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ABSTRACT

We propose Noisy Information Bottlenecks (NIB) to limit mutual information be-
tween learned parameters and the data through noise. We show why this benefits
generalization and allows mitigation of model overfitting both for supervised and
unsupervised learning, even for arbitrarily complex architectures. We reinterpret
methods including the Variational Autoencoder, β-VAE, network weight uncer-
tainty and a variant of dropout combined with weight decay as special cases of
our approach, explaining and quantifying regularizing properties and vulnerabili-
ties within information theory.

1 INTRODUCTION

Bayesian inference is at the core of many directions of machine learning research in recent years.
Applications range from a principled treatment of uncertainty in neural networks (Gal, 2016) over
latent variable models for high-dimensional data (Kingma & Welling, 2013; Rezende & Mohamed,
2015) to reinterpretations of popular stochastic regularizers (Kingma et al., 2015; Gal, 2016) that
inspired more flexible extensions (Louizos & Welling, 2017; Molchanov et al., 2017). In all but
the simplest models, exact inference is intractable, so approximations are necessary. Among those,
variational inference (Wainwright et al., 2008) has been particularly popular, as it is amenable to
gradient-based stochastic optimization (Kingma & Welling, 2013; Titsias & Lázaro-Gredilla, 2014;
Ranganath et al., 2014) and thus highly scalable.

Typically, researchers seek to develop more flexible approximate posterior distributions (Rezende &
Mohamed, 2015; Kingma et al., 2016; Salimans et al., 2015; Ranganath et al., 2016; Huszár, 2017;
Chen et al., 2018; Vertes & Sahani, 2018; Burda et al., 2015; Cremer et al., 2017) in the hope of
more faithfully representing the true posterior. However, recent works have suggested (Trippe &
Turner, 2018; Braithwaite & Kleijn, 2018; Shu et al., 2018) that restricting the family of variational
approximations can, in fact, have a positive regularizing effect, leading to better generalization.

In this work, we seek to provide an information theoretic explanation for the observed behaviour
of different families variational approximations. By reinterpreting Gaussian mean-field inference as
maximum a-posteriori in a noisy model, we can quantify bounds on the mutual information between
the data and the parameters variables. We explore the potential of this approach for regularization.
Unlike methods relying on information-based objectives (Tishby et al., 2000; Shamir et al., 2010;
Agakov & Barber, 2004; Chen et al., 2016; Phuong et al., 2018), it is compatible with standard
variational inference.

2 NOISY INFORMATION BOTTLENECKS

This section characterizes model overfitting within information theory and points out a mitigation
strategy that limits the amount of information extracted by the inferred model about the data. We
will show this to be implicitly deployed by a common class of inference techniques in section 3 in
order to explain observed regularizing effects.

2.1 AN INFORMATION-THEORETIC CHARACTERIZATION OF MODEL OVERFITTING

Intuitively, model overfitting can be understood as memorization or learning too much information
about the training data. More formally, if D denote the random variable for all our data and θ all
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learned parameters and latent variables in a given probabilistic model, we can quantify the amount
of information gained about the data D given a particular parameter value θ∗ in

I(D, θ = θ∗) := H(D)−H(D|θ = θ∗) (1)

where H(D|θ = θ∗) := −Ep(D|θ=θ∗)log p(D|θ = θ∗) denotes the entropy of a variable D condi-
tioned on a particular value θ∗.

In the context of variational inference, model overfitting can now be characterized by the symptom
that the learned information about the data D

Eθ∗∼q(θ)I(D, θ = θ∗) (2)

is too large in expectation under the approximately inferred posterior distribution q(θ) ≈ p(θ|D).

We now motivate this objective through the extreme case of maximum-likelihood learning in the
limit of unrestrictedly expressive models for unsupervised tasks. Here, q is a point-mass on the
parameter values that maximize the likelihood of the data. Under the assumption of indepenent and
identically distributed (iid) datapoints, the model will then store all information that can possibly
be extracted from the data, as shown in Appendix A. This is all information except the datapoint
identity (the information necessary to distinguish between distinct training samples, e. g. the index)
which cannot be learned due to the iid assumption. This will result in perfect overfitting up to the
sample identity, thereby impeding generalization.

