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Abstract
Brain tissue segmentation from multimodal MRI is a key building block of many neuroscience anal-
ysis pipelines. It could also play an important role in many clinical imaging scenarios. Established
tissue segmentation approaches have however not been developed to cope with large anatomical
changes resulting from pathology. The effect of the presence of brain lesions, for example, on
their performance is thus currently uncontrolled and practically unpredictable. Contrastingly, with
the advent of deep neural networks (DNNs), segmentation of brain lesions has matured signifi-
cantly and is achieving performance levels making it of interest for clinical use. However, few
existing approaches allow for jointly segmenting normal tissue and brain lesions. Developing a
DNN for such joint task is currently hampered by the fact that annotated datasets typically address
only one specific task and rely on a task-specific hetero-modal imaging protocol. In this work, we
propose a novel approach to build a joint tissue and lesion segmentation model from task-specific
hetero-modal and partially annotated datasets. Starting from a variational formulation of the joint
problem, we show how the expected risk can be decomposed and optimised empirically. We exploit
an upper-bound of the risk to deal with missing imaging modalities. For each task, our approach
reaches comparable performance than task-specific and fully-supervised models.
Keywords: joint learning, lesion segmentation, tissue segmentation, hetero-modality, weakly-
supervision

1. Introduction

Traditional approaches for tissue segmentation used in brain segmentation software packages such
as FSL (Jenkinson et al., 2012), SPM (Ashburner and Friston, 2000) or NiftySeg (Cardoso et al.,
2015) are based on subject-specific optimisation. FSL and SPM fit a Gaussian Mixture Model to
the MR intensities using either a Markov Random Field (MRF) or tissue prior probability maps
as regularisation. Alternatively, multi-atlas methods rely on label propagation and fusion from
multiple fully-annotated images, i.e. atlases, to the target image (Iglesias and Sabuncu, 2015). These
methods typically require extensive pre-processing, e.g. skull stripping, correction of bias field or
registration. They are also often time-consuming, and are inherently only adapted for brains devoid
of large anatomical changes induced by pathology. Indeed, it has been showed that the presence
of lesions distorts the registration output (Sdika and Pelletier, 2009). Similarly, lesions introduce a
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bias in the MRF. This leads to a performance degradation in presence of lesions for brain volumes
measurement (Battaglini et al., 2012) and any subsequent analysis.

While quantitative analysis is expected to play a key role in improving the diagnosis and follow-
up evaluations of patients with brain lesions, current tools mostly focus on the lesions themselves.
Existing quantitative neuroimaging approaches allow the extraction of imaging biomarkers such as
the largest diameter, volume, and count of the lesions. Thus, automatic segmentation of the lesions
promises to speed up and improve the clinical decision-making process but more refined analysis
would be feasible from tissue classification and region parcellation. As such, although very few
works have addressed this problem yet, a joint model for lesion and tissue segmentation is expected
to bring significant clinical impact.

Deep Neural Networks (DNNs) became the state-of-the-art for most of the segmentation tasks
and one would now expect to train a joint lesion and tissue segmentation algorithm. Yet, DNNs
require a large amount of annotated data to be successful. Existing annotated databases are usually
task-specific, i.e. providing either scans with brain tissue annotations for patients/controls devoid
of large pathology-induced anatomical changes, or lesion scans with only lesion annotations. For
this reason, the imaging protocol used for the acquisition also typically differs from one dataset to
another. Indeed, tissue segmentation is usually performed on T1 scans, unlike lesion segmentation
which normally also encompasses Flair (Barkhof and Scheltens, 2002). Similarly, the resolution
and contrast among databases may also vary. Given the large amount of resources, time and ex-
pertise required to annotate medical images, given the varying imaging requirement to support each
individual task and given the availability of task-specific databases, it is unlikely that large databases
for every joint problem, such as lesion and tissue segmentation, will become available for research
purposes. There is thus a need to exploit task-specific databases to address joint problems. Learning
a joint model from task-specific hetero-modal datasets is nonetheless challenging. This problems
lies at the intersection of Multi-Task Learning, Domain Adaptation and Weakly Supervised Learn-
ing with idiosyncrasies making individual methods from these underpinning fields insufficient to
address it completely.

