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ABSTRACT

Generative models are important for several practical applications, from low level
image processing tasks, to model-based planning in robotics. More generally, the
study of generative models is motivated by the long-standing endeavor to model
uncertainty and to discover structure by leveraging unlabeled data. Unfortunately,
the lack of an ultimate task of interest has hindered progress in the field, as there
is no established way to compare models and, often times, evaluation is based on
mere visual inspection of samples drawn from such models.
In this work, we aim at addressing this problem by introducing a new benchmark
evaluation suite, dubbed GenEval. GenEval hosts a large array of distributions cap-
turing many important properties of real datasets, yet in a controlled setting, such
as lower intrinsic dimensionality, multi-modality, compositionality, independence
and causal structure. Any model can be easily plugged for evaluation, provided it
can generate samples.
Our extensive evaluation suggests that different models have different strenghts,
and that GenEval is a great tool to gain insights about how models and metrics
work. We offer GenEval to the community 1 and believe that this benchmark will
facilitate comparison and development of new generative models.

1 INTRODUCTION

Modeling uncertainty is a fundamental problem for machine learning. In unsupervised settings, an
ideal model should be able to describe all the possible events consistent with the provided context. In
supervised settings, there is often not a single correct output for a given input, and models need to be
able to express the space of correct outputs and their relative likelihood.

One standard approach to this problem is to build a probability model of the output space, or more
generally, an energy-based model that assigns a score to every possible output. This kind of model is
useful for comparing two possibilities, for example. Recently there have been a number of proposed
models that do not necessarily assign any score to possible outputs, but using a pseudo-random
number generator, produce hallucinations that in some way resemble the true outputs. This kind of
model can be useful for examining possibilities.

In this work, we will consider the second kind of model, and take a ”generative model” to be any
construction that has a method for outputting data points using a pseudo-random number generator.
In particular, we do not require ”generative models” to be able to compute a probability of a data
point. These kinds of models have become popular recently due to several works on Generative
Adversarial Networks (GANs) (Goodfellow et al., 2014), that have demonstrated the generation of
realistic images (Radford et al., 2015; Karras et al., 2017).

However, this field has struggled to solve its zeroth problem (even as it has made progress on its first).
Before the design of “better” models , it is necessary to agree upon good metrics and methodology to
evaluate the quality of samples generated by a model. Part of the problem is that the downstream
tasks of interest in the case of image generation have not been fully settled. Nevertheless, there have
been a few works that make rigorous attempts to quantify the capabilities of these models, restricted
to GANs parameterized as convolutional nets in the setting of natural images (Lucic et al., 2017;
Huang et al., 2018), and concurrently Kurach et al. (2018).

1Available at: coming soon.
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In this work, we expand upon these with a suite of benchmark synthetic distributions that we use
to evaluate not only GANs, but also other forms of generative models. We deliberately avoid
convolutional networks on images with the aim of decoupling the benefits of various modeling
paradigms from domain specific neural architectures. If we believe that generative models should be
studied as generic tools for dealing with uncertainty (as opposed to methods of generating images),
this decoupling is necessary. Additionally, practical, generic, and effective methods for measuring
the distance between distributions in high dimensions with access only to samples do not currently
exist. On the other hand, in some cases where one of the distributions has some special structure,
we can effectively measure distortion, see an example of this in Appendix sec.A; using simple
synthetic distributions allows us to be sure the distributions under consideration have the correct
special structures. Analysis of which methods are able to model which kinds of special structures
(e.g. independence, causality, multi-modality) is critical for understanding these methods; with “real”
data not fully under our control, such analysis can be difficult.

A major contribution of this work is the GenEval toolbox to evaluate models. Thanks to its general
API, new models can be easily plugged in and tested using a variety of metrics against popular
baseline generative models. Likewise, it’s very simple to add new distributions and evaluation metrics
to the existing pool to highlight special properties of a model of interest.

2 RELATED WORK

Much recent literature on generative modeling of continuous distributions has focused on modeling
natural images. Restricting our attention to works aiming at generating samples, as opposed to
scoring inputs, many recent models are based on Generative Adversarial Networks (Goodfellow et al.,
2014; Arjovsky et al., 2017; Roth et al., 2017; Gulrajani et al., 2017; Denton et al., 2015; Karras
et al., 2017), which are capable of generating very realistic high resolution images, a task that had
challenged the research community for several decades (Geman and Geman, 1984).

For models trained on natural images, several metrics have been proposed, such as “inception
score” (Salimans et al., 2016) and “Frechet inception” distance (Heusel et al., 2017). Unfortunately,
these metrics rely on yet another model for evaluation, and are known to only partially correlate with
human judgment. To further complicate matters, generation scores not only depend on the metric
but also on the choice of architecture of the generator, typically a rather sophisticated convolutional
neural network. To summarize, comparison between different generative models is very difficult, and
it is often based on visual inspection of a handful of model samples (Denton et al., 2015; Arjovsky
et al., 2017).

Several works have attempted to isolate the contribution of the estimation method by working in a
controlled setting, e.g., by fitting the model to a mixture of Gaussians in two or three dimensions (Ar-
jovsky et al., 2017; Roth et al., 2017; Gulrajani et al., 2017), or in one dimension (Zaheer et al., 2017).
This paper can be seen as a more comprehensive, thorough and extensive study building upon these
earlier attempts. While we share similar motivations, we do not restrict our focus to just GANs, but
also include other popular models (Kingma and Welling, 2013; Dinh et al., 2016).

Recently, Lucic et al. (2017); Kurach et al. (2018) have systematically compared different variants
of GANs trained on natural images. Again, unlike this work, these focus only on GANs. Morover,
we restrict our study to purely synthetic distributions with known properties which we leverage at
evaluation time (or, from another perspective, we broaden our study to distributions beyond those
coming from the image domain).

The choice of metrics for generative models has been intense topic of debate. Most works, overall
those based on probabilistic modeling, report performance in terms of log-likelihood of samples
generated by the data distribution according to the model. As discussed in earlier work (Theis et al.,
2016) and in sec. 5, this is not a good metric in general, as it cannot be estimated by all models, e.g.,
GANs, and it is very susceptible to the scaling of the input. Interestingly, Lucic et al. (2017) propose
a precision/recall metric to evaluate the quality of samples, where precision measures the distance of
each model sample to the data manifold and recall measures the distance of each data point to the
closest model generation. Unfortunately, such score disregards any weighting of the density, the fact
that not all data points are equally likely and similarly, not all model samples have the same likelihood.
Recognizing this issue, we borrow the “two-sample test” criterion introduced by Lopez-Paz and
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Oquab (2016) and extended by Huang et al. (2018). This two-sample statistic is based on a similar
motivation but it operates on actual samples, using implicit Monte Carlo weighting to take into
account the density, and obviating the need for an explicit optimization over a data-manifold.

3 DISTRIBUTIONS

The benchmark focuses on distributions with support on Rd for some d. Their implementation in
GenEval requires two methods: one for computing the log-density at a point, and one for sampling.
GenEval implementation of distributions is modular, and allows combining distributions via products,
mixtures, causal mappings, and isometric transforms. Next, we briefly describe the distributions we
considered in this study.

Simple distributions Many of the distributions will be built from standard families of distributions,
such as the multivariate Gaussian, and the Slab (or uniform) distribution with constant density on a
rectanguloid in Rd.

