
Under review as a conference paper at ICLR 2019

GRAPH U-NET

Anonymous authors
Paper under double-blind review

ABSTRACT

We consider the problem of representation learning for graph data. Convolutional
neural networks can naturally operate on images, but have significant challenges
in dealing with graph data. Given images are special cases of graphs with nodes
lie on 2D lattices, graph embedding tasks have a natural correspondence with
image pixel-wise prediction tasks such as segmentation. While encoder-decoder
architectures like U-Net have been successfully applied on many image pixel-wise
prediction tasks, similar methods are lacking for graph data. This is due to the fact
that pooling and up-sampling operations are not natural on graph data. To address
these challenges, we propose novel graph pooling (gPool) and unpooling (gUn-
pool) operations in this work. The gPool layer adaptively selects some nodes to
form a smaller graph based on their scalar projection values on a trainable projec-
tion vector. We further propose the gUnpool layer as the inverse operation of the
gPool layer. The gUnpool layer restores the graph into its original structure using
the position information of nodes selected in the corresponding gPool layer. Based
on our proposed gPool and gUnpool layers, we develop an encoder-decoder model
on graph, known as the graph U-Net. Our experimental results on node classifica-
tion tasks demonstrate that our methods achieve consistently better performance
than previous models.

1 INTRODUCTION

Convolutional neural networks (CNNs) (LeCun et al., 1998) have demonstrated great capability in
various challenging artificial intelligence tasks, especially in fields of computer vision (He et al.,
2017; Huang et al., 2017) and natural language processing (Vaswani et al., 2017; Bahdanau et al.,
2015). One common property behind these tasks is that both images and texts have grid-like struc-
tures. Elements on feature maps have locality and order information, which enables the application
of convolutional operations (Defferrard et al., 2016).

In practice, many real-world data can be naturally represented as graphs such as social and biological
networks. Due to the great success of CNNs on grid-like data, applying them on graph data is
particularly appealing. Recently, there have been many attempts to extend convolutions to graph
data (GNNs) (Kipf & Welling, 2017; Veličković et al., 2017; Gao et al., 2018). One common use
of convolutions on graphs is to compute node representations (Hamilton et al., 2017; Ying et al.,
2018). With learned node representations, we can perform various tasks on graphs such as node
classification and link prediction.

Images can be considered as special cases of graphs, in which nodes lie on regular 2D lattices. It is
this special structure that enables the use of convolution and pooling operations on images. Based on
this relationship, node classification and embedding tasks have a natural correspondence with pixel-
wise prediction tasks such as image segmentation (Noh et al., 2015; Gao & Ji, 2017). In particular,
both tasks aim to make predictions for each input unit, corresponding to a pixel on images or a node
in graphs.

In the computer vision field, pixel-wise prediction tasks have achieved major advances recently.
Encoder-decoder architectures like the U-Net (Ronneberger et al., 2015) are state-of-the-art methods
for these tasks. It is thus highly interesting to develop U-Net-like architectures for graph data. In
addition to convolutions, pooling and up-sampling operations are essential building blocks in these
architectures. However, extending these operations to graph data is highly challenging. Unlike grid-

1

Under review as a conference paper at ICLR 2019

like data such as images and texts, nodes in graphs have no spatial locality and order information as
required by regular pooling operations.

To bridge the above gap, we propose novel graph pooling (gPool) and unpooling (gUnpool) oper-
ations in this work. Based on these two operations, we propose U-Net-like architectures for graph
data. The gPool operation samples some nodes to form a smaller graph based on their scalar pro-
jection values on a trainable projection vector. As an inverse operation of gPool, we propose a
corresponding graph unpooling (gUnpool) operation, which restores the graph to its original struc-
ture with the help of locations of nodes selected in the corresponding gPool layer. Based on the
gPool and gUnpool layers, we develop a graph U-Net, which allows high-level feature encoding and
decoding for network embedding. Results on node classification tasks demonstrate the effectiveness
of our proposed methods as compared to previous methods.