Multi-Task Learning (MTL) aims to perform several tasks simultaneously by extracting some
form of common knowledge or representation and introducing a task-specific back-end. When rely-
ing on DNN for MTL, usually the first layers of the network are shared, while the top layers are task-
specific. The global loss function is often a sum of task-specific loss functions with manually tuned
weights. Recently, Kendall and Gal (2017) proposed a Bayesian parameter-free method to estimate
the MTL loss weights and Bragman et al. (2018) extended it to spatially adaptive task weighting
and applied it to medical imaging. In addition to arguably subtle differences between MTL and joint
learning discussed in more depth later, MTL approaches do not provide any mechanism for dealing
with hetero-modal datasets and changes in imaging characteristics across task-specific databases.

Domain Adaptation (DA) is a solution for dealing with heterogeneous datasets. The main idea
is to create a common feature space for the two sets of scans. Csurka (2017) proposed an extensive
comparison of these methods in deep learning. Learning from hetero-modal datasets could be con-
sider as a particular case of DA. Havaei et al. (2016) proposed a network architecture for dealing
with missing modalities. However, DA methods focus on solving a single task and rely on either
fully-supervised approaches or unsupervised adaptation as done by Kamnitsas et al. (2017).

Weakly-supervised Learning (WSL) deals with missing, inaccurate, or inexact annotations. Our
problem is a particular case of learning with missing labels since each dataset provide a set of labels
and the two sets are disjoint. Li and Hoiem (2017) proposed a method to learn a new task from a
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model trained on another task. This method combines DA through transfer learning and MTL. At
the end, two models are created: one for the first task and one for the second one. Kim et al. (2018)
extent this approach by using a knowledge distillation loss in order to create a unique joint model.
This aims to alternatively learn one task without forgetting the other one. The WSL problem was
thus decomposed into a MTL problem with similar limitations for our specific use case.

The contributions of this work are four-fold. First we propose a joint model that performs tissue
and lesion segmentation as a unique joint task and thus exploits the interdependence between le-
sion and tissue segmentation tasks. Starting from a variational formulation of the joint problem, we
exploit the disjointness of the label sets to propose a practical decomposition of the joint loss. Sec-
ondly, we introduce feature channel averaging across modalities to adapt existing networks for our
hetero-modal problem. Thirdly, we develop a new method to minimise the expected risk under the
constraint of missing modalities. Relying on reasonable assumptions, we show that the expected
risk can be further decomposed and minimised via a tractable upper bound. To our knowledge,
no such optimisation method for missing modalities in deep learning has been published before.
Finally, we evaluate our framework for white matter lesions and tissue segmentation. We demon-
strate that our joint approach can achieve, for each individual task, similar performance compared
to a task-specific baseline. Albeit relying on different annotation protocols, results using a small
fully-annotated joint dataset demonstrate efficient generalisability.

2. Tissue and lesion segmentation as a single task

In order to develop a joint model, we propose a mathematical variational formulation of the problem
and a method to optimise it empirically.

2.1. Formal problem statement

Let x = (x1, ..,xM) ∈X = RN×M be a vectorized multimodal image and y ∈ Y = {0, ..,C}N its
associated segmentation map. N, M and C are respectively the number of voxels, modalities and
classes. Our goal is to determine a predictive function hθ : X 7→Y that minimises the discrepancy
between the ground truth label vector y and the prediction hθ (x). Let L be a loss function that
computes this discrepancy. Following the formalism used by Bottou et al. (2018), given a probability
distribution D over (X ,Y ) and random variables (X ,Y ) under this distribution, we want to find θ ∗

such that:
θ
∗ = argminθE(X ,Y )∼D [L (hθ (X),Y )] (1)

Let Ct , Cl and 0 be respectively the tissue classes, the lesion classes and the background class.
Since Ct and Cl are disjoint, the segmentation map y can be decomposed into two segmentation
maps yi = yl

i + yt
i with yt

i ∈ Ct ∪{0}, yl
i ∈ Cl ∪{0}, as shown in Figure 1.

