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Abstract. Understanding human brain functional development in the very early
ages is of great importance for charting normative development and detecting
early neurodevelopmental disorders, but it is very challenging. We propose a
group-constrained, robust community detection method for better under-
standing of developing brain functional connectome from neonate to two-year-
old. For such a multi-subject, multi-age-group network topology study, we build
a multi-layer functional network by adding inter-subject edges, and detect
modular structure (communities) to explore topological changes of multiple
functional systems at different ages and across subjects. This “Multi-Layer Inter-
Subject-Constrained Modularity Analysis (MLISMA)” can detect group con-
sistent modules without losing individual information, thus allowing assessment
of individual variability in the brain modular topology, a key metric for
developmental individualized fingerprinting. We propose a heuristic parameter
optimization strategy to wisely determine the necessary parameters that define
the modular configuration. Our method is validated to be feasible using longi-
tudinal 0–1–2 year’s old infant brain functional MRI data, and reveals novel
developmental trajectories of brain functional connectome. This work wassup-
ported by the NIH grants, EB022880, 1U01MH110274, and MH100217.
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1 Introduction

Human infant brain is a rapidly developing complexity both structurally and func-
tionally. While anatomical changes during the first two years of life have been
extensively studied [1], the functional developmental changes in this pivotal stage are
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still elusive. Understanding how the brain is functionally organized as a large-scale
“functional connectome” and its evolution in the very early ages will shed light on the
behavioral, cognitive, neurophysiological, neurological, and neuropsychiatric studies in
the elder ages and facilitate early detection of developmental disorders [2]. However,
the studies on the neonatal and early infancy dynamic maturing processes in the scale
of whole-brain networks are still scarce [3–6].

There are three major difficulties. (1) Neonate/infant functional Magnetic Resonance
Imaging (fMRI) is noisier than the adults’ fMRI, which poses a great challenge to
robustly model network topological properties. (2) Inter-subject variability information
is usually lost in traditional averaging-based group-level network analysis, but it is
essential for individualized developmental fingerprinting and charting [7]. (3) For
longitudinal studies of brain development, it is difficult to generate temporally consistent
network topological properties using traditional cross-sectional network analysis. In this
paper, we propose a new method, namely, Multi-Layer Inter-Subject-Constrained
Modularity Analysis (MLISMA), for a robust network community detection with well-
preserved individual variability dedicated for longitudinal functional connectome
development studies. MLISMA probes early brain development along the dimensions of
space (brain regions and communities), time (age groups), and subject.

In MLISMA, we build multi-layer networks connecting together the data from all
subjects at the same age, instead of the traditional, single-layer group-averaged net-
work. A generalized Louvain (GenLouvain) algorithm [8] is applied to detect com-
munity structures or modules. The innovation here is two-fold. First, two key
parameters that control inter-subject consistency and modular resolution are jointly
optimized based on multiple empirical metrics, instead of an arbitrary parameter
selection. We observed that such a multi-task parameter optimization could eventually
lead to temporally consistent parameter settings and brain modularity. Second, we can
use MLISMA to both achieve inter-subject consistency and probe individual vari-
ability that represents the unique brain connectome topology for each subject.

To demonstrate the effectiveness of our method, we applied it to characterize
developmental changes in modules (reflecting different brain functional systems) in the
neonates’ and infants’ brains based on a 0–1–2 year’s old longitudinal resting-state
fMRI (rs-fMRI) dataset. The results suggest a different story that the human brain
connectome may develop via conservative rewiring that minimally affects the quantity
of the brain functional networks. The individual variability in modular structure may
significantly decrease from neonate to 1-year-old and keep stable at 2-year-old. Fur-
thermore, we detect the brain regions with large inter-subject differences in modular
participation and their spatiotemporal changes during development. The results provide
potential targets for neurodevelopmental monitoring for early abnormality detection.

2 Materials and Methods

2.1 Multi-layer Network

Each subject’s brain functional network can be represented by a functional connectivity
(FC) matrix or adjacency matrix with each element representing temporal synchronization
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of rs-fMRI blood-oxygenation-level-dependent (BOLD) signals from a pair of spatially
distant brain regions. Traditional network neuroscience analyses predominantly focus on
either each subject’s FCmatrix or a group-meanFCmatrix averaging across all subjects [9],
each ofwhich essentially transforms the data into a single-layer network analysis thatmight
blur the network topology, be sensitive to individual noise, and can neither detect nor
account for individual variability.