In unsupervised learning, information that can be learned by the model about the data will not be
learned by the latent, a phenomenon known as the information preference problem (Chen et al.,
2016; Alemi et al., 2016; Zhao et al., 2017; Phuong et al., 2018). Again, this can be characterized
by the quantity from Equation 2 being too high.

2.2 WHY BOUNDING MUTUAL INFORMATION?

This observation motivates placing a limit on the expected amount of extracted information given by
Equation 2. We observe that the expectation of I(D, θ = θ∗) under the prior p(θ) is just the mutual
information I(D, θ) as commonly defined in literature:

Eθ∗∼p(θ)I(D, θ = θ∗) = H(D)− Eθ∗∼p(θ)H(D|θ = θ∗) = H(D)−H(D|θ) = I(D, θ) (3)

This implies that if we could limit I(D, θ) to not be greater than some capacity C, we would
obtain the following guarantee: If our dataset d was sampled from the marginal d ∼ p(D) =∫

dθp(θ)p(D|θ), then a sample from the exact posterior θ∗ ∼ p(θ|D = d) will, on average, contain
no more information about the data D than our capacity C due to

Ed∼p(D)Eθ∗∼p(θ|D=d)I(D, θ = θ∗) = Eθ∗∼p(θ)I(D, θ = θ∗) = I(D, θ) ≤ C (4)

This would limit the quantity given in Equation 2 in expectation under the assumptions that the
model captures the nature of the generating process in p(D) and that our posterior estimate q(θ) is
close to the true posterior p(θ|D). These are common assumptions necessary to justify any varia-
tional Bayesian approach.

We derive further motivation for our approach from the fact that limiting mutual information be-
tween data and learned parameters provably bounds generalization error (Xu & Raginsky, 2017;
Bassily et al., 2018). While the approach of limiting the amount of extracted information is already
used for the purpose of generalization in adaptive analysis (Feldman & Steinke, 2018; Smith, 2017;
Russo & Zou, 2015), in the following section we give an approach compatible with a variety of
variational and deep learning algorithms.

2.3 NOISY INFORMATION BOTTLENECKS

How can we limit I(D, θ)? Due to nonlinearities in typical deep models, it is hard to calculate and
therefore limit the mutual information between data and parameters directly. Instead, one way to
achieve this is to make the data dependent only on some noisy version θ̃ of the learned variables θ,
resulting in a model p(θ, θ̃,D) = p(θ)p(θ̃|θ)p(D|θ̃) forming a Markov chain as shown in Figure 1a.
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Figure 1: A noisy information bottleneck (a) limits the mutual information I(D, θ) between the data
D and the learned variables θ by making the data only depend on a corrupted version θ̃ of the latent,
with a limited I(θ̃, θ). It can be applied to both (b) supervised with inputs X(n) and labels Y (n) and
(c) generative models with latents Y (n) and datapoints X(n).

The prior p(θ) and corruption process p(θ̃|θ) are chosen to result in a certain finite I(θ̃, θ). The data
processing inequality (Cover & Thomas, 2012) then ensures

I(D, θ) ≤ I(θ̃, θ) (5)

for any model architecture p(D|θ̃). C = I(θ̃, θ) now acts as a capacity, bounding the expected
amount of information that is extracted about the data. In the next section, we will show that such
a bound is implicit in an important class of variational inference techniques. As we will see, the
corruption process will be realized through injected noise, and we therefore term this architecture
noisy information bottleneck (NIB). Quantifying the corresponding capacity C will help to explain
observed regularizing effects in both supervised and unsupervised learning (as shown in Figure 1b
and 1c) from an information-theoretic perspective.

