z —yl? 2
D(a.y) = — exp(— gy ) o =yl

and thus,

V@) = V) < SNl =

This implies that

S*-

: vz
= _sw [ ran< sw [ fae= Yl

JeH, Iflln< Iflls<¥2

H PROOFS FOR SECTION|6]

Lemma 6. The convex conjugate of i+ 5 ||l [%g is f a5 1f1 Bip-

Proof. This proof is generalized from the finite-dimensional case (Boyd & Vandenberghe} 2004)).
We can bound the convex conjugate from above by

A A
sup | [ £ llullkn] < sup ([ sollillicn — 5 lelfen]
Iz Iz

A
< sup [||flluipz — 57|
z€R
A I

_ Hf”Lip
- ||f||L1P Y 5 A2

1
S5
If f is constant, then we may choose p = 0 to see that
A 1
dp = Slullke] = 0= S5 1171E;
sup [ [ au=Fnllka] = 0= 55118y

and we are done.

Otherwise, for f(z) # f(y), let 5, be the signed measure given by

= X (F ) - )
Note that
el = s / g ey
R CEII T CORKT)
= 3@ - iy Aoy
and

— w _ _ l 2
[ e = 505 22 (10 = 1) = $11 e
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Then
S%L/ﬂm—;uﬁRZf@g@[/ﬁmw—gmmm%ﬁ
1 Al d 2
= s (SR~ 5 (G11Ru 7 )
= 3118 = 5 G )
= 51

O

Proposition 10. Let J : M(X) — R be a convex function. Then J satisfies (D3) if and only if
D) < B lu— vllkg for all p,v € M(X).

Proof. Recall the definition of the Bregman divergence:

010 i= J0) = J0) ~ [ @u(a)dlo~ ).

Proposition claims that the optimal discriminator ®,, is $2-smooth as a function of 1 if and only
if

Yy € MO0, I = I ~ [ @@ de—w < Zln- vl ©8)

This proof is generalized from the finite-dimensional case (Zhou, [2018}; [Sidford, 2017). Suppose
that |[V®,(z) — V&, (z)|l2 < B2|li — v||kr holds for all z. Let p, (0 < ¢ < 1) be defined as a
mixture between p; = (1 — ¢)p + tv so that

po =4, 1 =v, and |p— ps|kr =t —s| [[p—v|kr.

Then, we have

0,0l = | [ A e [ e d(V—u)’

_ /Ol/cbmd(z/—u)dt—/@ud(y—u)‘
_ /(Jl/(q)ut—q)#)d(y—p)dt‘

1
< / 1@, = Dyl I — vllicr dt

1
< / Ballie — pllicrllpe — vl dt
0

1
< [ thals - vifn e
0

_B
2

Since the choice of 1 and v is arbitrary, we have proved by assuming (D2).

e = vllicr-

Next, we move on to prove the converse. Before proceeding, note that the Bregman divergence
D j(v, 1) is always non-negative. In fact, for any pu, v € M(X), we have

/(I)ud(l/_ﬂ):/q)ud”_*]*(q)u)_ [/q)ud:“_‘]*(q)u)}

<J(v) =J(u)
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< J(v) = J(w),
which implies © (v, u) > 0.

Choose £ € M(X) arbitrarily. If { = p, the inequality [|[V®,, — V®¢||2 < B2l — pllkr is trivial,
so we assume £ # 1 below. By the non-negativity of the Bregman divergence, we have

0<D,;(v,p)
=)~ |70+ [ @, a1

< 7@+ [@eatw -0+ Zile ~vlika] - | 700+ [ #ud0- )

=IO =00 - [+ [ - @)dw -+ Zle-vlEa @)

Since the above inequality holds for all v € M (X), the last expression is still non-negative if we
take the infimum over all v. In particular,

it 1o - @,0d0 - &)+ e - v

veM(X)

—— s [ - da - - Ll vl

veEM(X)
B o —o.ld B2y 112
=— sup (@, — P¢] C_?HCHKR

CEM(X)

1 2
:*%H‘pu*‘pﬁnmp’

using Lemmal 6] for the last equality.
Continuing from 29), we have

1
0<J(E) — J(p) — /% d(& —p) — TR 1@, — ell7, -

Swapping the roles of p and &, we obtain a similar inequality. Adding both sides of thus obtained
two inequalities, we obtain

1
0< /[@g — B, (¢ )~ 5 18, ¥l

Finally, we have

2
||(I>;t - (I>£||Lip < ﬁ? /[(I)E - (I)u] d(f - M) < 52 ||(I)N - (I)SHLip ||€ - MHKR’
and hence we have the desired result:

”(I)u - (I)£||Lip < BZHf - .U”KR-

I

Lemma 7. Let K (z,y) = exp(_\lm;y

202

). Then MMD3% (1, ) < 2|1 — v
Proof. First, we note that

MMD2, (4, v) = / K(2,y) (- v)(dz) (1 — v)(dy)