2 RELATED WORK

Recently, there has been a rich line of research on graph neural networks (Gilmer et al., 2017).
Inspired by the first order graph Laplacian methods, Kipf & Welling (2017) proposed graph con-
volutional networks (GCNs), which achieved promising performance on graph node classification
tasks. The layer-wise forward-propagation operation of GCNs is defined as:

X`+1 = σ(D̂− 1
2 ÂD̂− 1

2X`W`), (1)

where Â = A + I is used to add self-loops in the input adjacency matrix A, X` is the feature
matrix of layer `. The GCN layer uses the diagonal node degree matrix D̂ to normalize Â. W` is
a trainable weight matrix that applies a linear transformation to feature vectors. GCNs essentially
perform aggregation and transformation on node features without learning trainable filters. Hamilton
et al. (2017) tried to sample a fixed number of neighboring nodes to keep the computational footprint
consistent. Veličković et al. (2017) proposed to use attention mechanisms to enable different weights
for neighboring nodes. Schlichtkrull et al. (2018) used relational graph convolutional networks
for link prediction and entity classification. Some studies applied GNNs to graph classification
tasks (Duvenaud et al., 2015; Dai et al., 2016; Zhang et al., 2018).

In addition to convolution, some studies tried to extend pooling operations to graphs. Defferrard
et al. (2016) proposed to use binary tree indexing for graph coarsening, which fixes indices of nodes
before applying 1-D pooling operations. Simonovsky & Komodakis (2017) used deterministic graph
clustering algorithm to determine pooling patterns. Ying et al. (2018) used an assignment matrix to
achieve pooling by assigning nodes to different clusters of the next layer.

3 GRAPH U-NET

In this section, we introduce the graph pooling (gPool) layer and graph unpooling (gUnpool) layer.
Based on these two new layers, we develop the graph U-Net for node classification tasks.

3.1 GRAPH POOLING LAYER

Pooling layers play important roles in CNNs on grid-like data. They can reduce sizes of feature
maps and enlarge receptive fields, thereby giving rise to better generalization and performance (Yu &
Koltun, 2016). On grid-like data such as images, feature maps are partitioned into non-overlapping
rectangles, on which non-linear down-sampling functions like maximum are applied. In addition
to local pooling, global pooling layers (Zhao et al., 2015) perform down-sampling operations on
all input units, thereby reducing each feature map to a single number. In contrast, k-max pooling
layers (Blunsom et al., 2014) select the k-largest units out of each feature map.

However, we cannot directly apply these pooling operations to graphs. In particular, there is no
locality information among nodes in graphs. Thus the partition operation is not applicable. The
global pooling operation will reduce all nodes to one, which restricts the flexibility of networks. The
k-max pooling operation outputs the k-largest units that may come from different nodes, resulting
in inconsistency in the connectivity of selected nodes.

2

Under review as a conference paper at ICLR 2019

Projection Top k Node Selection Gate

!

"#
#

$% %ℓ'(
%ℓ ×

*ℓ'(

idx

*ℓ

Outputs

top k

tanh

⨀

Inputs

1
!

Figure 1: An illustration of the proposed graph pooling layer with k = 2. × and � denote matrix
multiplication and element-wise product, respectively. We consider a graph with 4 nodes, and each
node has 5 features. By processing this graph, we obtain the adjacency matrix A` ∈ R4×4 and
the input feature matrix X` ∈ R4×5 of layer `. In the projection stage, p ∈ R5 is a trainable
projection vector. By matrix multiplication and tanh(·), we obtain y that are scores estimating
scalar projection values of each node to the projection vector. By using k = 2, we select two
nodes with the highest scores and record their indices in the top-k-node selection stage. We use the
indices to extract the corresponding nodes to form a new graph, resulting in the pooled feature map
X̃` and new corresponding adjacency matrix A`+1. At the gate stage, we perform element-wise
multiplication between X̃` and the selected node scores vector ỹ, resulting in X`+1. This graph
pooling layer outputs A`+1 and X`+1.

In this section, we propose the graph pooling (gPool) layer to enable down-sampling on graph data.
In this layer, we adaptively select a subset of nodes to form a new but smaller graph. To this end,
we employ a trainable projection vector p. By projecting all node features to 1D, we can perform
k-max pooling for node selection. Since the selection is based on 1D footprint of each node, the
connectivity in the new graph is consistent across nodes. Given a node i with its feature vector xi,
the scalar projection of xi on p is yi = xip/‖p‖. Here, yi measures how much information of node
i can be retained when projected onto the direction of p. By sampling nodes, we wish to preserve
as much information as possible from the original graph. To achieve this, we select nodes with the
largest scalar projection values on p to form a new graph.