By adding edges linking corresponding nodes of different single-layer networks, a
multi-layer network can be constructed [10]. Figure 1 shows a schematic illustration of
the modularity analysis based on a multi-layer network constituted by 3 subjects, each
having a 7-node 2-module FC network. By adding inter-layer edges between each
subject pair, we create a multi-layer network that corresponds to a bigger “supra-
adjacency matrix”. Compared to the single-layer network, a multi-layer representation
has many good properties. (1) It allows a group-level network analysis while consid-
ering every single network’s contribution. (2) It makes use of inter-subject constraints

Fig. 1. Illustration of the module detection from a supra-adjacency matrix with each subject’s
adjacency matrix in the diagonal blocks and inter-layer (inter-subject) connections added. (A) A
simple illustration of 3 subjects’ FC networks and their corresponding adjacency matrices with
different modular configurations. (B) A group averaged adjacency matrix with blurred
community structure. (C) A multi-layer network (the connectivity strength across different
subjects is set to 0.5 in this example), based on which group-consistent modules are detected and
the nodes with consistent and variable modular assignment across subjects can be determined.
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to achieve robust and consistent modular detection. (3) Under the premise of group
consistency, each subject’s network properties (e.g., modularity) can be individually
evaluated while simultaneously contributing to the global population-level analysis,
allowing individual variability analysis.

2.2 Multi-layer Network-Based Modularity Analysis

Various network metrics can be calculated to describe multi-layer network properties
[10]. For brain functional connectome study, one of the most important metrics is
network communities, or modules [11]. The brain network modular organization can be
derived from a graph partition based on network topology by maximizing the modu-
larity quality function (Q) as has been typically used to optimize the concentration of the
FC edges within the modules [12]. The modules naturally represent various functional
systems, each of which has independent function. For development studies, under-
standing how modules change spatiotemporally is a key for understanding how different
functional systems develop and how functional segregation/integration evolve [13].

This is the first study using multi-layer network-based modularity analysis to reveal
brain functional development in the early life (from neonate to 2-year-old). One of the
most important questions in developmental neuroscience is how different neonates
have different brain network structures and their developmental trajectories that make
each subject different from others. Therefore, assessment of the individual variability in
the network topology in such a pivotal period of life is essential for both normative
charting and early abnormality detection. In this paper, we proposed MLISMA (Multi-
Layer Inter-Subject-Constrained Modularity Analysis) for this purpose. The flowchart
is depicted in Fig. 2, which consists of 4 steps:

Step-1 (Multi-layer Network Construction): We construct each subject’s FC
network based on pair-wise correlation of regional rs-fMRI time series. We then
build a multi-layer network for each age group by adding cross-layer edges con-
necting corresponding brain regions between any pair of subjects of the same age.
This exerts an inter-subject consistency constraint to the subsequent module
detection.
Step-2 (MLISMA Module Detection): GenLouvain [8, 14] was used to group
brain regions across all subjects in each age group into group-level modules. Two
important parameters that exert a significant effect on the detected modules are the
resolution or scaling parameter (c) and inter-subject coupling parameter (x). Pre-
vious adult brain connectome studies often used selected, fixed values of c and/or x
[15], the selections of which risk accidentally ignoring the fundamental, underlying
network topology patterns. One recently developed strategy for selecting the
parameters was presented in [16]; however, in this work, we sought to more directly
select the parameters according to multiple modularity metrics for our data. To this
end, we devise Heuristic Parameter Optimization, based on the number of modules
(K) and the individual variability in modular structure (inversely proportional to
NMI, normalized mutual information of whole-brain modular participation averaged
pairwise across all subjects). During this procedure, the stochastic nature of the
GenLouvain algorithm was considered. Developmentally-consistent parameters are
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determined according to the heatmaps in the parameter plane. For each age group,
all subjects’ modules are generated.
Step-3 (Module Matching across Ages): After obtaining the group-constrained
individual modules, group-level modular matching is conducted to match corre-
sponding modules across different age groups for the following post-analysis.
Step-4 (Consistency & Individual Variability Analysis): Specific brain regions
with variable modular assignment across all subjects of the same age can be
detected by focusing on individual modular structures as output from GenLouvain.
We detect both regions with group-consistent modular assignment and regions with
high individual variability in modular assignment (e.g., by calculating whether more
than 50% subjects have the same modular attribute on the same brain region).