Let’s assume that the loss function L can also be decomposed into a tissue loss function L t and
a lesion loss function L l . This is common for multi-class segmentation loss functions in particular
for those with one-versus-all strategies (e.g. Dice loss, Jaccard loss):

L (hθ (X),Y ) = L t(hθ (X),Y t)+L l(hθ (X),Y l) (H1)

Then, Equation (1) can be rewritten as:

θ
∗ = argminθ E(X ,Y )∼D [L

t(hθ (X),Y t)]︸ ︷︷ ︸
Rt(θ)

+E(X ,Y )∼D [L
l(hθ (X),Y l)]︸ ︷︷ ︸

Rl(θ)

(2)
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Figure 1: Decomposition of the label map into the sum of two segmentation maps.

2.2. On the distribution D in the context of heterogeneous databases

As we expect different distributions across heterogeneous databases, two probability distributions of
(X ,Y ) over (X ,Y ) can be distinguished: 1/ under Dcontrol , (X ,Y ) corresponds to a multimodal scan
and segmentation map of a patient without lesions. Note that although we use the term control for
convenience, we expect to observe pathology with “diffuse” anatomical impact, e.g. from dementia.
2/ under Dlesion, (X ,Y ) corresponds to a multimodal scan and segmentation map of a patient with
lesions.

Since traditional methods are not adapted in the presence of lesions, the most important and
challenging distribution D to address is the one for patients with lesions, Dlesion. In the remainder
of this work we thus assume that:

D , Dlesion. (H2)

2.3. Hetero-modal network architecture

In order to learn from hetero-modal datasets, we need a network architecture that allows for missing
modalities. We proposed an architecture inspired by HeMIS (Havaei et al., 2016) and HighResNet
(Li et al., 2017) shown in Figure 2. Features of each modality are first extracted separately and are
then averaged. The spatial resolution of the input and the output are the same. Dilated convolutions
and residual connections are used to capture information at multiple scales and avoid the problem
of vanishing gradients. This network with weights θ is used to capture the predictive function hθ .

2.4. Upper-bound for the tissue expected risk Rt

Although thanks to its hetero-modal architecture, hθ may now handle inputs with varying number
of modalities, the current decomposition of (1) assumes that all the modalities of X are available for
evaluating the loss. In our scenario, we have only access to T1 control scans with tissue annotations
or T1 and Flair scans with only lesion annotations. Consequently, as we do not have any T1 and
Flair images with tissue annotations, and as evaluating a loss with missing modalities would lead to
a bias, estimating Rt is not straightforward.

In this section we propose an upper-bound of Rt using T1 control images with tissue annotations
and outputs from the network. Let’s assume that the loss function L t satisfies the triangle inequality
(e.g. Jaccard loss):

∀(a,b,c) ∈ Y 3 : L t(a,c)≤L t(a,b)+L t(b,c) (H3)
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Figure 2: The proposed network architecture: a mix between HighResNet and HeMIS. To avoid
cluttering, only one of the three convolution blocks is shown in the residual blocks.

Let p denote the projection of x (will all the modalities) to the T1 modality, p : x=(xT1,xFlair) 7→ xT1.
Under (H3), L t satisfies the following inequality:

L t(hθ (X),Y t)≤L t(hθ (X),hθ (p(X)))+L t(hθ (p(X)),Y t) (3)

In combination with (H2), this leads to:

Rt(θ)≤ E(X ,Y )∼Dlesion
[L t(hθ (X),hθ (p(X)))]+E(X ,Y )∼Dlesion

[L t(hθ (p(X)),Y t)] (4)

The decomposition in (4) requires comparison of inference done from T1 inputs, i.e. hθ (p(X))
with ground truth tissue maps Y t . While this provides a step towards a practical evaluation of Rt ,
we still face the challenge of not having tissue annotations Y t under Dlesion. Let us further assume
that the restriction of the distributions Dlesion and Dcontrol to the parts of the brain not affected by
lesions are the same, i.e.:

∀i ∈ {1 . . .N}PDlesion(xi,yi|yi ∈ Ctissue) = PDcontrol (xi,yi|yi ∈ Ctissue) (H4)

By combining (H3) and (H4), an upper bound of Rt can be provided as:

Rt(θ)≤ E(X ,Y )∼Dlesion
[L t(hθ (X),hθ (p(X)))]︸ ︷︷ ︸

Rt
1(θ)

+E(X ,Y )∼Dcontrol
[L t(hθ (p(X)),Y t)]︸ ︷︷ ︸
Rt

2(θ)

(5)

As observed in (5), the upper-bound is the sum of the expected loss between the T1 scan outputs
and the labels and the expected loss between the outputs using either one or two modalities as input.
We emphasise that, to the best of our knowledge, this second loss term does not appear in existing
heteromodal approaches such as HeMIS (Havaei et al., 2016).