Suppose there are N nodes in a graph G and each of which contains C features. The graph can be
represented by two matrices; those are the adjacency matrix A` ∈ RN×N and the feature matrix
X` ∈ RN×C . Row vector x`

i inX` denotes the feature vector of node i in the graph. The layer-wise
propagation rule of graph pooling layer ` is defined as:

y = X`p`/‖p`‖, idx = rank(y, k), ỹ = tanh(y(idx)),

X̃` = X`(idx, :), A`+1 = A`(idx, idx), X`+1 = X̃` �
(
ỹ1T

C

)
,

(2)

where k is the number of nodes selected in the new graph. rank(y, k) is the operation of node
ranking, which returns indices of the k-largest values in y. The idx returned by rank(y, k) contains
the indices of nodes selected for the new graph. A`(idx, idx) and X`(idx, :) perform the row and/or
column extraction to form the adjacency matrix and the feature matrix for the new graph. y(idx)
extracts values in y with indices idx followed by a tanh operation. 1C ∈ RC is a vector of size C
with all components being 1, and � represents the element-wise matrix multiplication.

X` is the feature matrix with row vectors x`
1,x

`
2, · · · ,x`

N , each of which corresponds to a node in
the graph. We first compute the scalar projection of X` on p`, resulting in y = [y1, y2, · · · , yN]T

with each yi measuring the scalar projection value of each node on the projection vector p`. Based
on the scalar projection vector y, rank(·) operation ranks values and returns the k-largest values in
y. Suppose the k-selected indices are i1, i2, · · · , ik with im < in and 1 ≤ m < n ≤ k. Note
that the index selection process preserves the position order information in the original graph. With
indices idx, we extract the adjacency matrix A` ∈ Rk×k and the feature matrix X̃` ∈ Rk×C for the
new graph. Finally, we employ a gate operation to control information flow. With selected indices
idx, we obtain the gate vector ỹ ∈ Rk by applying tanh to each element in the extracted scalar
projection vector. Using element-wise matrix product of X̃` and ỹ1T

C , information of selected nodes

3

Under review as a conference paper at ICLR 2019

gPool gUnpool

GCN

Figure 2: An illustration of the proposed graph unpooling (gUnpool) layer. In this example, a graph
with 7 nodes is down-sampled using a gPool layer, resulting in a coarsened graph with 4 nodes
and position information of selected nodes. The corresponding gUnpool layer uses the position
information to reconstruct the original graph structure by using empty feature vectors for unselected
nodes.

is controlled. The ith row vector in X`+1 is the product of corresponding row vector in X` and the
ith scalar value in ỹ. Notably, the gate operation makes the projection vector p trainable by back-
propagation (LeCun et al., 2012). Figure 1 provides an illustration of our proposed graph pooling
layer. Compared to pooling operations used in grid-like data, our graph pooling layer employs extra
training parameters in projection vector p. We will show that the extra parameters are negligible but
can boost performance.

3.2 GRAPH UNPOOLING LAYER

Up-sampling operations are important for encoder-decoder networks such as U-Net. The encoders
of networks usually employ pooling operations to reduce feature map size and increase receptive
field. While in decoders, feature maps need to be up-sampled to restore their original resolutions.
On grid-like data like images, there are several up-sampling operations such as the deconvolution
and unpooling layers. However, such operations are not currently available on graph data.

To enable up-sampling operations on graph data, we propose the graph unpooling (gUnpool) layer,
which performs the inverse operation of the gPool layer and restores the graph into its original
structure. To achieve this, we record the locations of nodes selected in the corresponding gPool
layer and use this information to place nodes back to their original positions in the graph. Formally,
we propose the layer-wise propagation rule of graph unpooling layer as

X`+1 = distribute(0N×C , X
`, idx), (3)

where idx ∈ Z∗k contains indices of selected nodes in the corresponding gPool layer that reduces
the graph size from N nodes to k nodes. X` ∈ Rk×C are the feature matrix of the current graph,
and 0N×C are the initially empty feature matrix for the new graph. distribute(0N×C , X

`, idx) is the
operation that distributes row vectors inX` into 0N×C feature matrix according to their correspond-
ing indices stored in idx. In X`+1, row vectors with indices in idx are updated by row vectors in
X`, while other row vectors remain zero.

3.3 GRAPH U-NET ARCHITECTURE

It is well-known that encoder-decoder networks like U-Net achieve promising performance on pixel-
wise prediction tasks, since they can encode and decode high-level features while maintaining local
spatial information. Similar to pixel-wise prediction tasks (Gong et al., 2014; Ronneberger et al.,
2015), node classification tasks aim to make a prediction for each input unit. Based on our proposed
gPool and gUnpool layers, we propose our graph U-Net (g-U-Net) architecture for node classifica-
tion tasks.