2.3 Heuristic Parameter Optimization

It is essential to optimize c and x jointly and reasonably. Both parameters will affect
each other’s optimal setting, thus, they should be estimated jointly. They should lead to

Fig. 2. Flowchart of Multi-Layer Inter-Subject-Constrained Modularity Analysis (MLISMA)
and its application to infant’s brain functional development study. The entire framework consists
of 4 steps from the construction of multi-layer networks to the detection of consistent and
variable modular belongingness for each brain region. A “Heuristic Parameter Optimization”
strategy (detailed in main text) is proposed to determine the two key parameters in such a multi-
subject, multi-age-group modular structure analysis. MLISMA introduces a group constraint to
individual-level module detection, allowing robust determination of the individual-level modules
with group correspondence and consistency toward individual variability analysis.
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reasonable network modular configurations based on the following criteria. We cal-
culate heatmaps of K and NMI by varying c and x. Since GenLouvain can produce a
stochastic result, we repeat the calculation 100 times at each set of parameters to
generate averaged heatmaps. The three age groups show astonishingly similar patterns
(Fig. 3). We regard extremely small or large modular quantity (K < 4 or >10) and
extremely little individual difference (NMI > 0.7) as unreasonable results based on the
widely accepted previous findings [3, 4, 11, 13, 15]. According to the leftover area in
the K and NMI heatmaps, we determine a zone of parameters for which we are con-
fident about the results and select c and x as the center. The result of parameter
selection is also assessed with Q heatmap, showing reasonable and consistent across
the age groups.

2.4 Post-MLISMA Analysis

Different measurements can be employed to qualitatively and quantitatively evaluate
developmental brain networks, including (1) a summary of the MLISMA result with
color-coded modular index modulated by grey-scale-coded individual variability, (2) a
spatial evolving pattern for each module, (3) module size evolution that quantifies how
many brain regions are included in different modules at each age, and (4) individual
variability changes along development (Fig. 4).

Fig. 3. Heuristic Parameter Optimization. Heatmap-based joint optimization of c and x based
on module quantity (K) and inter-subject similarity (NMI). The dark blue areas in the right panel
indicate unreasonable parameter combinations. The stars are the optimized values of c and x.
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3 Experiments and Results

We used natural sleeping rs-fMRI data from
“Multi-visit Advanced Pediatric brain imaging
study for characterizing structural and func-
tional development (MAP Study)” with repet-
itive scans on 13 subjects in the ages of 1-
week, 12-, and 24-months [17]. Individual FC
network was constructed based on a widely
used 268-region atlas [18]. The optimized c
and x were determined as 1.3 and 0.3,
respectively. Modularity Q was found to be
slightly increased in the first year of life, but
modular quantity K was largely stable (*5).
Results indicate relatively stable functional
integration/segregation notwithstanding the
spatial pattern of modules continuously chan-
ges. We found prominently reduced individual
variability in the modular structure in the age
of one year (Fig. 4D). By visiting each brain
region for its modular participation and com-
paring it among different age groups, we
identified three major developmental patterns:
(1) increasing diversity at striatal, frontal,
parietal and occipital regions (Fig. 5A), (2)

decreasing diversity at the frontal-temporal-parietal association areas (Fig. 5B, C), and
(3) stable module assignment in the primary visual and motor networks (Fig. 5D). The
spatial location of the regions with diverse modular participation across subjects
generally move from the medial structures to lateral association areas (especially the
default mode network).

Fig. 4. MLISMA results show different
aspects of evolving brain functional net-
works. Four different following-up anal-
yses are provided for the MLISMA
outputs, see details in the main text.

Fig. 5. Regions with increasing and decreasing diversity of modular assignment.
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Figure 6 shows quantitative
results. (1) Modular quantity K is
stable across different ages. (2)
Modularity Q significantly (p < 0.05,
corrected) increases from neonate to 1-
year-old and keeps stable later. (3)
Individual variability is significantly
(p < 0.05, corrected) reduced from
neonate to 1-year-old and keeps stable
thereafter. Interestingly, when assess-
ing the individual variability of mod-
ular structure across the brain regions
within each lobe rather than the whole
brain, we found more developmental
details. For example, frontal, temporal
and parietal lobes have first increased
but then decreased individual similar-
ity, whereas occipital lobe has contin-
uously increased individual similarity
in the modular attribute.

4 Discussion

MLISMA avoids previous brute-force group averaging-based module detection and
achieves subject-consistent module detection result while preserving and respecting
individual variability, which is essential for developmental study. We found a stable
developmental pattern in terms of modularity, a new finding compared to a previous
report with increasing module quantity. We found novel developmental changes in
individual variability of modular attributes. Our study indicates that early brain func-
tional development could be rather stable and inherently consistent for maintaining a
balance. The individual variability could reflect unique myelination and pruning pro-
cesses modulated by environmental/genetic factors [4].
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