Such distributions can be embedded into a lower dimensional space Rq with q < d, yielding what we
call a “flat” Guassian or Slab. For instance, the density function of a flat Slab is defined as:

p(x) ∝ χR(OT (x−m)) + η(x),

where χR is the uniform distribution with support in R = {x : 0 ≤ xi ≤ ri, i = 1, . . . , q}, O is a
d× q matrix with orthogonal columns, and η is a Gaussian density with small variance.
Mixtures Starting with K densities p1, ...., pk on Rd, and a weighting vecor w on the simplex in Rd,
the density for a mixture is: p(x) =

∑K
i=1 wipi(x). When the bulk of the mass of pi is disjoint from

the bulk of the mass of pj for all i 6= j, the mixture model has a cluster structure. We show results
with these kinds of distributions in fig. 1, 2 and in Appendix sec. E.
Distributions with causal structure Given a function f : Rq 7→ Rd−q, q < d and a density p′
defined in Rq , we can can get a density with causal structure on Rd by considering

p(x) = p′(xind)η(xdep − f(xind)),

where xind are the independent first q coordinates of x (drawn from a certain distribution), and xdep

is the last d − q dependent coordinates of x, and η is a noise distribution (for example zero-mean
Gaussian with small variance). Note that these kinds of distributions have locally lower dimensional
structure than d, especially when d is large compared to q. We show results with these kinds of
distributions in fig. 5.
Locally low dimensional distributions We consider three types of locally low dimensional distribu-
tions: causal distributions where f above is parameterized by a random fully-connected ReLU net or
a random quadratic polynomial (to simulate non-linear manifolds), and an “image-like” distribution
of shifted bumps.

For the random neural-networks, we use one-hidden-layer ReLU networks with default PyTorch
(Paszke et al., 2017) initializations. For the random quadratic polynomials, we take a sample for
a two dimensional distribution and we project it into a d − 2 dimensional space with a matrix of
normally distributed coefficients, and then concatenate both vectors.

For the shifted bumps distribution, which is similar to the artificial triangle image distribution
considered in (Lucic et al., 2017), we take a side-length s, a set of radii r0, ..., rl, and consider all
shifts of an ri × ri square on a s× s background. These form a set of s2 ∗ l points in Rs2 ; we take a
random orthogonal projection of this set to Rd and place a ball of mass around each projected point.
Experiments with these distributions are shown in fig. 3.
Distributions with independence structures We can increase the intrinsic dimension of any of
these previous distributions by combining them as a product: p(x) = ΠK

j=1pi(x), where p1, ..., pK
are the basic components which have non-zero support on a disojint subset of coordinates. Note
that models are not provided with such information at training time. We report results with product
distributions in fig. 4 and in Appendix.
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4 GENERATIVE MODELS

In this section we first describe some classical baselines, meant to provide upper and lower-bound
performances on each distribution, and then some neural-network based models.

Baselines: The oracle baseline is the data distribution itself. Given a metric assessing the
discrepancy between samples drawn from the data and the model distributions (see sec. 5), oracle
samples provide a lower bound on the error of an ideal model perfectly fitting the data. Ideal metrics
would report an error close to 0 for oracle samples.

The next baseline we consider is the kernel density estimator (KDE) (Rosenblatt, 1956; Parzen,
1962) which places a Gaussian bump of a certain width around each training point. KDE essentially
memorizes the training set, and therefore, it is expected to provide great fitting to the training data
but poor generalization, overall in high dimensional spaces where the curse of dimensionality would
require a vast amount of training samples to finely cover the data distribution.

Next, we have the multivariate Gaussian distribution fitted by maximum likelihood (Pedregosa et al.,
2011), meant to provide some sort of upper bound on the error, and the mixture of Gaussians with
k components (MoGk), which we fit by using the expectation-maximization algorithm (Dempster
et al., 1977). We fix the number of Gaussians in the mixture to 10 in all experiments.

Neural Models: Among the neural models, we consider the Variational Auto-Encoder
(VAE) (Kingma and Welling, 2013), the real non-volume preserving density estimator
(RNVP) (Dinh et al., 2016) and Generative Adversarial Network (GAN) (Goodfellow et al.,
2014) with some of its variants, namely Wasserstein GAN (WGAN) (Arjovsky et al., 2017), WGAN
with Gradient Penalty (WGAN-GP) (Gulrajani et al., 2017) and GAN with Noise Regularization
(GAN-NR) (Roth et al., 2017). See Appendixfor a brief review of these methods.

5 DISTORTION STATISTICS

Since all models must be capable of drawing samples, we measure fitting error in terms of the
distortion between two sets of points: samples drawn from the data distribution and from the model
distribution. We will discuss several measures of fidelity to a distribution; and none of them are
generically useful. Measuring the distortion between real-valued distributions in high (or even
not-so-high) dimensions continues to be an unsolved problem, especially if we add constraints on
computational efficiency. This is one of the reasons to use artificial data with special properties we
control: although none of the metrics are generally useful, they can all be useful when the distributions
have appropriate structure (see example in Appendix sec. A).

Optimal Transport The Optimal Transport distance (OT) uρ between sets S and T of points in a
metric space with metric ρ, is defined by:

uρ(S, T ) = min
∑
i,j

λijρ(si, tj) s.t.
∑
i

λij = 1 and
∑
j

λij = 1 and λij ≥ 0 (1)

We use the POT package 2 for computing the optimal transport, and assume ρ is Euclidean l2 for the
rest of this work, and drop it from the notation.

Sampling a fixed number of points from two distributions P and Q and computing the OT distance
between the samples does not give a distance on distributions (even if it were well defined, it would
not even give “distance” 0 from a distribution to itself), but it does correspond to an estimator of
the OT distance between P and Q. However, in high dimensions, with few samples, this estimator
can have possibly counter-intuitive behaviors. For example (Arora et al., 2017), suppose we sample
N points S and N points S′ from the uniform distribution over the unit sphere in Rd, where d is
large enough to see concentration-of-measure effects, and then N points T from δ0 (the point mass at
the origin). If N is small compared to d, then the points in S and S′ are almost orthogonal, and so
have distance roughly

√
2 between them. On the other hand, the distance of any point in S to a point

2http://pot.readthedocs.io/en/stable/
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sampled from T is 1. It is thus likely that u(S, S′) > u(S, T ) even though S is sampled from the
same distribution as S′ and T is not.

On the other hand, OT has some pleasing properties. It is continuous with respect to perturbations of
the points in the sets. Furthermore, if two sets of points covers the same low-dimensional manifold in
a high dimensional space, the OT distance between them will be relatively small.

In the tables below, when using OT to measure the success of a generative model, we will always
report the “oracle” OT score given by comparing two sets of samples from the true distribution. When
the oracle scores are relatively high, the relative results should be taken cautiously.
Nearest Neighbor Two-Sample Statistic Two set of points, S ∼ pd and T ∼ pg, are close if the
chance that a point from S has nearest neighbor belonging to T is 50% and vice versa. This gives the
intuition behind the nearest neighbor two-sample statistic (2S) (Huang et al., 2018). In this work, we
use a version similar to the one in Huang et al. (2018). Assume |S| = |T | = N . For each point x in
S or T , define n(x) to be3

n(x) =

{
1, if miny∈S ||x− y|| < miny∈T ||x− y||
0, otherwise.

.

Then, we define the distance as the sum of the deviations from the optimal rate:

v(S, T ) =

∣∣∣∣∣1/2−∑
x∈S

n(x)/N

∣∣∣∣∣+

∣∣∣∣∣1/2−∑
x∈T

(1− n(x))/N

∣∣∣∣∣ (2)

As N gets larger, it becomes easier to distinguish the distributions via this statistic; but different
values of N may lead to different quality orderings. As the dimension of the distribution gets higher
(for fixed N ), it becomes harder to distinguish distributions via this statistic. As with OT, we will
always show the oracle value for a distribution when showing results of generative models.
Log-Likelihood In this work log-likelihood (LL) is estimated on the samples drawn from the model
using the (known) data distribution - since we do not require models to necessarily be able to estimate
data log-likelihood. This gives a notion of how likely points generated by the model are, regardless
of the overall fit. In other words, samples drawn from a model assigning all its mass to the mode
of the data distribution will have even higher likelihood that samples drawn from the actual data
distribution.

5.1 SPECIAL STATISTICS

Our distributions have special structure that we can take advantage of, to better measure success in
modeling that distribution.
Mode coverage (MC) Assuming a mixture distribution for the data and a uniform distribution over
modes, we measure whether samples generated from the model have even coverage of the clusters.
We report “mode coverage” (MC) as the perpelxity of the mode assignments: MC = 2H(a), where
H is the entropy of the cluster assignment distribution a.
Causal Discovery Assuming a causal distribution (see sec. 3) and the ability of the model to perform
conditional inference of a set of variables given the complementary set, we measure how close (in l2)
the recovered dependent coordinates are from what the ground truth values given a set of independent
coordinates drawn from the true underlying distribution.