In our graph U-Net (g-U-Net), we first apply a graph embedding layer to convert nodes into low-
dimensional representations, since original inputs of some dataset like Cora (Sen et al., 2008) usually
have very high-dimensional feature vectors. After the graph embedding layer, we build the encoder
by stacking several encoding blocks, each of which contains a gPool layer followed by a GCN

4

Under review as a conference paper at ICLR 2019

GCN

Inputs

GCN

GCN

GCN

GCN

gPool

gPool gUnpool

gUnpool

Network Embedding

Figure 3: An illustration of the proposed graph U-Net (g-U-Net). In this example, each node in
the input graph has two features. The input feature vectors are transformed into low-dimensional
representations using a GCN layer. After that, we stack two encoder blocks, each of which contains
a gPool layer and a GCN layer. In the decoder part, there are also two decoder blocks. Each block
consists of a gUnpool layer and a GCN layer. For blocks in the same level, encoder block uses skip
connection to fuse the low-level spatial features from the encoder block. The output feature vectors
of nodes in the last layer are network embedding, which can be used for various tasks such as node
classification and link prediction.

layer. gPool layers reduce the size of graph to encode higher-order features, while GCN layers are
responsible for aggregating information from each node’s first-order information. In the decoder
part, we stack the same number of decoding blocks as in the encoder part. Each decoder block is
composed of a gUnpool layer and a GCN layer. The gUnpool layer restores the graph into its higher
resolution structure, and the GCN layer aggregates information from the neighborhood. There are
skip-connections between corresponding blocks of encoder and decoder layers, which transmit spa-
tial information to decoders for better performance. The skip-connection can be either feature map
addition or concatenation. Finally, we employ a GCN layer for final predictions before the softmax
function. Figure 3 provides an illustration of a sample g-U-Net with two blocks in encoder and
decoder.

3.4 GRAPH CONNECTIVITY AUGMENTATION VIA GRAPH POWER

In our proposed gPool layer, we sample some important nodes to form a new graph for high-level
feature encoding. Since related edges are removed when removing nodes in gPool, the nodes in the
pooled graph might become isolated. This may influence the information propagation in subsequent
layers, especially when GCN layers are used to aggregate information from neighboring nodes.
We need to increase connectivity among nodes in the pooled graph. To address this problem, we
propose to use the kth graph power Gk to increase the graph connectivity. This operation builds
links between nodes whose distances are at most k hops (Chepuri & Leus, 2016). In this work, we
employ k = 2 since there is a GCN layer before each gPool layer to aggregate information from its
first-order neighboring nodes. Formally, we replace the fifth equation in Eq 2 by:

A2 = A`A`, A`+1 = A2(idx, idx), (4)

whereA2 ∈ RN×N is the 2nd graph power. Now, the graph sampling is performed on the augmented
graph with better connectivity.

3.5 IMPROVED GCN LAYER

In Eq. 1, the adjacency matrix before normalization is computed as Â = A+ I in which a self-loop
is added to each node in the graph. When performing information aggregation, the same weight is
given to node’s own feature vector and its neighboring nodes. In this work, we wish to give a higher
weight to node’s own feature vector, since its own feature should be more important for prediction.

5

Under review as a conference paper at ICLR 2019

Table 1: Summary of datasets used in our experiments (Yang et al., 2016; Zitnik & Leskovec, 2017).
The Cora, Citeseer, and Pubmed datasets are used for transductive learning experiments.

Dataset Nodes Features Classes Training Validation Testing Degree
Cora 2708 1433 7 140 500 1000 4
Citeseer 3327 3703 6 120 500 1000 5
Pubmed 19717 500 3 60 500 1000 6

Table 2: Results of transductive learning experiments in terms of node classification accuracies on
Cora, Citeseer, and Pubmed datasets. g-U-Net denotes our proposed graph U-Net model.

