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Abstract

Object segmentation has long been a topic of great interest in the field of computer
vision. One of its greatest challenges is to overcome the need for costly, large,
labeled data sets with pixel-level annotations. Chen et al. [3], propose an adversar-
ial model called ReDO, which is capable of unsupervised foreground-background
segmentation in small images and can possibly be extended to multiple-class
segmentation. The purpose of this report is to critically examine the reproducibil-
ity of the work by Chen et al. [3], within the framework of the NeurIPS 2019
Reproducibility Challenge [19]. The experiments described in this report partly cor-
roborate the results of the original study. Moreover, the report offers a TensorFlow
2.0 implementation of ReDO and points out several flaws in the model description
in the preprint of Chen et al. [3].

1 Introduction

Semantic image segmentation is an advancing research topic. For numerous tasks, contemporary
deep learning approaches are capable of segmenting high-resolution images portraying complex and
varied natural scenes into well-defined, non-overlapping regions capturing the main objects in the
image [2, 12, 33]. Nevertheless, these approaches require large amounts of labeled data, often with
annotations at the pixel level. There is a strong urge to surmount this requirement, since the vast
majority of real-world data is unlabelled and labelling can be time-consuming and costly.

The present work attempts to reproduce the contribution of Chen et al. [3], who propose an unsuper-
vised approach to semantic image segmentation using an adversarial learning scheme. Chen et al. [3]
postulate that replacing one object in an image by another should still yield a realistic image, relying
on the assumption that the textures and colors of distinct objects in an image are independent of each
other. The core component of the model they propose, called ReDO (ReDrawing of Objects), is a
generator of new images based on regions of the input image that are segmented in an unsupervised
manner. In an adversarial process [10], the redrawn regions are subsequently combined with the
original image and passed to a discriminator model trained to distinguish between real and fake
images, which forces the generator to produce images that are aligned to the original images. Chen
et al. [3] demonstrate that this unsupervised method implicitly learns to segment objects.

As part of the replication track of the NeurIPS 2019 Reproducibility Challenge [19], this report
presents an attempt to exactly replicate the results displayed by Chen et al. [3]. Strictly following
the paper did not yield the same results as those presented in the original publication. Direct
communication with the authors was necessary to expose several inaccuracies in the description of
the implementation details, which will be meticulously described in section 3.4. This report makes
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a three-fold contribution. First of all, it corroborates the results of Chen et al. [3]. Secondly, it
offers a publicly available, working implementation in TensorFlow 2.02 in addition to the existing
PyTorch implementation by Chen et al. [3] 3. Thirdly, it rectifies some minor flaws in the textual and
mathematical descriptions of the model in the original publication.

2 Related Work

Semantic image segmentation is a wide research field, hence, many approaches precede the work
of Chen et al. [3]. To overcome the problem of requiring a large labeled data set, some approaches
are weakly supervised. Common weakly-supervised approaches are to use image-level annotations
instead of pixel-level annotations [7, 34], co-segmentation (i.e. identifying similar data patterns in
different images) [26, 13], and the use of depth maps in addition to RGB images [25, 28]. Chen et al.
[3] claim that their model is completely unsupervised, whereas the first strategy still needs labels, the
second is not class agnostic, and the third cannot be used on RGB images for which no depth maps
are available.

The approach of Chen et al. [3] is related to several other research areas. For example, it builds on
the idea of scene composition [1, 8, 11, 32], uses tools and ideas described by Xia and Kulis [31],
and is connected to approaches that also use an adversarial learning process to implicitly match a
generative model to a specific task, albeit tasks that are not object segmentation [4, 20, 9, 5]. Please
refer to Chen et al. [3] for a more in-depth review of these studies.

3 Reproducibility

In this section the data used to attempt to corroborate the findings of Chen et al. [3] are described, and
the method applied to arrive at the results of Chen et al. are elucidated. Furthermore, all identified
inaccuracies in the original paper are pointed out and justified.

3.1 Data sets

Chen et al. [3] use four different image data sets, in which all images are resized and cropped to
128× 128 pixels. Three of them are publicly available and the fourth is a toy data set created by the
authors themselves.

Flowers Consist of 8,819 images of flowers split into a training set of 6,149 images, a validation
set of 1,020 images and a test set of 1,020 images. The images are accompanied by masks obtained
via an automated method [22, 23], which are solely used as ground truths for evaluation purposes.