3 REGULARIZATION THROUGH CONSTRAINED INFERENCE

Most variational approximation schemes such as variational autoencoders (Kingma et al., 2015;
Rezende & Mohamed, 2015) and network weight uncertainty (Blundell et al., 2015) use simple
Gaussian mean field inference for tractable training using the reparameterization trick. In this sec-
tion, we quantify information-theoretic capacity constraints implicit in Gaussian mean field infer-
ence that helps to understand observed regularizing effects. We will first illustrate the bound for a
fixed-scale distribution and then discuss the more general case where the variance is learned as well.

3.1 FIXED-SCALE GAUSSIAN MEAN FIELD INFERENCE

Let p(θ,D) denote a model with parameters θ and data D. The free energy objective now is

F (q) = Eq(θ) log p(D|θ)−DKL (q(θ)||p(θ)) (6)

We consider the case of Gaussian mean field inference with fixed variance σ2 on parameters with
component-wise independent priors p(θ) = N

(
0, σ2

pI
)
. We can write the inferred q(θ) in its repa-

rameterized form θ = µ∗ + σε, with µ∗ being the inferred mean and ε being noise sampled from
N (0, I), as shown in Figure 2a. We can then write the objective as

F (µ∗) = Ep(ε) log p(D|θ = µ∗ + σε)−
∑
i

µ∗2i
2σ2

p

+ const. (7)

which is optimized with respect to µ∗. We use i ∈ {1, . . . ,K} to denote the model parameter index.

To show how Gaussian mean field contains an implicit information bottleneck we include the in-
ferred means µ into the generative model, without changing the resulting objective. We therefore
define a model p′(µ, µ̃,D) = p′(µ)p′(µ̃|µ)p′(D|µ̃) (Figure 2b), where µ ∼ N

(
0, σ2

pI
)

represents
the parameters of our new model and µ̃ = µ + σε its noise-injected version with ε ∼ N (0, I). We
leave the rest of the model p′(D|µ̃) = p(D|θ) unchanged. This model is an instantiation of a noisy
information bottleneck as in Figure 1a, where µ and µ̃ take the roles of θ and θ̃.
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Figure 2: Gaussian mean field inference of fixed scale on model parameters with a Gaussian prior
(a) can be reinterpreted as MAP inference on a model with injected noise (b): The mean of the
original inference model correspond to the parameters of the new generative model.

On this new model, we do variational inference by sampling noise ε from the prior q′(ε) = p′(ε),
while learning a deterministic approximate posterior q′(µ) with point-mass at a particular µ∗, result-
ing in a MAP-like objective1

F ′(q′) = Eq′(µ)q′(ε) log p′(D|µ, ε) +
∑
i

log p′(µ∗i ) (8)

Using above definitions, and Equation 7, this implies equivalence F (µ∗) = F ′(µ∗) of both objec-
tives, resulting in exactly equivalent training algorithms.

For the new model, we get H(µ̃) = K
2 log 2πe

(
σ2 + σ2

p

)
and H(µ̃|µ = µ∗) = K

2 log 2πeσ2 for
any µ∗, inducing a noisy information bottleneck of capacity

I(µ̃, µ) = H(µ̃)− Eµ∗∼p(µ)H(µ̃|µ = µ∗) =
K

2
log

(
1 +

σ2
p

σ2

)
(9)

in the sense of Equation 5, whereK denotes the number of parameters. This quantity is known as the
capacity of channels with Gaussian noise in signal processing (Cover & Thomas, 2012). Intuitively,
a high prior variance σ2

p corresponds to a large capacity, while a high noise variance σ2 reduces

it. Simply adjusting the signal-to-noise ratio
σ2
p

σ2 allows to create an information bottleneck of any
desired capacity. This suggests the usefulness of applying fixed-scale Gaussian mean field inference
to model parameters for regularization.

There are relations to existing approaches: When applied to training neural networks, MAP training
on this model can be interpreted as applying weight decay combined with a additive noiseN (0, σ2)
on all network weights. Molchanov et al. (2017) shows that this results in multiplicative noise on the
unit activations. Wang & Manning (2013) reports that empirical results do not change significantly
when dependencies between the different elements of the layer output are ignored, which is then
equivalent to scaled Gaussian dropout (Kingma et al., 2015).