Models Cora Citeseer Pubmed
DeepWalk (Perozzi et al., 2014) 67.2% 43.2% 65.3%
Planetoid (Yang et al., 2016) 75.7% 64.7% 77.2%
Chebyshev (Defferrard et al., 2016) 81.2% 69.8% 74.4%
GCN (Kipf & Welling, 2017) 81.5% 70.3% 79.0%
GAT (Veličković et al., 2017) 83.0 ± 0.7% 72.5 ± 0.7% 79.0 ± 0.3%
g-U-Net (Ours) 84.4 ± 0.6% 73.2 ± 0.5% 79.6 ± 0.2%

To this end, we change the calculation to Â = A + 2I by imposing larger weights on self loops in
the graph, which is common in graph processing. All experiments in this work use this modified
version of GCN layer for better performance.

4 EXPERIMENTAL STUDY

In this section, we evaluate our gPool and gUnpool layers based on the g-U-Net proposed in Sec-
tion 3.3. We compare our networks with previous state-of-the-art models on node classification
tasks. Experimental results show that our methods achieve new state-of-the-art results in terms of
node classification accuracy. Some ablation studies are performed to examine the contributions of
the proposed gPool layer, gUnpool layer, and graph connectivity augmentation to performance im-
provements. We conduct studies on the relationship between network depth and node classification
performance. We investigate if additional parameters involved in gPool layers can increase the risk
of over-fitting.

4.1 DATASETS

In experiments, we evaluate our networks on node classification tasks under transductive learning
settings. Under this setting, unlabeled data are accessible for training, which enables the network to
learn about the graph structure. To be specific, only part of nodes are labeled while labels of other
nodes in the same graph remain unknown. We employ three benchmark datasets for this setting;
those are Cora, Citeseer, and Pubmed (Kipf & Welling, 2017), which are summarized in Table 1.
These datasets are citation networks, with each node and each edge representing a document and
a citation, respectively. The feature vector of each node is the bag-of-word representation whose
dimension is determined by the dictionary size. We follow the same experimental settings in (Kipf
& Welling, 2017). For each class, there are 20 nodes for training, 500 nodes for validation, and 1000
nodes for testing.

4.2 EXPERIMENTAL SETUP

For transductive learning tasks, we employ our proposed g-U-Net proposed in Section 3.3. Since
nodes in the three datasets are associated with high-dimensional features, we employ a GCN layer
to reduce them into low-dimensional representations. In the encoder part, we stack four blocks, each
of which consists of a gPool layer and a GCN layer. We sample 2000, 1000, 500, 200 nodes in the
four gPool layers, respectively. Correspondingly, the decoder part also contains four blocks. Each
decoder block is composed of a gUnpool layer and a GCN layer. We use addition operation in skip
connections between blocks of encoder and decoder parts. Finally, we apply a GCN layer for final

6

Under review as a conference paper at ICLR 2019

Table 3: Comparison of g-U-Nets with and without gPool or gUnpool layers in terms of node clas-
sification accuracy on Cora, Citeseer, and Pubmed datasets.

Models Cora Citeseer Pubmed
g-U-Net without gPool or gUnpool 82.1 ± 0.6% 71.6 ± 0.5% 79.1 ± 0.2%
g-U-Net (Ours) 84.4 ± 0.6% 73.2 ± 0.5% 79.6 ± 0.2%

Table 4: Comparison of g-U-Nets with and without graph connectivity augmentation in terms of
node classification accuracy on Cora, Citeseer, and Pubmed datasets.

Models Cora Citeseer Pubmed
g-U-Net without augmentation 83.7 ± 0.7% 72.5 ± 0.6% 79.0 ± 0.3%
g-U-Net (Ours) 84.4 ± 0.6% 73.2 ± 0.5% 79.6 ± 0.2%

prediction. For all layers in the model, we use identity activation function. To avoid over-fitting, we
apply L2 regularization on weights with λ = 0.001. Dropout (Srivastava et al., 2014) is applied to
both adjacency matrices and feature matrices with rates of 0.8 and 0.08, respectively.

4.3 PERFORMANCE STUDY

Under transductive learning settings, we compare our proposed g-U-Net with other state-of-the-
art models in terms of node classification accuracy. We report node classification accuracies on
datasets Cora, Citeseer, and Pubmed, and the results are summarized in Table 2. We can observe
from the results that our g-U-Net achieves consistently better performance than other networks. For
baseline values listed for node classification tasks, they are the state-of-the-art on these datasets. Our
proposed model is composed of GCN, gPool, and gUnpool layers without involving more advanced
graph convolution layers like GAT. When compared to GCN directly, our g-U-Net significantly
improves performance on all three datasets by margins of 2.9%, 2.9%, and 0.6%, respectively. Note
that the only difference between our g-U-Net and GCN is the use of encoder-decoder architecture
containing gPool and gUnpool layers. These results demonstrate the effectiveness of g-U-Net in
network embedding.