Labeled Faces in the Wild (LFW) Contains 13,233 images of faces [16, 14], of which 2,927 have
been manually segmented and annotated [15, 17], and are used as ground truth masks. Of the masked
images, 1,327 are used for validation and 1,600 for testing. The remaining unlabeled 10,296 images
are used as a training set.

CUB-200-2011 (CUB) Comprises of 11,788 images of birds, of which 10,000 are used as training
set, 788 as validation set, and 1,000 as test set [29].

Colored-2-MNIST This data set was contrived by Chen et al. [3] and used as a toy data set. The
results on this data set were not as thoroughly described as those on the other data sets, hence, this
data set is excluded from the reproduction experiments presented in this report.

3.2 Method

Chen et al.’s unsupervised generative approach to semantic image segmentation, relies on an as-
sumption of independence between the colors and textures of the different objects in an image [3].

2See: https://github.com/bt-s/dd2412-project
3See: https://github.com/mickaelChen/ReDO
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Considering images with k = n classes (i.e. n-1 objects and a background referred to as n), the gen-
erative process consists of three steps: (1) composition – defining k different masks Mk (i.e. regions)
in I based on a mask prior p(M); (2) redrawing – independently generating pixels for each mask
Mk based on a distribution p(Vk|Mk, k) with a generator function of the form GF (I, z1, . . . , zn),
where F is the object segmentation function and zn a set of vectors {z1, . . . , zn} that are each
independently sampled using a prior p(z) for each object k; (3) assembling – aggregate the redrawn
regions into a final image. In step 1, each pixel in I is assigned to a mask Mk corresponding to object
k that has the form Mk ∈ {0, 1}W×H . V k in step 2 represents the pixel values of each object k and
is defined by Vk ∈ RW×H×C . In step 3, the images are assembled into a complete image as follows:
I←

∑n
k=1 M

k �Vk.

To segment objects, the generative protocol described above is iteratively applied to randomly
selected images in the data set. To ensure that the distribution of the output images is similar to the
distribution of the training images, the object segmentation function F is learned in an adversarial
fashion using the Generative Adversarial Network (GAN) scheme in which a discriminator function
D : RW×H×C → R learns to distinguish between fake and real images.

To encourage the model to extract meaningful masks, two constraints are applied that force it to
generate non-empty masks related to the input images I. First, to ensure that the model does not ignore
I, the assumption that the different objects are independently generated is leveraged by regenerating
a single region per iteration instead of replacing all regions. This forces the generator to use original
pixel values from the regions in the image that were not chosen to be reassembled. This changes the
generative process to the following three steps:

(1) composition: M1, . . . ,Mn ← F (I)

(2) redrawing: Vk ← I for k ∈ {1, . . . , n} \ {i}
Vi ← Gi(M

i, zi)

(3) assembling: GF (I, zi, i) =

n∑
k=1

Mk �Vk

The second constraint is a function δk that prevents the model from generating empty or constant
masks. It conserves information from the latent vector zi from which a region GF (I, zi, i) was
redrawn and has the objective to infer the value of zk given any I. It is learned simultaneously with
the generator, in a way similar to the concept of mutual information maximization in InfoGAN [4].

To extract semantic regions, the following learning objectives are used:

max
GF ,δ

LG = EI∼p(data),i∼U(n),zi∼p(z)

[
D (GF (I, zi, i))− λz ‖δi(GF (I, zi, i))− zi‖22

]
max
D
LD = EI∼p(data) [min(0,−1 +D(I))] +

EI∼p(data),i∼U(n),zi∼p(z) [min(0,−1−D(GF (I, zi, i)))]

The multiplicative constant λz controls the contribution of the information conservation constraint.
The model is trained using the standard GAN training schema [10, 33, 21]. For the exact learning
algorithm, please refer to Algorithm 1 in Chen et al. [3].

3.3 Implementation Details

The GAN setup consists of four main components: the segmentation network F , the loss conservation
network δk, the generator Gk and the discriminator D. Gk, D and δk are all based on SAGAN [34],
whereas F is a fully convolutional network based on [35] enriched with a Pyramid Pooling Module
(PPM) [33]. The pixels resulting from F should encode local, regional and global information present
in the image, which the PPM effectuates by means of several pooling layers. Conditional batch
normalization is used in Gk, since it has been shown that it improves stochasticity and stimulates
the encoding of style elements such as texture and colors [6, 24, 30]. With exception of F , all
networks employ spectral normalization [21] for regularizing their weights, and Gk and D contain

3



self-attention modules [34] to capture cues from both local and non-local feature locations in the
images. Furthermore, all weights are initialized orthogonally [27] and ADAM [18] is used for weight
optimization. Please refer to the supplementary material in the original publication [3] for the exact
architectural details of the networks and the optimal hyper-parameters.