3.2 FLEXIBLE-SCALE GAUSSIAN MEAN FIELD INFERENCE

The variance in Gaussian mean field inference is typically learned for each parameter (Kingma et al.,
2015; Rezende & Mohamed, 2015; Blundell et al., 2015). We can obtain a capacity constraint for
this case by regarding both the inferred mean µ and variance σ2 as the new latent. For simplicity
and different from the fixed-scale case, we assume a prior variance of σ2

p = 1.

The derivation is similar to the one for the fixed-scale case from the previous section and given in
a slightly different form in Appendix C. The resulting capacity is not in closed analytic form, but
we obtain a numeric result of 0.45 bits per latent component. The derivation can be generalized to
approaches where the KL term from the objective is scaled by some factor β > 0 as done by β-VAE
(Higgins et al., 2017) in the context of amortized inference on latent variables. Curiously, this results

1Due to the inferred noise q′(ε), this is not pure MAP, but rather a lower bound objective similar to the free
energy. We refer to it as MAP for compactness, and connections to the variational free energy are given in
Appendix B.
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in priors µi ∼ N
(

0, 1
β

)
and σ2

i ∼ Γ
(
β
2 + 1, β2

)
. We observe that higher β corresponds to smaller

capacity, which is given by the mutual information I(µ̃i, (µi, σ
2
i )) between our new latent (µi, σ

2
i )

and µ̃i. This formalizes the intuition that a higher weight of the complexity term in our objective
increases regularization by limiting the capacity. Numeric results for the capacity are shown in
Figure 8 in the appendix.

3.3 SHOULD VARIATIONAL INFERENCE BE FLEXIBLE OR REGULARIZING?

As mentioned in the introduction, more flexible approximate inference is the goal of many recent ap-
proaches. However, in previous subsections we showed that training with Gaussian mean field infer-
ence can be reinterpreted as MAP learning on a noise-injected model that has a certain information-
theoretic capacity that is useful to mitigate overfitting. Therefore the goals of good inference and
regularization are in conflict.

The reinterpretation necessary to retrieve the capacity also suggests a natural resolution: Instead
of using MAP on the noise-injected model, we can deploy arbitrarily flexible variational inference
techniques. This separates out the concern of regularization into the model and allows to combine
powerful inference with good regularization. The focus of this piece of work, however, is to demon-
strate that limiting the mutual information between the model parameters and the data leads to better
generalization, hence we leave exploring the use of powerful inference techniques in noisy models
as future research.

4 EXPERIMENTS
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Figure 3: Classifying CIFAR10 with varying
model capacities. Large capacities lead to over-
fitting while small capacities drown the signal in
noise. Each configuration has been evaluated 5
times; mean and standard deviation are displayed.

In VAEs, Gaussian mean field inference on the
latents leads to a restricted latent capacity, but
leaves the capacity of the model unbounded.
This leaves VAEs vulnerable to model overfit-
ting, as shown in subsection 2.1, and setting
β as done in (Higgins et al., 2017) is not suf-
ficient to control complexity. Relatedly, the
bound given through Equation 9 was also noted
by Braithwaite & Kleijn (2018), but was again
applied only to the latents and not the model
parameters.

We therefore propose to apply Gaussian mean
field inference of fixed scale to the model pa-
rameters in order to mitigate model overfitting
both for supervised and unsupervised tasks.
This is further motivated by the regularizing
effect empirically observed when using Gaus-
sian mean field inference over point estimates
reported by Blundell et al. (2015). Fixing the
variance σ2 allows to easily control the capac-
ity of the bottleneck, as described in subsec-
tion 3.1.

In this section we validate this idea. In order to clearly show overfitting, we train large architectures
and a small number of training samples for most experiments. We explore the effect noisy informa-
tion bottlenecks implicit in fixed scale Gaussian mean field inference for varying model capacities,
architectures and priors as well as training set sizes.