For all the neural models with a latent space, we estimate the missing variables by optimizing over the
latent variable with an l2 reconstruction loss over the observed coordinates, starting from a random
point. For KDE, we find the nearest point from the training set in the constrained coordinates, and
return the remaining coordinates of that training point. For a mixture of Guassians, we take the nearest
mean in the constrained coordinates among all components, and then return the maximum-likelihood
estimate from that Gaussian of the remaining coordinates. See fig. 5 for results using this metric.
Independence Test Measuring the independence of high-dimensional real valued distributions is
challenging. In order to get some idea of the ability of the various models to detect independence,
we will restrict our attention to distributions that are products of distributions that are easy to vector-
quantize, and use categorical tests for independence on the quantized values. That is, suppose we

3In our implementation, if the quantities miny∈S ||x− y|| = miny∈T ||x− y|| we choose n(x) randomly in
{0, 1}.
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have a distribution p =
⊗K

i=1 pi where pi is supported on the set of coordinates ci. Further suppose
we have clustered pi into clusters Cij for j ∈ {1, ..., ni}, and that we have L samples X from a
model. Then, for each coordinate group ci, we make a table of size ni × (n1n2...ni−1ni+1...nK)
with the counts Ns,t of the number of points in X that landed in each cell. Here, s indexes rows of
this table, corresponding to the ni centroids Ci1, ..., Cini

for the points projected down to coordinate
group ci, and t indexes columns of the table, corresponding to the product of all other clusters in
all other coordinate groups.Denote by Mt =

∑
sNs,t/L and Ms =

∑
tNs,t/L; we expect that

Ns,t/L ∼MsMt, so we take:

χ2 =
∑
s,t

(Ns,t/L−MsMt)
2
.

Independent OT and 2S There is a partial remedy for dealing with the weaknesses of the distortion
measures in high dimensions for distributions that we know have independence structure, see sec. 3.
Suppose that the distribution p we are interested in has support in Rd. Further suppose there are
groups of coordinates I0, I1, ...IL partitioning [1, ..., d] such that pIj ⊥ pIi for i 6= j. Here pI is the
distribution given by projecting p onto the subspace spanned by the coordinates in I . Then, for some
distortion measure u, we can use the set distance given by:

uind(S, T ) =

K∑
i=1

u(SIi , TIi), (3)

where SIi is the projection of S onto Ii (and likewise for T ).

In building such a distortion measure, we are using the knowledge of the true distribution. However,
because we are building the distributions in the benchmark, we are free to use this information in
measuring distortion, even if the models should not get access to it during training. Furthermore, note
that this kind of distortion measure only can tell the difference between distributions that disagree on
the marginals of the groups. Even if it shows no distortion between two distributions, they may still
be different. On the other hand, because each group has smaller dimension, the distortion measure is
less pre-disposed to show everything being different from everything else.

6 GENEVAL

GenEval is written in Python and it consists of three main components: models, distributions, and
metrics.

Models must define fit(X) and sample(N) methods, the former to train the model on a dataset
of points X , the latter to draw N samples. Models can optionally define a method to conditionally
sample data given values for a set of fixed coordinates. Thanks to the general interface and modularity
of GenEval, we simply incorporated the original implementations by the authors of the models
whenever available. As a result, GenEval does not enforce any specific machine learning framework.
For VAE(vae), GAN(gan, b), WGAN(wga, b), WGAN-GP(wga, a) and GAN-NR(gan, a) we used
PyTorch (Paszke et al., 2017), while for RNVP(nvp) we used TensorFlow (Abadi et al., 2015). For
Mixture of Gaussians and Kernel Density Estimation we employ the scikit-learn (Pedregosa et al.,
2011) package.

Each distribution class must define the methods: sample(N) and logprob(X). Mixture distri-
butions may also optionally define a method to estimate the most likely cluster assignment to each
input data point, and product distributions can specify their components. New distributions can easily
be defined via composition directly in configuration files specifying which distribution to test on.
For instance, the library contains classes for a slab, a mixture of arbitrary distributions, and affine
transform. Given these, one may define on-the-fly a distribution over the surface of a rotated 3D box
in some higher dimensional space.

Metrics methods take as input two sets of samples (from the data distribution and from the model)
and output a scalar value. Some metrics may optionally take as input a trained model and the data
distribution to compute distribution dependent metrics like mode coverage.

Models and distributions are passed as input to GenEval via two Python script configuration files,
which specify all their eventual hyper-parameters. Model hyper-parameters can also be specified via

6



Under review as a conference paper at ICLR 2019

Figure 1: Two Sample test on Mixture Gaussians. Top: each Gaussian component has intrinsic dimensionality
equal to 5, with a spherical covariance (in 5d) rotated to a random orientation 50d and non-zero mean placed at
random; the ambient dimension is 50. Bottom: each Gaussian component is defined in a 50 dimensional space,
and it has spherical covariance and a non-zero mean placed at random in that space. Left: varying the number of
components in the mixture from 2 to 50. Right: varying the variance of each component; note that for the flat
mixture (Top) only the variance in the intrinsic dimension changes.

Figure 2: Same as above but using OT for both cross-validation and evaluation.

lists, which are used by GenEval to run a grid search over hyper-parameter values. A user may then
run GenEval with configuration files that specify several distributions and several models. GenEval
then launches training and evaluation for the cartesian product of all possible combinations of model
and distribution and report results on a table, as those shown in the Appendix.

7 EXPERIMENTS

We used GenEval to compare the models described in sec. 4 on several distributions. For each
distribution, GenEval first runs a grid search over hyper-parameters, see for instance the configuration
files in Appendix sec. D. To produce the results in this section for every method we ran a very
extensive grid search over hyper-parameters, which reached about 20, 000 configurations for some
GAN variants; and was in the thousands for all neural methods. Afterwards, GenEval compares
models across all metrics and compiles tables, such as those in Appendix E.

Unless otherwise stated, all experiments we discuss next have used 10,000 training samples, and
unless otherwise specified in the figure, 1000 validation and test samples. On the figures showing
results with OT, OT was used as a cross-validation metric for the hyperparameter search; and 2S was
used for figures showing results with 2S. For all other figures, cross validation was done using 2S.

Fig 1 shows two-sample results when the true distribution is a mixture of Gaussians with varying
number of components in the mixture (left), variance (bottom) and intrinsic dimensionality (top
versus bottom). First, we observe that model performance is bounded by the oracle, as expected,
with a nearly 0 distortion. A mixture of Gaussian with 10 components achieves the lowest distortion
when the number of components in the true distribution is less than 10, but distortion degrades
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Figure 3: Two-sample statistics and optimal transport on two and three dimensional embedded manifolds in
R50.

Figure 4: 2S and OT on products of five identical distributions, each of which has support near a two or
three dimensional embedded manifold in R10. In this figure, we use uind from eq. 3 (using the true groups of
independent coordinates) to measure distortion and to validate models.

very rapidly as soon as the true number of components increases. The KDE baseline instead has
distortion which is constant with respect to number of components and variance4. KDE often leads
to competitive distortion compared to neural models, yet much higher than the oracle. Second, in
this experiment, GAN variants do not perform reliably better than the original GAN. Third, we
observe that none of the neural models perform well, despite the relative simplicity of the distribution.
Modeling distributions with more components, tighter variance and lower intrinsic dimensionality
makes the learning problem considerably harder for these models. The results are somewhat different
if we cross-validate and evaluate according to OT, as shown in fig. 2. With this statistic, there is no
performance gap between the oracle and KDE, highlighting the importance of the choice of metric
when comparing methods. Oracle performance according to OT degrades as a function of the number
of components (left half of Figure 2), and especially as the intrinsic variance increases (bottom right
of Figure 2), but not when the intrinsic dimensionality is lower (top right of Figure 2). Thus, as
suggested by the example in 5, sampled OT can be an unreliable measure of success when the true
distribution fills out space in high dimensions.