J (K (z,y) — K(2',y)) (n — v)(dy)
= [S:B d(z, z') } |l = vllkr
K(l’,y) *K(:L’,y,) *K(l’l,y)+K(l’/,y/) —ul?
<L, e e 11 vl
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Next, we show that
e= s K@) - K@y) - K@y + K@y) 1
ot Yty d(x,z") d(y,y’) o2

Because K is differentiable, it suffices to check that the operator norm of 9., 9, K (x, y) is bounded.
To see this, note that
Lip(K(I’, ) - K(I/a ))

c = sup

z#a’ |z — /||
TG0 9K )l
z#a! y [z — /||

< sup ||V:cvyK(17> y)||0pa
T,y
where we obtained by the last equality by applying the vector-valued mean value theorem (Rudin,
1964) to t — VK ((1 — t)x + tz’, y), thereby obtaining
IVy K (2,y) = VK (2, y)l|2 < [|0:Vy K((1 = t)z + ta’, y) |2

= Iz = 2) - VoV K((1 = t)z + ta’, y) |2

< |la" = 22| V2 Vy K ((1 = D)z + 2, y)op-
Now

8zi8yjK($vy) = 6%6% €Xp (_ﬁ Z(xk - yk)Q)
k

1 1
= Oy, exp (—@ (zr — yk)Q) ~ —p(wj —Yj) (30)
k

1 AT L 1
= exp (-g a (Tr — Yn) ){;(% —yi)(zj —yj) — ;5@‘ .

This is the symmetric matrix

= | E Ve

202
2
By inspection, we see that 2 — y is an eigenvector with eigenvalue 2 exp(— %)(% ||z —y||? —
_ 2
1), and the other eigenvectors are orthogonal to 2z — y with eigenvalues — 2 exp(— %)

Setting z = |Iw2 Z” and taking the absolute value of the eigenvalues, we see the maximum operator

norm over all z, y is equal to
1 1 1
max{sup —e 72z — 1], sup —e Z} =—.
2>0 0 002 g

Therefore 1
c< —.
S 3
It is not strictly necessary for the proof to show equality. However, to show equality, let u be a unit
vector, and set 2’ = ¢y’ = 0, and x = y = tu. Then

K (tu,tu) — K (tu,0) — K(0,tu) + K(0,0)

>
=0 d(tu,0) d(tu, 0)
2
2 —2exp(—57)
=sup ————5——
t£0 t
2 — 2exp(— s
> lim —exp( 2"2)
t—0 t2
— lim —2exp(— 202) ) _2%%
T 50 2t
1
==,
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where we used I’Hdpital’s rule to evaluate the limit.

Proposition 11. The minimax and non-saturating GAN losses do not satisfy (D3) for some .

Proof. For the minimax loss, the Bregman divergence is:

D Dys- 1] o) (Vs 1) og

:/[%1

Il
DN =
\

<}

1
:§/log

Mo + Vv

1
s log 5

Ho
dpo + —
v Ho 2 Q/J'O + %

3ho + 3

Ko

1
= Dkw(zv + zH0ll 30 + 310) + s Dr(v |l w),

and for the non-saturating loss, the Bregman divergence is

QDKL(%'+%NO ||M0)(V’ H’)

1 1
Sho + 3V
:/log72u0 2 d(%u—i—%uo)
Ho
3ho + 5/
g 2 2= d(5p+ Sh0)
Mo
Ho
log ——— d(v —
o + ( #)

—/lo
+ 3
2
Mo + v 1
dpo+ < | 1

1
=—[lo
2/ ST 2

= Dxr(5v + spo |l 51+ 3h0)-

1 1
o + 3V 1
o 2H0 T 3

1
dv — —log —
Mo + p

2

2

Choosing v to be not absolutely continuous w.r.t. % W+ % o makes the Bregman divergence oo,

which is sufficient to show that the Bregman divergence is not bounded by ||u — v||%g.

Proposition 12. The MMD loss with Gaussian kernel satisfies (D3) with 85 = 27 for all .

Proof. We work with the Gaussian kernel K (z,y) = e~ 202

D paows (1) = 5 [ K ) (0 = 10)(d) (v = o) )

lz—yll?

and use Proposition

_ %/K(x’y) (1 = po)(dz) (1t — po)(dy)

- / (K (2, ) w(dy) — K (2,9) po(dy)) (v — p)(de)

_ % / K(x,y) (v — p)(dz) (v — p)(dy)

1
= —MMD?(y, v)

2
1

< @HM— V|lir,

where the last line is from Lemma The result follows with o = (27) /2.