4.1 SUPERVISED LEARNING

We apply our approach to classification on the CIFAR10 dataset, where we train on a subset of the
first 5000 samples. We use 6 3x3 convolutional layers with 128 channels each followed by a relu
activation function, every second of which implements striding 2 to reduce the input dimensionality.
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Figure 4: MNIST test reconstruction with a VAE training on 200 samples for various priors and
capacities.

Finally, the last layer is a linear projection which parameterizes a categorical distribution. The
capacity of each parameters in this network is set to specific values given by Equation 9.

Figure 3 shows that decreasing the model capacity per channel (by increasing the noise) reduces
the training log-likelihood and increases the test loglikelihood until both of them meet at an optimal
capacity. As noted before, without this prior the capacity would be infinite. We will analyze the
phenomenon in the unsupervised case in the next subsection. It is also observable that very small
capacities lead to a signal that is too noisy and good predictions are no longer possible. All these
observations are in accordance with our predictions.

4.2 UNSUPERVISED LEARNING

We now evaluate the regularizing effect of fixed-scale Gaussian mean field inference in an unsuper-
vised setting. Therefore, we use a VAE (Kingma & Welling, 2013) with 2 latent dimensions and a
3-layer neural network parameterizing the conditional factorized Gaussian distribution. As usual, it
is trained using the free energy objective. Again, we use a small training set of 200 examples for
most experiments.

In our first experiment we analyze generalization by inspecting the test ELBO when varying the
model capacity which can be seen in Figure 4a. Similar to the supervised case we can observe that
there is a certain model capacity range that explains the data very well while less or more capac-
ity results in noise drowning and overfitting respectively. In the same figure we also investigated
whether the information-theoretic model capacity can predict generalization independently of the
specific prior distribution. From Figure 4a we can conclude that while model capacity seems to
influence generalization very strongly, it seems like model choice such as the prior on the parame-
ters also affects generalization slightly. It also implies that weight decay (Krogh & Hertz, 1992) of
fixed scale without parameters noise is not sufficient to regularize arbitrarily large networks. Nev-
ertheless, the shapes of all ELBO-capacity dependencies are similar. In Figure 4b we investigated
the extreme case of dropping the prior entirely and switching to ML learning instead by using an
improper uniform prior. This approach is very similar to Gaussian dropout, as described in sub-
section 3.1. Dropping the prior sets the bottleneck capacity to infinity and should lead to worse
generalization. Comparing the test ELBO to NIB in Figure 4b confirms this result for larger capaci-
ties. For larger noise scales, generalization is still working well, a result that is not explained in our
information-theoretic framework, but plausible due to the deployed limited architecture.

Figure 5a shows how our approach affects the test ELBO for varying amounts of training data.
Models with very small capacity extract less information from the data into the model, thus yielding
a good test ELBO somewhat independent of the dataset size. This is visible as a graph that ascends
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Figure 5: MNIST test reconstruction with a VAE training on varying dataset sizes, architectures,
and model capacities.

Figure 6: Test reconstruction means for binarized fashion MNIST trained on 200 samples with
per-parameter capacities 5, 2 and 1 bits (from top) compared to the true data (bottom).

very little with more training data (e.g. total model capacity 330 kbits). Note that we here report
the capacity of the entire model, which is the sum of the capacities for each parameter. In order
to improve the test ELBO, more information from the data has to be extracted into the model. But
clearly, this leads to non-generalizing information being extracted when the dataset is small, leading
to overfitting, and generalizing information being extracted for larger datasets. This is visible as a
strongly ascending test ELBO with larger dataset sizes and bad generalization for small datasets.
We can therefore conclude that the information bottleneck needs to be chosen based on the amounts
of data that is available. This is expected as we want to extract more information into the model the
more information is available.

Furthermore, we inspected how the size of the model (here in terms of number of layers) affects
generalization in Figure 5b. The generalization does not decrease for the same total capacity but
larger networks deteriorate the performance for larger total capacities. This indicates that the total
capacity is less important than the individual capacity (i.e. noise) per parameter. Nevertheless, larger
networks are more prone to overfitting for very large model capacities. This makes sense as their
functional form is less constrained, an aspect that is not captured by our framework.