Next, we evaluate on various manifold distribution and product of manifold distributions, see fig. 3
and 4. One interesting observation is that OT and 2S do not correlate very well (see discussion
in sec. 5). On these tasks, Real NVP performs well in terms of the nearest neighbor two-sample
statistic, followed by MoG10, with other methods performing worse. In terms of OT, KDE does best
on the products of manifolds, and VAE does the best on the manifolds. In fact, VAE does better than
oracle there (see two bottom left plots in fig. 3 and the note in 5), suggesting it is denoising the true
distribution.

In the next experiment reported in fig. 5, we analyze the ability of the models to discover causal
structure on manifold distributions. We do not report the results of Real NVP here because we cannot

4This is essentially a function of the number of points used for computing the two-sample statistic vs. the
number of training points. The nearest neighbors of real points may be generated or real; KDE is essentially
perfect on this side of the distortion statistic. But the neighbors of generated points will almost certainly be
generated as the number of test points increases, as the neighbor will have been generated from the Gaussian
about the same training point.
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Figure 5: Prediction error of dependent variables in causal distribution, see sec. 3 and 5.1. Hyperparameters are
chosen by best OT.

make a conditional estimate in the same way as the other neural models. We observe that all models
have hard time beating the MoG10 baseline in this case.

Figure 6: We consider product of 5 (top) and 8 (bottom) distributions, each of which is a mixture of three
Gaussians in 12 dimensions. The χ2 metric, see sec. 5.1, measures the extent by which models have captured
the independence structure of the product distribution. Note that higher is better for mode coverage, unlike the
other metrics. 2S is computed using 1K samples, while MC and χ2 use 50K samples

Finally, we look at a product of independent Gaussian mixture distributions in fig. 6. None of the
models are able to succesfully fit this distribution, although WGAN-GP and Real NVP do the best.
KDE in particular fails to fit this distribution, both in terms of two-sample and in terms of the χ2

independence test. We can also see that all of the GAN variants improve on the mode coverage of the
vanilla GAN.

8 DISCUSSION

Perhaps to the delight of neural generative model skeptics, one sees that on almost all distributions
and all metrics that we consider, one of KDE or mixture of 10 Gaussians are competitive with (and
often superior to) the neural models. These take a tiny fraction of the training cost, have essentially
no hyper-parameter sweep, and have simple, well understood fitting routines. However, the neural
models, especially GAN, are designed to be used where l2 in the observation space makes little sense
as a metric. On most of our examples l2 in the observation space is locally meaningful, and most of
our metrics rely on l2 to be (at least) locally meaningful. Thus we consider success at our benchmarks
neither necessary nor sufficient for a model to be good at the perhaps more complex tasks for which
neural models are designed. We discourage neural model skeptics from dismissing neural models
based on these results: worse results on simple tasks against unscaleable baselines better adapted to
the simple tasks does not necessarily mean an approach should be abandoned.

On the other hand, neural generative model boosters should take heed of these results. They show that
on datasets that are not images, with networks that are not convolutional networks, neural models do
not do well. Moreover, specific to GANs, our results corroborate the results of Zaheer et al. (2017);
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Arora and Zhang (2017), and suggest that GANs do not necessarily learn to sample from the target
distribution. Furthermore, some protocols purported to improve GANs in the image setting do not
reliably improve results across the metrics and datasets shown here (although cluster coverage does
seem to be reliably improved). This is natural, as practitioners have spent much effort tuning models
for performance in the image domain, and of course neural models will do poorly without well
adapted architectures 5. Nevertheless, most works trying to improve or understand GANs (empirically
or theoretically) discuss the training protocol independently of the relationships between the inductive
biases of the neural architectures and the properties of the distributions to be modeled. Our results
here suggest that these relationships cannot be ignored when studying GANs.

We also see that while no single neural model is all-around superior to the others, Real NVP does do
better than the other models in many cases, especially in terms of the two-sample statistic. However,
it does not dominate, for example doing worse at products of manifolds in terms of OT, see fig. 4,
and worse on mixtures of Gaussians with large numbers of components, see fig. 16.

We can also see other quirks of the models. For example, we can see that “denoising” effects of a
VAE can make it appear to be a good model on some datasets and metrics, but poor in others. It is one
of the better performing neural models in fig. 5 when measuring causal error, showing it has learned
the manifold and the functional dependence. But at the same time, it is bad in terms of twosample
(fig. 3); perhaps because it is collapsing the two free components in the output. More generally, these
kinds of effects show that in general, it is important to consider multiple metrics. The gold standard
should be a success in a downstream task of interest, but in the absence of such a task, looking at a
single metric to judge success can be misleading.
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A BLOCK INDEPENDENCE AND DISTORTION MEASURE RESOLUTION

We give a simple example showing how eq. 3 can increase the accuracy, or more precisely, the
resolution of a distortion measure. We take a product of 10 mixtures of Gaussians in R12, each with
3 components, with modes randomly distributed over the unit sphere in R12, as in fig. 6. The overall
ambient dimension is 120.

Measuring OT against a single best fit Gaussian, which is clearly a poor model of the original
distribution, without leveraging the groups structure (see again eq. 3), gives a distortion of 7.3 for the
oracle samples versus 8.6 for the samples from the Gaussian. If we do leverage information about the
independence structure among the groups, we get a distortion of 5.9 for the oracle versus 19.3 for the
Gaussian. Raising the number of mixtures in the product to 30 gives 17.4 vs 17.6 without groups and
17.5 vs 54.5 with.

It is therefore essential even in relatively low dimensions to leverage the special structure of the
distributions in order to assess the real quality of the sameples generated by a model.

B OTHER METRICS

In addition to the metrics introduced in sec. 5,we also considered the Hausdorff distance.

Hausdorff Distance The Hausdorff distance (H) hρ∞ between sets S and T of points in a metric
space with metric ρ, is defined by:

h∞(S, T ) = max
s∈S

min
t∈T

ρ(s, t) + max
t∈T

min
s∈S

ρ(s, t) (4)

As in the case of optimal transport, this defines a metric between sets; but when we sample from
the distributions and compare the distance between the samples, we do not get a metric on the
distributions. We will denote by H∞(P,Q;N) the statistic obtained by sampling N points from P ,
N points from Q, and computing the Hasudorff distance between the sampled points. We will show
results with an average version of this statistic: by H2(P,Q;N) we take the average minimal square
distance, instead of the max. That is, define:

h2(S, T )2 =
1

N

(∑
s∈S

min
t∈T

ρ(s, t)2 +
∑
t∈T

min
s∈S

ρ(s, t)2

)
, (5)

and set the statistic H2(P,Q;N) to be h2(S, T ) for N points S sampled from P and N points T
sampled from Q. Note that h2 is not even a metric on sets, as it does not satisfy the triangle inequality.

The Hausdorff statistics should be taken as a measure of the difference of support between distribu-
tions. That is, as the number of sampled points gets large, two distribution with the same support (but
perhaps very different densities on that support) will have relatively small difference in the Hausdorff
statistic.
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C ANALYSES OF TWO-SAMPLE TEST

The Two-Sample Test depends on the number of points sampled from the distributions. We analyze
how number of test points and number of training points affects the metric. We use random quadratic
polynomial distribution and a distributions of shifted bumps as shown in fig. 7 and as described in
sec. 3. For both distributions we observe a similar pattern. As the number of points goes up the
errors also goes up for all the models. However, the degradation is much more prominent for KDE.
The same applied to the size of the training set: neural models may generalize from less amount of
training data.
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Figure 7: Two-Sample test for different number of test points for a random quadratic polynomial distribution
(top) and for a distribution of shifted bumps (bottom), when training with 1k (left) and 10k (right) samples.
Lower is better.
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D HYPER-PARAMETER SEARCH

As mentioned in the section 6, model configurations for each experiment are defined in configuration
files. Each file defines a MODELS variable with a list of dictionaries describing the model. Each
dictionary has three keys: name, model (refers to a model class), and args. A user may want to
re-use the same model in several cases to evaluate impact of different subsets of parameters. E.g., all
flavors of the GAN models implemented in a single class and evaluated separately. Hyper parameters
for each case are defined in args dictionary that maps parameter to one or more possible values.