O

The result actually applies more generally for the MMD loss with a differentiable kernel K that
satisfies 32 := sup, , V.V, K(z,y)[2 < oc.
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Proposition 13 (Moreau-Yosida regularization). Suppose J : M(X) — R is convex, and define
J := J ® Ry. Then J is convex, and D ;(v, j1) < ’BzHuf v||%g-

Proof. We work on the more general case of K (x,y) = (2r0?)~%/?2 exp(—%), and define

J(p) :i%fJ( )+éMMD2 (11, i)

for ¢ = 02 (2ma?)¥/2,

Let p* be the unique minimizer of the infimum, which exists because the function is a strongly
convex. By the envelope theorem, we compute that

d ~ dc
@J(uﬂx)‘e_o o 2\Iu+ex Wil
d cL
— Sl = 11+ 260 = X+ I
= cL{p—p", X)nu
=0L/(u—u*)dx7
04 = eL(p— )
Then
~ ~ 5J
0 ) = J0) = T) = [ 5l
. ~ cL ~ N cL N "
= inf J(2) + Sl = 1 = [J00) + Ll = 1] = Ll — ' v = )
* CL * * CL * *
<)+ Sl = w1 = [T + Sl = w1 = eLiu— v = iy

cL
= -l

cL _ 1
< & @ro?) = vl

L
= Sl = il

where we used Lemmafor the second-to-last line. The proposition follows for o = (27)~1/2.

Regarding this choice of o, it will turn out that in the general case, the dual penalty includes a numer-
ically unfavorable factor of (2702)~%/2, dependent on the dimension of the problem. In practical
applications, such as image generation, d can be quite large, making the accurate computation of
(27r02)_d/ 2 completely infeasible. For numerical stability, we propose choosing the critical param-
1/2

eter o = (2m)~ /2, which corresponds to the dimension-free kernel K (z,y) = e~ ™! le—yll*, O

Lemma 8. Let H be an RKHS with a continuous kernel K on a compact domain X. The convex
conjugate of j > 3all3 is £ 2|13 + x{f € H}.
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Proof. First we show an upper bound for f € H:
A A
sup [ [ £ S1lulfh] = sup [¢F. b 5l
I p

A
< sup [l fllllilloe = 5110l%]
o

A

< _ =

< sup [Ifllez ~ 57

O Vi YRR S Fi

= 1l 52 - 2
1 2

= S5 I171:

To derive a lower bound for general f € C(X), we use the Mercer decomposition of the positive
definite kernel K,

K(z,y) = Z Vi9i(z) i (y)
i=1

where 7; > 0 are eigenvalues and {¢;}5°, is a complete orthonormal sequence of L%(X;dz). It is
well-known that the corresponding RKHS is given by

oo

ga¢i 2
H= {gELQ(X,dﬂcHZ:()LZ(X)<OO}7
i—1 Vi
and the norm of g € H by
i (gaqbi)%z(x)

2 _
ol >

j=1

Let f € C(X) C L?(X,dz) be an arbitrary function. We replace the supremum of the conjugate
function

A
du— ||l 31
Sﬁp[/f 1 2”#”?—[} 3D

by u € M(X) that has a square-integrable Radon—Nykodim derivative with respect to the Lebesgue
measure dz, and then we have a lower bound. We use 1(z) for the Radon-Nykodim derivative with
slight abuse of notation.

Suppose f(x) = Zj’;l a;¢;(x) and p(z) = Zj‘;l b;¢;(x) are the expansion. Note that, since the
kernel embedding is given by

(o) = [ Kao)nto)dy = 3 15b565(a),

the above maximization is reduced to

= A
sup Z ajb; — §'yjb§.

bj j=1

This is maximized when b; = a;/(\v;), and the maximum value is
RN
—> L (32)

2\ =1 i

If f € H, this value is finite, and the lower bound of the conjugate given by is 5 || f||%,, which is
the same as the upper bound. If f ¢ H, the value (32)) is infinite, and the conjugate function takes
+o0. O
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Proposition 14. Let H be an RKHS with the Gaussian kernel K (z,y) = e=mllz=vll* | Then for
fEeH,

oo

1FG =D (4m™ Y ——— 105 04 e ey 1)
k=0 kit thkg= kHl 1 il
= [ fl[12@ay + 2= IV Fl[2 ey + 1652 [V 1172 (ma) + other terms. (22)

Proof. We consider the more general case of K (z,y) = (2r02)~4/2e~l2=vl1*/20* where we have

oo

1£113: =D (o™ > |\3k1~ 0yt fll 2 gy

k=0 kit thg= k:Hz 1k
= Hf”L?(Rd) + UzHVme(Rd) + 104|‘V2f|‘L2 (ra) T other terms.

Novak et al.| (2018)) prove this result for 0 = 1. We sketch the proof for the general case here. We
use the Fourier transform convention that

f(k) = (27T)—d/2 » f(x) e ik dx, f(x) — (271—)—11/2 . f(k) etk Jhe

Consider the inner product

o) = [ eI o) 3T

defined for functions ||f|| < oo. Expanding the exponential in Taylor series, this inner product
gives the equation for the norm in the proposition. By use of the Fourier inversion formula, it can be
shown that (f, K,) = f(x), where

Kz(y) = (27r02)_d/26—|\w—y||2/2027

so this is an RKHS with the Gaussian kernel. O
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