2.5. Empirical estimation of the decomposed loss
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Figure 3: Procedure for estimating the expected
risks R l , Rt

1 and Rt
2.

As is the norm in data-driven learning, we do
not have access to the true joint probabilities
Dcontrol or Dlesion. The common method is to
estimate the expected risk using training sam-
ples. In our case, we have two hetero-modal
training samples Scontrol and Slesion with re-
spectively tissue and lesion annotations. We
can estimate the expected risks R l(θ), Rt

1(θ),
Rt

2(θ) by respectively using lesion segmenta-
tion outputs of lesion T1+Flair scans, tissue
segmentation outputs from T1 and T1+Flair
scans and tissue segmentation outputs of con-
trol T1 scans. Figure 3 illustrates the complete
training procedure.

3. Experiments

While focusing on the white matter lesion and
tissue segmentation problem, our goal in the following experiments is to predict six tissue classes
(white matter, gray matter, basal ganglia, ventricles, cerebellum, brainstem), the white matter lesions
and the background.

3.1. Data

To demonstrate the feasibility of our joint learning approach, we used three sets of data.

Lesion data Slesion: The White Matter Hyperintensities (WMH) database consists of 60 sets of
brain MR images (T1 and Flair, M = 2) with manual annotations of WMH (http://wmh.isi.
uu.nl/). The data comes from three different institutes.

Tissue data Scontrol: Neuromorphometrics provided 32 T1 scans (M
′
= 1) for MICCAI 2012 with

manual annotations of 155 structures of the brain from which we deduct the six tissue classes. In
order to have balance training datasets for the two types of segmentation, and similar to Li et al.
(2017), we added 28 T1 control scans from the ADNI2 dataset with bronze standard parcellation
of the brain structures computed with the accurate but time-consuming algorithm of Cardoso et al.
(2015).

Fully annotated data: MRBrainS18 (http://mrbrains18.isi.uu.nl/) is composed of
30 sets of brain MR images with tissue and lesions manual annotations. Only 7 MR images are
publicly available. We used this data only for evaluation and not for training. To be consistent with
the lesion data, the cerebrospinal fluid is considered as background.

To satisfy the assumption (H4), we resampled the data to 1×1×3 mm3, used a histogram-based
scale (Milletari et al., 2016) and a zero-mean unit-variance normalization.
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(1) (2) (3) (4)
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Figure 4: Segmentation results using our method and task-specific models. (1) axial slice from test
image volumes from (a) WMH and (b) Neuromorphometrics, (2) manual annotations,
(3) outputs from the joint learning model, (4) outputs from the tissue segmentation (N)
model, (5) outputs from the lesion segmentation (W) model

3.2. Choice of the loss

We used the probabilistic version of the Jaccard loss for L :

L (hθ (x),y) = 1−∑
c∈C

ωc
∑

N
j=1 g j,c p j,c

∑
N
j=1 g2

j,c + p2
j,c−g j,c p j,c

such as ∑
c∈C

ωc = 1 (6)

(H1) is satisfied because of the one-versus-all strategy, i.e. sum over the classes of a class-specific
loss. In order to give the same weight to the lesion segmentation and the tissue segmentation, we
choose for any tissue class c, wc =

1
16 and for the lesion class l, wl =

1
2 . While the triangle inequality

holds for the Jaccard distance (Kosub, 2018), the proof that its probabilistic version also satisfies it,
i.e. (H3), is left for future work.