4.4 ABLATION STUDY OF GPOOL AND GUNPOOL LAYERS

Although GCNs have been reported to have worse performance when the network goes deeper (Kipf
& Welling, 2017), it may also be argued that the performance improvement over GCN in Table 2 is
due to the use of a deeper network architecture. In this section, we investigate the contributions of
gPool and gUnpool layers to the performance of g-U-Net. We conduct experiments by removing all
gPool and gUnpool layers from our g-U-Net, leading to a network with only GCN layers with skip
connections. Table 3 provides the comparison results between g-U-Nets with and without gPool or
gUnpool layers. The results show that g-U-Net has better performance over g-U-Net without gPool
or gUnpool layers on all three datasets. These results demonstrate the contributions of gPool and
gUnpool layers to performance improvement. When considering the difference between the two
models in terms of architecture, g-U-Net enables higher level feature encoding, thereby resulting in
better generalization and performance.

4.5 GRAPH CONNECTIVITY AUGMENTATION STUDY

In the above experiments, we employ gPool layers with graph connectivity augmentation by using
the 2nd graph power in Section 3.4. Here, we conduct experiments to investigate the benefits of
graph connectivity augmentation based on g-U-Net. We remove the graph connectivity augmenta-
tion from gPool layers while keeping other settings the same for fairness of comparisons. Table 4
provides comparison results between g-U-Nets with and without graph connectivity augmentation.
The results show that the absence of graph connectivity augmentation will cause consistent perfor-
mance degradation on all of three datasets. This demonstrates that graph connectivity augmentation
via 2nd graph power can help with information transfer among nodes in sampled graphs.

7

Under review as a conference paper at ICLR 2019

Table 5: Comparison of different network depths in terms of node classification accuracy on Cora,
Citeseer, and Pubmed datasets. Based on g-U-Net, we try different network depths in terms of the
number of blocks in encoder and decoder parts.

Depth Cora Citeseer Pubmed
2 82.6 ± 0.6% 71.8 ± 0.5% 79.1 ± 0.3%
3 83.8 ± 0.7% 72.7 ± 0.7% 79.4 ± 0.4%
4 84.4 ± 0.6% 73.2 ± 0.5% 79.6 ± 0.2%
5 84.1 ± 0.5% 72.8 ± 0.6% 79.5 ± 0.3%

Table 6: Comparison of the g-U-Net with and without gPool or gUnpool layers in terms of the node
classification accuracy and the number of parameters.

Models Accuracy #Params Ratio of increase
g-U-Net without gPool or gUnpool 82.1 ± 0.6% 75,643 0.00%
g-U-Net (Ours) 84.4 ± 0.6% 75,737 0.12%

4.6 NETWORK DEPTH STUDY OF GRAPH U-NET

Since the network depth in terms of the number of blocks in encoder and decoder parts is an impor-
tant hyper-parameter in the g-U-Net, we conduct experiments to investigate the relationship between
network depth and performance in terms of node classification accuracy. The results are summarized
in Table 5. From the results, we can observe that the performance improves as network goes deeper
until the depth of 4. The over-fitting problem prevents the network to improve when the depth goes
beyond that. In the field of image segmentation, U-Net models with depth 3 or 4 are commonly
used, which is consistent with our choice in experiments. This indicates the capacity of gPool and
gUnpool layers in receptive field enlargement and high-level feature encoding even working with
shallow networks.

4.7 PARAMETER STUDY OF GRAPH POOLING LAYERS

Since our proposed gPool layer involves extra parameters, we compute the number of additional
parameters based on our g-U-Net. The comparison results between g-U-Net with and without gPool
or gUnpool layers on dataset Cora are summarized in Table 6. From the results, we can observe that
gPool layers in U-Net model only adds 0.12% additional parameters but can promote the perfor-
mance by a margin of 2.3%. We believe this negligible increase of extra parameters will not increase
the risk of over-fitting. Compared to g-U-Net without gPool or gUnpool layers, the encoder-decoder
architecture with our gPool and gUnpool layers yields significant performance improvement.