All our models use multilayer perceptron as the base architecture. The default activation function
is ReLU, but in order to help the model to sample from a mixture of gaussians, we also considered
q-ary multi maxout activation that is a max pooling over groups of q units. The activation function
is determined by maxout parameter. Zero stands for ReLU, while positive values stand of q-ary
multi maxout. Parameter --nz defines the size of the latent space. By default GAN models use
RMSProp optimizer unless --adam is specified. RealNVP and VAE use Adam optimizer by default.
We followed the choice in the original implementations here. (Arjovsky et al., 2017) noticed that
for better results in training WGAN several discriminator updates should be done per generator
updates. Besides, discriminator should get 100 extra updates for first 25 steps and every 500th step.
We captures these heuristics in --Diters and --boost discriminator flags.

For RealNVP we use only channel based masking with 8 coupling layers (defined by
--chain length). Each layer is implemented by a multilayer perceptron with optional batch
and weight normalization.

Below we show the complete configuration file used for multimodal distributions.
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import models

MODELS = [
{

’ name ’ : ’KDE’ ,
’ a r g s ’ : {

’−−k e r n e l ’ : ’ g a u s s i a n ’ ,
’−−bandwid th ’ : [ 0 . 0 0 1 , 0 . 0 1 , 0 . 1 ]

} ,
’ model ’ : models .KDE

} ,
{

’ name ’ : ’ G a u s s i a n ’ ,
’ a r g s ’ : {

’−−n componen ts ’ : 1 ,
} ,
’ model ’ : models . G a u s s i a n M i x t u r e

} ,
{

’ name ’ : ’MOG’ ,
’ a r g s ’ : {

’−−n componen ts ’ : 10 ,
} ,
’ model ’ : models . G a u s s i a n M i x t u r e

} ,
{

’ name ’ : ’VAE’ ,
’ a r g s ’ : {

’−−n u p d a t e s ’ : [ 1 0 0 0 , 3000 , 10000 ] ,
’−−n u m h i d d e n l a y e r s ’ : [ 1 , 2 ] ,
’−−e n c o d e r n u m h i d d e n l a y e r s ’ : [ 1 , 2 ] ,
’−−h i d d e n s i z e ’ : [ 1 0 0 , 5 0 0 ] ,
’−−nz ’ : [ 1 0 , 30 , 1 0 0 ] ,
’−−Emaxout q ’ : [ 0 , 1 0 ] ,
’−−Dmaxout q ’ : [ 0 , 1 0 ] ,
’−−l r ’ : [3 e−3, 1e−3, 3e−4, 1e−4] ,
’−−b a t c h s i z e ’ : 64 ,

} ,
’ model ’ : models .VAE

} ,
{

’ name ’ : ’ RealNVP ’ ,
’ a r g s ’ : {

’−−m l p h i d d e n l a y e r s ’ : 1 ,
’−−m l p h i d d e n s i z e ’ : [ 1 0 0 , 3 0 0 ] ,
’−−c h a i n l e n g t h ’ : [ 4 , 8 ] ,
’−−t r a i n s t e p s ’ : [ 1 0 0 0 , 3000 , 10000] ,
’−−l e a r n i n g r a t e ’ : [1 e−2, 3e−3, 1e−3, 3e−4] ,
’−−b a t c h s i z e ’ : 64 ,
’−−weigh t norm ’ : [ 0 , 1 ] ,
’−−u s e b a t c h n o r m ’ : [ 0 , 1 ] ,
’−−maxout q ’ : [ 0 , 1 0 ] ,
’−−o p t i m i z e r ’ : ’ adam ’ ,

} ,
’ model ’ : models . RealNvp ,

} ,
{

’ name ’ : ’GAN’ ,
’ a r g s ’ : {

’−−l o s s ’ : ’ gan ’ ,
’−−n u p d a t e s ’ : [ 1 0 0 0 , 3000 , 10000 ] ,
’−−n u m h i d d e n l a y e r s ’ : [ 1 , 2 ] ,
’−−d n u m h i d d e n l a y e r s ’ : [ 1 , 2 ] ,
’−−d h i d d e n s i z e ’ : [ 5 0 , 5 0 0 ] ,
’−−Gmaxout ’ : [ 0 , 1 0 ] ,
’−−Dmaxout ’ : [ 0 , 1 0 ] ,
’−−nz ’ : [ 1 0 , 1 0 0 ] ,
’−−cuda ’ : True ,
’−−h i d d e n s i z e ’ : [ 1 0 0 , 5 0 0 ] ,
’−−b a t c h S i z e ’ : 64 ,
’−−l r ’ : [1 e−3, 3e−4, 1e−4] ,
’−−D i t e r s ’ : [ 1 , 2 , 5 ] ,
’−−adam ’ : True ,

} ,
’ model ’ : models .GAN

} ,
{

’ name ’ : ’WGAN’ ,
’ a r g s ’ : {

’−−l o s s ’ : ’ wgan ’ ,
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’−−b o o s t d i s c r i m i n a t o r ’ : True ,
’−−n u p d a t e s ’ : [ 1 0 0 0 , 3000 , 10000 ] ,
’−−n u m h i d d e n l a y e r s ’ : [ 1 , 2 ] ,
’−−d n u m h i d d e n l a y e r s ’ : [ 1 , 2 ] ,
’−−d h i d d e n s i z e ’ : [ 5 0 , 5 0 0 ] ,
’−−nz ’ : [ 1 0 , 1 0 0 ] ,
’−−Gmaxout ’ : [ 0 , 1 0 ] ,
’−−Dmaxout ’ : [ 0 , 1 0 ] ,
’−−h i d d e n s i z e ’ : [ 1 0 0 , 5 0 0 ] ,
’−−cuda ’ : True ,
’−−b a t c h S i z e ’ : 64 ,
’−−l r ’ : [1 e−3, 3e−4, 1e−4] ,
’−−D i t e r s ’ : [ 1 , 2 , 5 ] ,
’−−adam ’ : True ,

} ,
’ model ’ : models .GAN

} ,
{

’ name ’ : ’WGAN−GP ’ ,
’ a r g s ’ : {

’−−l o s s ’ : ’ wgan−gp ’ ,
’−−n u m h i d d e n l a y e r s ’ : [ 1 , 2 ] ,
’−−d n u m h i d d e n l a y e r s ’ : [ 1 , 2 ] ,
’−−d h i d d e n s i z e ’ : [ 5 0 , 5 0 0 ] ,
’−−n u p d a t e s ’ : [ 1 0 0 0 , 3000 , 10000 ] ,
’−−Gmaxout ’ : [ 0 , 1 0 ] ,
’−−Dmaxout ’ : [ 0 , 1 0 ] ,
’−−nz ’ : [ 1 0 , 1 0 0 ] ,
’−−h i d d e n s i z e ’ : [ 1 0 0 , 5 0 0 ] ,
’−−cuda ’ : True ,
’−−b a t c h S i z e ’ : 64 ,
’−−l r ’ : [1 e−3, 3e−4, 1e−4] ,
’−−D i t e r s ’ : [ 1 , 2 , 5 ] ,
’−−adam ’ : True ,

} ,
’ model ’ : models .GAN

} ,
{

’ name ’ : ’GAN−NR’ ,
’ a r g s ’ : {

’−−l o s s ’ : ’ gan ’ ,
’−−n u p d a t e s ’ : [ 1 0 0 0 , 3000 , 10000 ] ,
’−−n u m h i d d e n l a y e r s ’ : [ 1 , 2 ] ,
’−−d n u m h i d d e n l a y e r s ’ : [ 1 , 2 ] ,
’−−d h i d d e n s i z e ’ : [ 5 0 , 5 0 0 ] ,
’−−Gmaxout ’ : [ 0 , 1 0 ] ,
’−−Dmaxout ’ : [ 0 , 1 0 ] ,
’−−nz ’ : [ 1 0 , 1 0 0 ] ,
’−−h i d d e n s i z e ’ : [ 1 0 0 , 5 0 0 ] ,
’−−cuda ’ : True ,
’−−b a t c h S i z e ’ : 64 ,
’−−l r ’ : [1 e−3, 3e−4, 1e−4] ,
’−−D i t e r s ’ : [ 1 , 2 , 5 ] ,
’−−adam ’ : True ,
’−−d i s c r e g w e i g h t ’ : [ 1 . 0 , 0 . 1 , 0 . 0 1 , 0 . 0 0 1 ] ,