3.4 Inaccuracies of the Original Publication

In the process of reimplementing the ReDO model from scratch to reproduce the results presented by
Chen et al. [3], several descriptive inaccuracies were detected in the preprint. Communication with
Chen et al. has confirmed the correctness of the inaccuracies here described.

Regarding the network architectures, Chen et al. [3] provide incorrect information about the number
of feature channels in the residual blocks of D and δ. In Table 4, the number of feature channels for
the four computational blocks following the Self-Attention Module have to be doubled.

In addition, the training procedure as reported in Chen et al. [3] contains some inaccuracies. In
Algorithm 1, Chen et al. [3] present a faulty procedure for updating the networks. Algorithm 1 dictates
that per generator update step a single region be sampled from a uniform distribution and a single Gk

and δk be updated accordingly. This would alter the training dynamics, since D would be updated
more frequently than the various Gk. Therefore, all regions should be updated simultaneously
instead, by iterating through all k regions per generator update step and updating each corresponding
Gk and δk. When updating single Gk and δk, the results of Chen et al. [3] cannot be reproduced.
This is most likely due to this configuration requiring a different set of hyper-parameters to achieve
optimal performance. Similarly, Algorithm 1 (line 6) specifies the information conservation loss to
be ‖δi(Igen)− zi‖2. To be able to reproduce the results in Chen et al. [3], however, these losses must
be squared. Furthermore, Chen et al. [3] implement the squared euclidean norm in this loss function
as the mean of element-wise squares. Consequently, if defining the information conservation loss
to be ‖δi(Igen) − zi‖22 the recommended setting of λz = 5 is incorrect and has to be changed to
λz =

5
k·size(z) .
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Figure 1: (left) Accuracy on the validation set for the Flowers data set across two training runs.
(right) Intersection over union on the validation set for the Flowers data set. Both plots are across
19.5k update steps.

4 Experiments and Results

4.1 Experimental Setup

Chen et al. [3] train their ReDO model for the three aforementioned data sets, and report the training
and testing accuracy as well as the intersection over union (IoU) between the generated masks and
the ground truth masks. Besides providing examples of generated masks, Chen et al. [3] provide
examples of redrawn images, though they do not report after how many update steps these images
were generated. The present work reports on the same metrics and also demonstrates randomly
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Figure 2: Randomly selected samples. From left to right: (1) a sampled image, (2) the true mask,
(3) the predicted mask, (4-6) redrawn foregrounds for different noise vectors with the background
superimposed, and (7-9) are like (4-6) but with the background redrawn instead. The noise vectors
are preserved for columns across rows. Notice how the color and texture remains the same across the
rows.

selected generated masks and redrawn images. Like Chen et al. [3], all experiments are carried out
using an NVidia Tesla P100 GPU. Notwithstanding, using the TensorFlow 2.0 implementation,
the specified batch size of 25 had to be reduced to 18 for the Flowers and CUB data sets, and to 12
for the LFW data set. Aside from this exception, all hyper-parameters specified by Chen et al. [3] are
adhered to. Including development trials, training results in roughly 10,000 SEK of computing costs
on Google Cloud Platform.

Table 1: Original and reproduced accuracy and IoU on the test set of the Flowers data set, obtained
after 19.5k update steps. Note: as of yet, the results for LFW and CUB have not been reproduced, hence,
they are not communicated in this report. Moreover, Chen et al. [3] report their results over five runs,
whereas the reproduced results are across two training instances.

Data set Accuracy IoU

Flowers (original) 0.879± 0.008 0.764± 0.012
Flowers (reproduced) 0.879± 0.003 0.736± 0.010

4.2 Reproduction Results

The accuracy and IoU for the Flowers data test set over two training instances is displayed in Table 1,
where the IoU is defined as the IoU over the foreground masks. Figure 1 shows the accuracy and IoU
on the validation set vs. the number of update steps and Figure 2 exemplifies generated masks, as
well as random redrawn foreground and background samples.