5 CONCLUSION

In this work, we propose novel gPool and gUnpool layers in g-U-Net networks for network em-
bedding. The gPool layer implements the regular global k-max pooling operation on graph data. It
samples a subset of important nodes to enable high-level feature encoding and receptive field en-
largement. By employing a trainable projection vector, gPool layers sample nodes based on their
scalar projection values. Furthermore, we propose the gUnpool layer which applies unpooling op-
erations on graph data. By using the position information of nodes in the original graph, gUnpool
layer performs the inverse operation of the corresponding gPool layer and restores the original graph
structure. Based on our gPool and gUnpool layers, we propose the graph U-Net (g-U-Net) architec-
ture which uses a similar encoder-decoder architecture as regular U-Net on image data. Experimen-
tal results demonstrate that our g-U-Net achieves performance improvements as compared to other
GNNs on transductive learning tasks. To avoid the isolated node problem that may exist in sampled
graphs, we employ the 2nd graph power to improve graph connectivity. Ablation studies indicate
the contributions of our graph connectivity augmentation approach.

8

Under review as a conference paper at ICLR 2019

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. International Conference on Learning Representations, 2015.

Phil Blunsom, Edward Grefenstette, and Nal Kalchbrenner. A convolutional neural network for
modelling sentences. In Proceedings of the 52nd Annual Meeting of the Association for Computa-
tional Linguistics. Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics, 2014.

Sundeep Prabhakar Chepuri and Geert Leus. Subsampling for graph power spectrum estimation. In
Sensor Array and Multichannel Signal Processing Workshop (SAM), 2016 IEEE, pp. 1–5. IEEE,
2016.

Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable models for struc-
tured data. In International Conference on Machine Learning, pp. 2702–2711, 2016.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In Advances in Neural Information Processing
Systems, pp. 3844–3852, 2016.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. In Advances in neural information processing systems, pp. 2224–2232, 2015.

Hongyang Gao and Shuiwang Ji. Efficient and invariant convolutional neural networks for dense
prediction. In Data Mining (ICDM), 2017 IEEE International Conference on, pp. 871–876. IEEE,
2017.

Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. Large-scale learnable graph convolutional
networks. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1416–1424. ACM, 2018.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. arXiv preprint arXiv:1704.01212, 2017.

Yunchao Gong, Yangqing Jia, Thomas Leung, Alexander Toshev, and Sergey Ioffe. Deep convolu-
tional ranking for multilabel image annotation. In Proceedings of the International Conference
on Learning Representations, 2014.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, pp. 1024–1034, 2017.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. IEEE International
Conference on Computer Vision, 2017.

Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten. Densely connected
convolutional networks. IEEE Conference on Computer Vision and Pattern Recognition, 2017.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. International Conference on Learning Representations, 2017.

Y. LeCun, L. Bottou, G. Orr, and K. Muller. Efficient backprop. In G. Orr and Muller K. (eds.),
Neural Networks: Tricks of the trade. Springer, 1998.

Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In
Neural networks: Tricks of the trade, pp. 9–48. Springer, 2012.

Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution network for seman-
tic segmentation. In Proceedings of the IEEE international conference on computer vision, pp.
1520–1528, 2015.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701–710. ACM, 2014.

9

Under review as a conference paper at ICLR 2019

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European Semantic
Web Conference, pp. 593–607. Springer, 2018.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93, 2008.

Martin Simonovsky and Nikos Komodakis. Dynamic edgeconditioned filters in convolutional neural
networks on graphs. In Proc. CVPR, 2017.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, pp. 6000–6010, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. International Conference on Machine Learning, 2016.

Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L Hamilton, and Jure
Leskovec. Hierarchical graph representation learning withdifferentiable pooling. arXiv preprint
arXiv:1806.08804, 2018.

Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions. In Proceed-
ings of the International Conference on Learning Representations, 2016.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Proceedings of AAAI Conference on Artificial Inteligence,
2018.

Han Zhao, Zhengdong Lu, and Pascal Poupart. Self-adaptive hierarchical sentence model. In IJCAI,
pp. 4069–4076, 2015.

Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. Bioinformatics, 33(14):i190–i198, 2017.

10

	Introduction
	Related Work
	Graph U-Net
	Graph Pooling Layer
	Graph Unpooling Layer
	Graph U-Net Architecture
	Graph Connectivity Augmentation via Graph Power
	Improved GCN Layer

	Experimental Study
	Datasets
	Experimental Setup
	Performance Study
	Ablation Study of gPool and gUnpool layers
	Graph Connectivity Augmentation Study
	Network Depth Study of Graph U-Net
	Parameter Study of Graph Pooling Layers

	Conclusion