Finally, we plot test reconstruction means for the binarized fashion MNIST dataset under the same
setup for various capacities in Figure 6. In accordance with previous experiments, we observe
that if the capacity is chosen too small, the model is not learning anything useful, while too large
capacities result in overconfidence, which can be seen through most means being close to either 0 or
1. An intermediate capacity, on the other hand, makes sensible predictions (given that it was trained
only on 200 samples) with sensible uncertainty, visible through gray pixels that correspond to high
entropy.
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5 RELATED WORK

We have shown that NIB is a practical approach to regularize supervised and unsupervised models,
and that in contrast to existing approaches, it successfully regularizes models with a fixed parameter
setting, largely independent of the depth of a network. Unlike existing regularization techniques, our
approach features a capacity that can be naturally interpreted as a limit on the amount of information
extracted about the given data by the inferred model.

The Information Bottleneck principle by Tishby et al. (2000); Shamir et al. (2010) aims to find a
representation Z of some input X that is most useful to predict an output Y . For this purpose, the
objective is to maximize the amount of information I(Y,Z) the representation contains about the
output under a bounded amount of information I(X,Z) about the input:

max
I(X,Z)<C

I(Y, Z) (10)

They describe a training procedure using the softly constrained objective

minLIB = min I(X,Z)− βI(Y,Z) (11)

where β > 0 controls the trade-off.

Alemi et al. (2016) suggests a variational approximation for this objective. For the task of recon-
struction, where labels Y are identical to inputs X , this results exactly in the β-VAE objective
(Achille & Soatto, 2017; Alemi et al., 2018). This is in accordance with our result from subsec-
tion 3.2 that there is a maximum capacity per latent dimension in the reinterpreted version of β-VAE
that get smaller for greater β.

Reconstruction implicit in amortized inference for unsupervised learning is only one of many possi-
ble objectives for extracting representations, and it can be viewed a proxy for a not-yet-known future
task. In this case, applying NIB to the latents is a way to enforce the hard constraint I(X,Z) < C
of objective Equation 10 directly through the structure of the model, removing the need to augment
the objective with a soft constraint, as in Equation 11.

For the supervised case where the task is already known, as in Tishby et al. (2000), we could achieve
a similar hard constraint by constructing a noisy information bottleneck layer anywhere in the net-
work based on the channel capacity theorem (Cover & Thomas, 2012) by limiting input variance (e.
g. through a tanh activation) and injecting noise as in NIB. This allows extracting representations
useful for a given output task with standard variational training, while naturally constraining mutual
information with the input.

The Information Bottleneck principle is concerned with the information contained in the latent rep-
resentation. NIB limits mutual information with all inferred variables, namely latents and model
parameters in the case of unsupervised learning. This paper focuses on characterizing and mitigat-
ing the vulnerability of existing learning algorithms due to unconstrained mutual information of the
data with the model parameters.

6 CONCLUSION

We have quantified the regularizing effects observed in Gaussian mean field approaches from an
information-theoretic perspective. We have explored the usefulness of the implicit noisy information
bottleneck for the purpose of generalization. Our approach features a capacity that can be naturally
interpreted as a limit on the amount of information extracted about the given data by the inferred
model. We validated its practicality for both supervised and unsupervised learning. We have shown
that the approach allows to improve generalization even for arbitrarily large networks.