Several training sessions on the LFW data set either result in the segmentation network collapsing or
the network seemingly converging to accuracy and IoU scores well below two standard deviations of
the means communicated by Chen et al. [3] (see Figure 3; their accuracy and IoU are 0.917± 0.002
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and 0.781 ± 0.005, respectively). Figure 3 displays the accuracy and IoU plots vs. the training
steps for various training sessions. Training on the CUB data set five times results in collapses of the
segmentation network in all instances.
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Figure 3: (left) Accuracy on the validation set for the LFW data set across 4 training runs. (right)
Intersection over union on the validation set for the LFW data set. The plots are across various numbers
of update steps. This is because when the masks collapsed the training was stopped. The dashed
lines are the mean accuracy and IoU that Chen et al. [3] obtained on the test sets (0.917 and 0.781,
respectively).

5 Analysis and Discussion of Findings

The reproduced accuracy and IoU scores on the Flowers data set displayed in Table 1 are similar to
their original counterparts. This work therefore reproduces the results in Chen et al. [3] for this data
set. Although only the results across two successful training sessions are displayed in Table 1, it can
be concluded from preliminary results that the Flowers data set yields the most consistent and robust
results, as the segmentation network rarely collapses (roughly 30% or fewer of runs). Qualitatively,
the redrawings and masks look visually similar to those obtained in Chen et al. [3] with the exception
of the backgrounds which are usually dark and lack detail. Although, some generated backgrounds
do look more green and leafy. Training longer might produce better looking – that is to say, more
binary – masks, and more detailed redrawn backgrounds.

This report does not account for more than two successful training runs on the Flowers data set..
This is because attention is also devoted to training on the CUB and LFW data sets, which take longer
and are therefore more costly, and the resources for this project are limited.

The LFW data set is more complex and requires more update steps and a model with almost twice
as many trainable parameters. As a result, the largest batch size that could be fit on the GPU used
for the implementation described in this report was 12. The resources and time (training for 40k
update steps takes approximately 48 hours) allocated for this project were only sufficient for five
training sessions, none of which are close to the high performance communicated by Chen et al. [3].
The previously mentioned small batch size is the main suspect for the results not being reproducible,
however, this needs to be verified. Not necessarily related to the reproducibility on this data set, but a
curious observation nonetheless is that the network can still collapse after 20k iterations. Chen et al.
[3] report that such behaviour is usually only observed in the earlier stages of training.

There are various potential reasons that can explain the fact that the results of Chen et al. [3] on the
CUB data set could not be reproduced. First of all, communication with Chen et al. yield the finding
that this data set is far more sensitive to initial conditions and has higher variance in accuracy over
many training runs. Resources and time only permitted 5 full training sessions. All sessions collapsed,
which seems improbable regarding the results of Chen et al. [3]. Another reason could be that since
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the foreground objects of the actual images (i.e. the birds) are relatively tiny, the networks, or network
hyper-parameters, may require slight alterations. However, a small hyper-parameter search of distinct
values for λz , namely 3, 3.5, . . . , 7, did not yield any satisfactory results. Though further search may
yield better results. As is the case with the other two data sets, the batch size had to be reduced
significantly in the Tensorflow 2.0 implementation, to be able to store all the model parameters in
memory.

It is hard to pinpoint why the the results on the LFW and CUB data sets could not be reproduced, due to
a plethora of potential causes. Nevertheless, since the results obtained on the Flowers data set with
a smaller batch size as the one reported by Chen et al. [3] (i.e. 18 instead of 25) is reasonably close
to their results, there is no obvious suggestion that the present Tensorflow 2.0 implementation is
flawed. Future work could attempt to establish a Tensorflow 2.0 implementation that can use the
right batch sizes. Moreover, more extensive empirical testing could conclude whether the current
implementation is capable of matching the results communicated by Chen et al. [3].

6 Conclusion

In spite of difficulties encountered in reproducing ReDO, this report generally corroborates the
findings by Chen et al. [3], by means of both quantitative metrics and qualitative redrawings on
the Flowers data set. Presently, a conclusive statement as to whether the work of Chen et al. [3]
is reproducible is forestalled, since more extensive training and testing is required on the CUB and
LFW data sets. In addition to testing the reproducibility, this report points out several reporting
errors in Chen et al. [3], some of which have been attended to in the latest version of their paper.
The inaccuracies in the original reporting caused issue, as did vagueness in referenced works and
somewhat surprising lack of publicly available, correctly written reference implementations of popular
network components such as spectral normalization, conditional batch normalization and instance
normalization. Without accessibility to the ReDO code, and communication with Chen et al., the
feasibility of reproducing the results in Chen et al. [3] would be significantly more difficult given
limited resources.
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