} ,
’ model ’ : models .GAN

} ,
]

E MULTIMODAL DISTRIBUTIONS

In this section, we report detailed results using various mixture of Gaussians. “ad” means ambient
dimension, “id” means intrinsic dimensions where the MoGs are embedded, “mt” specifies the kind
of mean allocation (on the circle “C” or at random “R”), “r” refers to the variance and “MoG” to the
number of components in the mixture.
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oracle KDE Gaussian MOG VAE RealNVP GAN WGAN WGAN-GP GAN-NR

MoG2 ad50 id5 mtC r0.03 0.089 0.114 0.536 0.059 0.316 0.196 0.139 0.316 0.154 0.111
MoG5 ad50 id5 mtC r0.03 0.104 0.089 0.531 0.108 0.770 0.197 0.407 0.484 0.154 0.142
MoG10 ad50 id5 mtC r0.03 0.106 0.115 0.453 0.112 0.654 0.233 0.160 0.314 0.144 0.158
MoG20 ad50 id5 mtC r0.03 0.127 0.144 0.426 0.151 0.674 0.276 0.170 0.918 0.165 0.162
MoG50 ad50 id5 mtC r0.03 0.152 0.150 0.421 0.160 0.648 0.298 0.151 0.456 0.180 0.222
MoG10 ad50 id5 mtC r0.1 0.160 0.168 0.499 0.176 0.678 0.323 0.243 0.469 0.186 0.275
MoG10 ad50 id5 mtC r0.3 0.250 0.258 0.611 0.280 0.766 0.404 0.391 0.581 0.289 0.306
MoG10 ad50 id5 mtC r1.0 0.429 0.440 0.885 0.436 0.962 0.553 0.487 0.815 0.491 0.492
MoG10 ad50 id5 mtC r3.0 0.721 0.741 1.369 0.802 1.326 0.852 0.837 1.136 0.906 0.782
MoG2 ad50 id5 mtR r0.03 0.257 0.392 2.774 0.103 0.477 0.239 5.556 8.248 0.336 5.424
MoG5 ad50 id5 mtR r0.03 0.435 0.275 5.172 0.252 1.204 1.084 1.346 4.635 0.638 1.340
MoG10 ad50 id5 mtR r0.03 0.338 0.632 6.353 0.313 1.816 1.651 2.887 2.736 1.000 4.268
MoG20 ad50 id5 mtR r0.03 0.886 0.911 7.047 2.919 2.607 2.128 4.869 3.239 1.890 3.787
MoG50 ad50 id5 mtR r0.03 1.328 1.202 7.523 5.254 3.199 4.149 6.429 5.750 2.256 5.941
MoG10 ad50 id5 mtR r0.1 0.391 0.682 6.336 0.367 1.935 1.572 2.862 4.341 0.887 3.928
MoG10 ad50 id5 mtR r0.3 0.478 0.766 6.283 0.622 1.662 1.640 2.891 3.175 1.368 2.764
MoG10 ad50 id5 mtR r1.0 0.648 0.930 6.264 0.835 2.095 2.194 2.527 3.534 1.148 2.826
MoG10 ad50 id5 mtR r3.0 0.926 1.201 6.291 1.094 2.404 2.421 3.401 2.989 1.796 3.536
MoG2 ad50 id50 mtC r0.03 0.452 0.473 0.689 0.426 0.488 0.521 1.009 1.111 1.054 0.495
MoG5 ad50 id50 mtC r0.03 0.464 0.455 0.668 0.477 0.772 0.517 0.883 0.639 0.428 0.443
MoG10 ad50 id50 mtC r0.03 0.464 0.467 0.624 0.463 0.797 0.536 0.827 0.678 0.613 0.425
MoG20 ad50 id50 mtC r0.03 0.469 0.476 0.613 0.465 0.798 0.520 0.450 0.573 0.462 0.454
MoG50 ad50 id50 mtC r0.03 0.471 0.474 0.613 0.465 0.825 0.503 0.442 0.486 0.404 0.436
MoG10 ad50 id50 mtC r0.1 0.824 0.826 0.919 0.825 0.989 0.853 0.750 0.847 0.771 0.952
MoG10 ad50 id50 mtC r0.3 1.406 1.407 1.451 1.404 1.487 1.417 1.383 1.282 1.253 1.289
MoG10 ad50 id50 mtC r1.0 2.512 2.511 2.520 2.508 2.223 2.477 2.267 2.148 2.179 2.271
MoG10 ad50 id50 mtC r3.0 4.268 4.263 4.256 4.258 3.730 4.188 3.654 3.646 3.644 3.653
MoG2 ad50 id50 mtR r0.03 0.619 0.749 2.808 0.600 0.758 1.033 6.274 2.061 0.805 5.359
MoG5 ad50 id50 mtR r0.03 0.791 0.640 5.142 0.595 1.550 1.090 1.949 2.242 1.024 1.866
MoG10 ad50 id50 mtR r0.03 0.703 0.980 6.302 0.884 1.794 1.475 2.977 3.293 1.352 3.296
MoG20 ad50 id50 mtR r0.03 1.227 1.251 6.981 3.111 2.558 2.514 5.092 3.657 1.742 4.159
MoG50 ad50 id50 mtR r0.03 1.642 1.524 7.488 5.298 3.184 3.805 6.255 4.636 2.783 5.328
MoG10 ad50 id50 mtR r0.1 1.059 1.321 6.241 1.096 2.250 1.944 2.808 3.565 1.552 2.233
MoG10 ad50 id50 mtR r0.3 1.637 1.876 6.256 1.816 2.573 2.427 5.595 3.043 2.357 2.448
MoG10 ad50 id50 mtR r1.0 2.771 2.969 6.481 2.861 3.145 3.422 3.989 3.626 2.898 3.718
MoG10 ad50 id50 mtR r3.0 4.617 4.764 7.254 4.664 4.457 5.114 4.710 4.790 4.331 4.413

Table 1: Mixture distributions with 10000 training points using OT metric.