While this work demonstrates the capability of NIB to mitigate model overfitting when applied to
model parameters, inspecting the effect of a limited latent capacity is left for future work. We expect
our approach to be compatible with powerful inference techniques while keeping up regularization
guarantees. This is still to be confirmed experimentally.
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A MAXIMUM-LIKELIHOOD ON UNRESTRICTED MODELS

We consider the extreme case of maximum-likelihood learning on N identically distributed (iid)
data in the limit of unrestrictedly expressive models. For simplicity, we assume discrete data to
avoid an undefined empirical differential entropy. A similar argument could be made for continuous
data. We can then write

I(D, θ = θ∗) = NI(X, θ = θ∗) (12)

where p(X|θ) is the modeled distribution p(X(n)|θ) of any data sample X(n). This definition is
valid because the distribution is independent of the data sample index n due to the iid assumption.
Let p(X̂) denote the empirical distribution. The maximum-likelihood objective can then be written
as

θML = arg min
θ

DKL

(
p(X̂)||p(X|θ = θ∗)

)
(13)

In the unrestricted limit (e.g. arbitrarily sized network architecture), there exists a θ∗ so that the
distribution p(X|θ) is equal to p(X̂). Because DKL

(
p(X̂)||p(X|θ = θ∗)

)
is then 0 and therefore

minimal, this is actually θML. From p(X|θ = θML) = p(X̂) follows that the entropy conditioned
on θML becomes the empirical entropy

H(X|θ = θML) = H(X̂) (14)

Thus,

I(X, θ = θML) = H(X)−H(X|θ = θML) = H(X)−H(X̂) (15)

This implies that all information about the data is learned by the model up to the identity of the
training sample, which remains as uncertainty in the prediction.

B MAP AND MAXIMUM-LIKELIHOOD AS VARIATIONAL INFERENCE

Variational inference constrained to deterministic approximate posterior distributions with (contin-
uous) probability mass function

q(Z) =

{
1 for Z = Z∗

0 else
(16)

(= point-mass at Z∗) can be interpreted as MAP:

arg min
Z∗

F (q) (17)

= arg min
Z∗

DKL (q(Z)||p(Z|X)) (18)

= arg min
Z∗

Eq (log q(Z)− log p(Z|X)) (19)

= arg min
Z∗

log q(Z∗)− log p(Z∗|X) (20)

= arg min
Z∗

− log p(Z∗|X) (21)

= arg max
Z∗

log p(Z∗|X) (22)

=ZMAP (23)

DKL (q(Z)||p(Z|X)) is not finite, but its arg max and gradient are still well-defined. The same
result can be obtained more formally by regarding MAP as the limit of Gaussian mean field inference
with diminishing variance σ2 → 0.

11



Under review as a conference paper at ICLR 2019

X µ Y Y X

σ2 ε

Inference model q Generative model p

(a)

X µ µ µ̃ X

σ2 σ2 ε

β

Inference model q′ Generative model p′

(b)

Figure 7: Gaussian mean field inference on a latent model (a) with the (β-)VAE objective can be
reinterpreted as MAP inference on mean and variance latents (b): The output mean and variance
of (β-)VAE’s inference model correspond to the latents of the new generative model. This is a
per-datapoint-view with data indices (n) and model parameter dependencies omitted.

For improper uniform priors p(Z) = const. we recover Maximum-Likelihood:

arg max
Z∗

log p(Z∗|X) (24)

= arg max
Z∗

log p(Z∗) + log p(X|Z∗) (25)

= arg max
Z∗

log p(X|Z∗) (26)

=ZML (27)

C LATENT CAPACITY IN β-VAE-LIKE GAUSSIAN MEAN FIELD INFERENCE

The purpose of this section is to derive a capacity for flexible-scale Gaussian mean field inference,
similar to subsection 3.1. We generalize this to the case when the KL term from the objective is
scaled by a factor β > 0, as done by (Higgins et al., 2017). To illustrate the same capacity bound
can be obtained for amortized inference, we derive this capacity for components Y (n)

i of the latents
in a β-VAE, as this is where Gaussian mean field inference is deployed in this case. This is only
done fur the purpose of familarity, the same bound would hold for when this inference approach
would be applied to model parameters.