oracle KDE Gaussian MOG VAE RealNVP GAN WGAN WGAN-GP GAN-NR

MoG2 ad50 id5 mtC r0.03 253.824 231.287 -170250.471 231.369 -65887.252 -6900.901 -57.331 -53773.787 -6491.264 -4697.110
MoG5 ad50 id5 mtC r0.03 252.981 230.307 -153160.807 230.445 -253697.262 -15290.232 -3945.600 -112854.365 -6420.108 -3676.803
MoG10 ad50 id5 mtC r0.03 252.218 229.704 -115759.422 229.747 -191527.681 -23915.894 -3849.664 -52946.030 -5687.075 -6432.084
MoG20 ad50 id5 mtC r0.03 251.452 228.862 -104456.734 -6866.577 -197133.338 -32354.515 -6436.782 -341928.288 -8642.488 -6278.844
MoG50 ad50 id5 mtC r0.03 250.456 228.139 -102708.032 -5943.212 -186868.389 -32109.117 -7990.157 -71896.103 -4529.060 -7151.798
MoG10 ad50 id5 mtC r0.1 249.208 226.695 -129044.001 226.752 -191487.241 -60656.093 -8093.914 -78326.775 -7003.240 -12623.974
MoG10 ad50 id5 mtC r0.3 246.462 223.948 -166966.672 -9825.265 -209477.349 -36074.078 -34197.371 -126956.270 -15022.751 -7276.920
MoG10 ad50 id5 mtC r1.0 243.452 220.938 -297879.223 220.981 -248019.344 -57297.815 -17369.215 -200859.027 -27847.380 -8660.971
MoG10 ad50 id5 mtC r3.0 240.705 218.192 -663150.864 -60010.239 -217340.400 -58365.110 -36044.445 -321284.461 -30625.161 -47172.835
MoG2 ad50 id5 mtR r0.03 253.824 231.287 -4706385.463 231.316 -426133.306 -62711.711 -102122.087 -16675610.717 -181595.947 -86721.985
MoG5 ad50 id5 mtR r0.03 252.981 230.307 -13034230.862 230.441 -1435202.737 -390003.663 -954518.627 -11187066.420 -173564.214 -924853.664
MoG10 ad50 id5 mtR r0.03 252.218 229.704 -18513951.173 229.755 -2318297.079 -1407379.654 -3477965.805 -4363909.568 -537268.899 -394392.688
MoG20 ad50 id5 mtR r0.03 251.452 228.862 -22307511.884 -5061117.625 -3678013.955 -1984178.067 -581505.899 -4830178.304 -1608774.782 -2810725.307
MoG50 ad50 id5 mtR r0.03 250.456 228.139 -24634424.153 -12267927.710 -5016707.836 -8313216.364 -12919610.973 -15440539.432 -1798768.727 -853523.141
MoG10 ad50 id5 mtR r0.1 249.208 226.695 -18525897.945 226.741 -2157861.216 -1320055.362 -3339959.070 -9290551.421 -793372.647 -528493.843
MoG10 ad50 id5 mtR r0.3 246.462 223.948 -18699702.888 223.986 -2082989.824 -1435225.157 -3352350.916 -5709800.866 -748740.215 -142109.534
MoG10 ad50 id5 mtR r1.0 243.452 220.938 -18828035.613 221.002 -2682950.001 -1463626.337 -216242.356 -6440277.438 -512050.242 -1850674.806
MoG10 ad50 id5 mtR r3.0 240.705 218.192 -19192966.205 218.240 -2769326.615 -1391332.768 -3652568.951 -4575101.256 -690167.089 -244264.371
MoG2 ad50 id50 mtC r0.03 73.628 73.576 8.073 73.656 72.604 70.636 84.551 -18.458 -65.469 84.913
MoG5 ad50 id50 mtC r0.03 72.724 72.700 17.434 72.743 15.856 62.414 -38.952 31.335 85.773 81.953
MoG10 ad50 id50 mtC r0.03 72.095 72.011 31.006 72.045 11.079 56.194 1.525 24.857 60.130 89.481
MoG20 ad50 id50 mtC r0.03 71.276 71.234 33.946 70.386 8.195 60.910 81.715 45.758 78.979 80.580
MoG50 ad50 id50 mtC r0.03 70.864 70.936 34.300 70.844 2.004 62.431 85.098 69.406 88.844 83.838
MoG10 ad50 id50 mtC r0.1 42.003 41.926 30.298 41.679 38.911 38.265 56.746 45.851 50.840 48.930
MoG10 ad50 id50 mtC r0.3 14.726 14.646 11.334 14.641 27.678 13.503 19.792 29.601 27.557 26.398
MoG10 ad50 id50 mtC r1.0 -14.799 -14.891 -15.546 -14.922 7.104 -13.602 5.036 4.401 1.838 5.113
MoG10 ad50 id50 mtC r3.0 -41.662 -41.765 -41.811 -41.771 -17.932 -40.008 -21.709 -23.253 -22.324 -22.260
MoG2 ad50 id50 mtR r0.03 73.628 73.576 -1725.184 73.654 -107.994 38.340 -217.560 -466.513 11.341 -14.614
MoG5 ad50 id50 mtR r0.03 72.724 72.700 -4787.562 72.734 -423.206 -35.199 -298.758 -983.164 -103.058 -287.144
MoG10 ad50 id50 mtR r0.03 72.095 72.011 -6885.307 72.051 -862.853 -208.406 22.882 -2321.356 -389.596 -465.163
MoG20 ad50 id50 mtR r0.03 71.263 71.227 -8293.821 -1950.515 -1162.677 -904.543 -99.933 -2659.067 -306.468 -472.805
MoG50 ad50 id50 mtR r0.03 70.270 70.336 -9223.065 -4879.046 -1742.290 -2052.524 -5468.518 -3669.330 -702.292 -534.657
MoG10 ad50 id50 mtR r0.1 41.996 41.919 -2059.011 41.960 -253.427 -71.988 29.173 -711.750 -34.268 16.072
MoG10 ad50 id50 mtR r0.3 14.531 14.456 -684.216 14.491 -68.693 -23.838 -28.428 -140.817 -30.060 16.605
MoG10 ad50 id50 mtR r1.0 -15.569 -15.642 -222.121 -15.611 -23.774 -34.471 -42.190 -45.174 -13.998 -21.331
MoG10 ad50 id50 mtR r3.0 -43.034 -43.118 -110.474 -43.072 -31.757 -50.787 -34.440 -41.842 -31.362 -32.524

Table 2: Mixture distributions with 10000 training points using log-likelihood metric.
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oracle KDE Gaussian MOG VAE RealNVP GAN WGAN WGAN-GP GAN-NR

MoG2 ad50 id5 mtC r0.03 0.237 0.258 57.920 0.233 26.330 6.417 0.627 22.517 7.451 5.940
MoG5 ad50 id5 mtC r0.03 0.287 0.318 44.034 0.294 56.186 8.342 4.037 31.937 5.233 3.522
MoG10 ad50 id5 mtC r0.03 0.361 0.391 36.817 0.368 44.635 9.226 2.561 16.402 3.961 3.021
MoG20 ad50 id5 mtC r0.03 0.446 0.484 35.249 2.085 46.903 13.206 3.322 87.685 5.983 2.621
MoG50 ad50 id5 mtC r0.03 0.612 0.653 35.234 2.084 44.958 13.368 6.592 21.481 3.420 3.515
MoG10 ad50 id5 mtC r0.1 1.112 1.208 38.380 1.108 43.889 245.109 6.054 22.469 4.014 6.244
MoG10 ad50 id5 mtC r0.3 3.256 3.541 46.841 7.086 50.803 13.608 14.102 36.612 7.781 5.641
MoG10 ad50 id5 mtC r1.0 10.756 11.707 85.637 10.767 80.277 27.669 16.099 69.350 17.915 14.710
MoG10 ad50 id5 mtC r3.0 32.184 35.043 205.049 53.285 179.895 51.730 56.791 140.923 47.643 42.885
MoG2 ad50 id5 mtR r0.03 0.237 0.258 1688.426 0.236 382.969 211.919 7457.907 4194.667 246.576 7166.328
MoG5 ad50 id5 mtR r0.03 0.287 0.318 3340.899 0.295 712.163 333.198 418.922 4288.632 158.407 404.435
MoG10 ad50 id5 mtR r0.03 0.361 0.391 4480.731 0.368 951.298 705.150 1976.482 1415.009 373.751 4292.463
MoG20 ad50 id5 mtR r0.03 0.446 0.484 5498.846 1734.484 1204.290 884.249 4191.913 1494.503 688.596 2085.471
MoG50 ad50 id5 mtR r0.03 0.612 0.653 6568.851 3224.388 1464.644 3181.403 4096.990 5522.390 764.674 3614.357
MoG10 ad50 id5 mtR r0.1 1.112 1.208 4436.725 1.118 852.832 725.129 1964.068 3033.507 482.750 2128.474
MoG10 ad50 id5 mtR r0.3 3.256 3.541 4389.701 3.249 851.563 722.119 1948.733 1964.690 424.794 3194.469
MoG10 ad50 id5 mtR r1.0 10.756 11.707 4326.580 10.872 981.120 710.919 2978.250 1837.948 347.022 709.904
MoG10 ad50 id5 mtR r3.0 32.184 35.043 4341.083 32.344 1002.917 716.591 2654.381 1298.073 389.408 2183.150
MoG2 ad50 id50 mtC r0.03 20.799 21.094 62.118 20.821 27.443 22.756 18.180 88.884 125.598 17.226
MoG5 ad50 id50 mtC r0.03 21.699 22.049 51.226 21.732 46.620 28.345 148.114 48.010 20.331 19.458
MoG10 ad50 id50 mtC r0.03 22.485 22.895 45.508 22.514 53.014 30.658 66.959 49.907 32.291 17.079
MoG20 ad50 id50 mtC r0.03 23.445 23.845 44.976 23.861 53.748 29.253 20.751 36.795 22.505 21.106
MoG50 ad50 id50 mtC r0.03 23.781 24.107 44.580 23.829 55.255 28.791 20.028 25.153 17.247 20.378
MoG10 ad50 id50 mtC r0.1 74.894 76.283 92.325 75.530 82.746 80.491 59.927 71.082 63.669 67.298
MoG10 ad50 id50 mtC r0.3 222.124 225.794 235.964 222.485 220.458 227.260 205.072 171.029 174.666 178.685
MoG10 ad50 id50 mtC r1.0 719.093 730.723 730.422 720.277 517.921 701.075 560.057 513.860 529.873 562.953
MoG10 ad50 id50 mtC r3.0 2099.189 2131.176 2106.525 2099.680 1518.626 2027.237 1496.654 1497.029 1483.389 1498.844
MoG2 ad50 id50 mtR r0.03 20.804 21.094 1630.390 20.810 411.953 149.912 6920.808 362.710 195.030 6064.530
MoG5 ad50 id50 mtR r0.03 21.702 22.051 3232.852 21.696 658.708 246.329 434.970 1011.023 341.312 430.872
MoG10 ad50 id50 mtR r0.03 22.487 22.896 4356.962 22.518 953.083 458.777 2980.873 2383.723 570.546 651.277
MoG20 ad50 id50 mtR r0.03 23.494 23.890 5377.364 1811.709 1113.193 1019.912 4360.021 2203.143 512.071 2302.820
MoG50 ad50 id50 mtR r0.03 25.069 25.495 6471.202 3583.002 1405.041 1671.400 4350.273 2992.306 1376.382 3516.809
MoG10 ad50 id50 mtR r0.1 74.937 76.321 4259.335 75.057 1001.369 496.565 3162.742 2475.862 471.726 138.372
MoG10 ad50 id50 mtR r0.3 224.793 228.979 4181.012 225.307 961.619 584.302 4800.571 1403.601 694.724 241.683
MoG10 ad50 id50 mtR r1.0 749.292 763.307 4351.709 750.725 1059.480 1100.161 1375.055 1479.128 827.537 1005.823
MoG10 ad50 id50 mtR r3.0 2247.890 2288.899 5581.006 2251.496 1971.971 2580.506 2141.336 2282.581 1894.595 1986.461

Table 3: Mixture distributions with 10000 training points using Hausdorff metric.

oracle KDE Gaussian MOG VAE RealNVP GAN WGAN WGAN-GP GAN-NR

MoG2 ad50 id5 mtC r0.03 2.00 2.00 2.00 2.00 2.00 1.99 2.00 1.99 2.00 2.00
MoG5 ad50 id5 mtC r0.03 5.00 5.00 4.99 5.00 4.90 4.93 4.53 4.92 4.99 4.99
MoG10 ad50 id5 mtC r0.03 9.99 9.98 9.92 9.98 9.39 9.76 9.86 9.91 9.98 9.98
MoG20 ad50 id5 mtC r0.03 19.96 19.91 18.94 19.75 12.21 18.84 19.76 8.13 19.83 19.91
MoG50 ad50 id5 mtC r0.03 49.65 49.75 41.52 47.61 18.71 46.89 49.41 42.50 49.46 46.40
MoG10 ad50 id5 mtC r0.1 9.99 9.98 9.92 9.98 9.51 9.69 9.93 9.43 9.98 9.92
MoG10 ad50 id5 mtC r0.3 9.99 9.98 9.91 9.98 9.44 9.81 9.74 9.73 9.98 9.99
MoG10 ad50 id5 mtC r1.0 9.99 9.98 9.94 9.99 9.20 9.78 9.93 9.79 9.98 9.99
MoG10 ad50 id5 mtC r3.0 9.99 9.98 9.97 9.99 9.43 9.73 9.05 9.95 9.94 9.95
MoG2 ad50 id5 mtR r0.03 2.00 2.00 2.00 2.00 2.00 2.00 1.00 1.10 2.00 1.00
MoG5 ad50 id5 mtR r0.03 5.00 5.00 4.99 5.00 5.00 4.96 4.97 4.81 4.95 4.97
MoG10 ad50 id5 mtR r0.03 9.99 9.98 9.87 9.99 9.88 9.84 8.74 9.97 9.97 5.73
MoG20 ad50 id5 mtR r0.03 19.96 19.91 19.32 19.94 19.44 18.80 9.38 19.41 19.71 14.91
MoG50 ad50 id5 mtR r0.03 49.65 49.75 41.79 49.44 47.06 46.01 17.26 45.32 48.64 15.49
MoG10 ad50 id5 mtR r0.1 9.99 9.98 9.88 9.99 9.76 9.84 8.73 9.67 9.99 6.86
MoG10 ad50 id5 mtR r0.3 9.99 9.98 9.88 9.99 9.93 9.87 8.69 9.88 9.89 7.58
MoG10 ad50 id5 mtR r1.0 9.99 9.98 9.87 9.98 9.91 9.30 7.79 9.92 9.99 9.19
MoG10 ad50 id5 mtR r3.0 9.99 9.98 9.87 9.97 9.87 9.51 7.84 9.93 9.94 7.46
MoG2 ad50 id50 mtC r0.03 2.00 2.00 2.00 2.00 2.00 1.99 1.40 1.87 1.99 1.98
MoG5 ad50 id50 mtC r0.03 5.00 5.00 5.00 5.00 4.93 4.97 4.79 4.97 5.00 4.99
MoG10 ad50 id50 mtC r0.03 9.99 9.98 9.99 9.98 8.99 9.87 9.70 9.87 8.07 9.92
MoG20 ad50 id50 mtC r0.03 19.96 19.90 19.97 19.91 18.89 19.69 19.54 19.94 19.72 19.87
MoG50 ad50 id50 mtC r0.03 49.77 49.68 49.82 49.56 47.83 49.47 48.79 49.64 46.83 49.77
MoG10 ad50 id50 mtC r0.1 9.99 9.98 9.99 9.97 9.47 9.94 9.44 9.81 9.92 7.09
MoG10 ad50 id50 mtC r0.3 9.99 9.98 9.99 9.98 5.13 9.88 9.63 9.31 9.95 9.65
MoG10 ad50 id50 mtC r1.0 9.99 9.99 9.99 9.98 9.93 9.98 9.17 9.97 9.67 9.37
MoG10 ad50 id50 mtC r3.0 9.99 9.99 10.00 9.99 9.94 9.98 9.94 9.28 9.85 9.95
MoG2 ad50 id50 mtR r0.03 2.00 2.00 2.00 2.00 2.00 2.00 1.00 1.99 2.00 1.00
MoG5 ad50 id50 mtR r0.03 5.00 5.00 5.00 5.00 4.92 4.97 4.74 4.99 5.00 4.77
MoG10 ad50 id50 mtR r0.03 9.99 9.98 9.95 9.98 9.96 9.94 7.43 9.78 9.99 8.33
MoG20 ad50 id50 mtR r0.03 19.96 19.91 19.31 19.93 19.24 18.75 8.50 19.87 19.45 13.30
MoG50 ad50 id50 mtR r0.03 49.65 49.75 40.94 48.41 46.33 36.63 26.17 47.89 44.29 21.10
MoG10 ad50 id50 mtR r0.1 9.99 9.98 9.95 9.99 9.90 9.87 7.81 9.87 9.97 9.37
MoG10 ad50 id50 mtR r0.3 9.99 9.98 9.95 9.98 9.86 9.86 4.29 9.96 9.87 9.53
MoG10 ad50 id50 mtR r1.0 9.99 9.98 9.96 9.99 9.96 9.78 9.08 9.85 9.97 9.76
MoG10 ad50 id50 mtR r3.0 9.99 9.98 9.95 9.98 9.91 9.76 9.82 9.92 9.98 9.95

Table 4: Mixture distributions with 10000 training points using mode-coverage metric.
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