We assume Gaussian mean field inference on a latent with a unit Gaussian prior per dimension, as
shown in Figure 7a. This analysis includes the standard VAE for β = 1 as a special case. The β-VAE
objective is (per datapoint, to be summed over all indices (n) which are omitted for readability):

F (q, θ) = Eq(Y |X) log p(X|Y, θ)− β
∑
i

DKL (q(µ̃i)||p(µ̃i)) (28)

We can write Y in its reparameterized form Y = µ∗ + σ∗ � ε, with µ∗ and σ∗ being the mean
and variance yielded deterministically by the inference network and ε being noise sampled from
N (0, I). We can then write the objective as

F (µ∗, σ∗, θ) = Ep(ε) log p(X|Y = µ∗ + σ∗ � ε, θ) +
β

2

∑
i

(
log σ2

i − σ2
i − µ2

i − 1
)

(29)

As in subsection 3.1, we now define a new model featuring NIB that can be trained with a standard
variational objective (without need for a factor on the complexity term) so that it results in the same
training algorithm (data indices (n) are again omitted). The key idea is to reinterpret the means
µ and variances σ2 from the inference distribution as the latents of our new model, as shown in
Figure 7b. We keep the deterministic part of the inference network as our new deterministic approx-
imate posterior q′(µ, σ2|X) with point-mass at (µ∗, σ∗2) per datapoint and dimension i, resembling
a MAP approach. We define the priors µ ∼ N

(
0, 1

β I
)

and ∀i : σ2
i ∼ Γ

(
β
2 + 1, β2

)
and then

define µ̃ = µ + σ � ε, where noise ε is sampled from the prior q′(ε) = p′(ε) = N (0, I). We
leave the rest of the model and the inference network unchanged at p′(X|µ̃, θ) = p(X|Y, θ) and
q′(µ, σ2|X) = q(µ, σ2|X), and as before, we perform ML learning on the model parameters θ.
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Figure 8: Relationship between β and capacity I(µ̃i, (µi, σ
2
i )) of each latent component in flexible-

scale Gaussian mean field inference with complexity term scaled by β > 0. Values are given in
Table 1.

The MAP objective of our newly defined model then is (again per datapoint)

F ′(q′, θ) = Eq′(µ,σ2|X)q′(ε) log p′(X|µ, σ, ε, θ) +
∑
i

log p′(µ∗i ) + log p′(σ∗2i ) (30)

Equation 29 now implies which is equivalent F ′(µ∗, σ∗, θ) = F (µ∗, σ∗, θ) + const., resulting in
identical gradients. Because εi is sampled fromN (0, 1) in both our method and β-VAE, the training
algorithms are exactly equivalent.

We can now analyze the properties of this reinterpretation of β-VAE. In particular, we are interested
in

I(µ̃i, (µi, σ
2
i )) =H(µ̃i)− Ep(µi,σ2

i )
H(µ̃i|(µi, σ2

i ) = (µi, σ
2
i )) (31)

=H(µ̃i)− Ep(σ2
i )

1

2
log 2πeσ2

i (32)

where

H(µ̃i) = −
∫ ∞
0

dY p(µ̃i) log p(µ̃i) (33)

µ̃i|µi, σ2
i ∼ N

(
µi, σ

2
i

)
with µi ∼ N

(
0, 1

β

)
implies µ̃i|σ2

i ∼ N
(

0, σ2
i + 1

β

)
. Therefore,

p(µ̃i) =

∫ ∞
0

dσ2
i p(σ

2
i )p(µ̃i|σ2

i ) (34)

=

∫ ∞
0

dσ2
i

1

Γ
(
β
2

) (β
2
σ2
i e
−σ2

i

) β
2
(

2π

(
σ2
i +

1

β

))− 1
2

e
− 1

2(σ2i+ 1
β )
µ̃2
i

(35)

Figure 8 shows numerical results of Equation 31 for various values of β. Interestingly, the setting
β > 1 that is suggested by Higgins et al. (2017) for obtaining disentangled representations corre-
sponds to lower latent capacity.
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β I(Yi, (µi, σ
2
i ))

0.01 0.68 bits
0.1 0.65 bits

1 (VAE) 0.45 bits
10 0.12 bits
100 0.014 bits

Table 1: Numeric results for latent capacities in reinterpreted β-VAE given by Equations 31, 33 and
35, plotted in Figure 8.
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