3.3. Implementation details

We implemented our network in NiftyNet, a Tensorflow-based open-source platform for deep learn-
ing in medical imaging (Gibson et al., 2018). Convolutional layers are initialised such as He et al.
(2015). The scaling and shifting parameters in the batch normalisation layers were initialised to 1
and 0 respectively. As suggested by (Ulyanov et al., 2016), we used instance normalization for in-
ference. We used the Adam optimisation method (Kingma and Ba, 2014). The learning rate lR, β1,
β2 were respectively set up to 0.005, 0.9 and 0.999. At each training iteration, we feed the network
with one image from the tissue dataset and one from the lesion dataset. 120×120×40 sub-volumes
were randomly sampled from the training data using an uniform sampling for the tissue data and
a weighted sampling based on dilated lesions maps for the lesion data. The models were trained
until we observed a plateau in performance on the validation set. We experimentally found that the
inter-modality loss has to be skipped for the first (5000) iterations. We randomly spitted the data
into 70% for training, 10% for validation and 20% for testing for each of the 4 folds.
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3.4. Results for the joint learning model

Joint learning versus single task learning First, we compare individual models to the joint model
using our approach. The lesion segmentation (W) model was trained on WMH dataset with the
lesion annotations, the tissue segmentation (N) on Neuromorphometrics dataset with the tissue an-
notations, and our method (W+N) on WMH and Neuromorphometric datasets with their respective
set of annotations. The similarity between the prediction and the ground truth is computed using
the Dice Similarity Coefficient (DSC) for each class. Table 1 and Figure 4 show the results of these
models on test images. The joint model and single task models achieve comparable performance.
This suggest that learning from hetero-modal datasets via our method does not degrade the task-
specific performance. Moreover, we observe in Figure 4 that the tissue knowledge learnt from T1
scans has been well generalised to multi-modal scans.

Table 1: Comparison between the lesion segmentation model W, the tissue segmentation model N,
the fully-supervised model (M), a traditional approach (SPM) and our joint model (W+N).
Dice Similarity Coefficients (%) has been computed.

Neuromorphometrics WMH MRBrainS18
N M W+N W M W+N SPM M W+N

Gray matter 88.5 42.0 89.4 76.5 83.3 79.4
White matter 92.4 56.7 92.8 75.7 85.9 85.4

Brainstem 93.4 20.0 93.1 76.5 92.3 72.3
Basal ganglia 86.7 41.2 87.2 74.7 79.1 75.3

Ventricles 90.7 24.5 91.6 80.9 91.0 91.7
Cerebellum 92.5 43.7 94.9 89.4 91.8 90.8

White matter lesion 61.9 50.6 59.9 40.8 53.5 53.7

Joint model versus fully-supervised model In this section, we compare our method (W+N) to
the fully-supervised (M) model trained on MRBrainS18 using both tissue and lesion annotations.
We evaluated the performance on the three datasets. On the one hand, we submitted our models
to the online challenge MRBrainS18. One of the major benefits of evaluating our method on a
challenge is to directly benchmark our method with existing methods, in particular with traditional
methods such as SPM (Ashburner and Friston, 2000). On the other hand, we compared the perfor-
mance on the tissue and lesion datasets using either all the scans (M) or the testing split (W+N). The
DSC was computed for each class and Table 1 show the results. First our model outperforms SPM
on 6 of the 7 classes. Secondly, the two models achieve very similar performance on lesion seg-
mentation. Concerning the tissue segmentation, as expected, each of the network outperforms on its
training datasets. However, the fully supervised model doesn’t generalise to Neuromorphometrics
dataset. In contrast, the differences are smaller for the tissue segmentation classes on MRBrainS18.
Especially, Figure 5 shows differences in the annotation protocol between MRBrainS18 and Neu-
romorphometrics for the white matter, brainstem and cerebellum and how it affects the predictions.
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(1) (2) (3) (4)

(b)
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Figure 5: Annotation protocol comparison between scans from (a) Neuromorphometrics and (b)
MRBrainS18. (1) sagital slice from test images volumes, (2) manual annotations, (3)
outputs from our method (W+N), (4) outputs from fully-supervised model (N). Arrows
show the protocol differences.

4. Conclusion

We propose a joint model learned from hetero-modal datasets with disjoint heterogeneous annota-
tions. Our approach is mathematically grounded, conceptually simple, new and relies on reasonable
assumptions. We validated our approach by comparing our joint model with single-task learning
models. We show that similar performance can be achieved for the tissue segmentation and lesion
segmentation in comparison to task-specific baselines. Moreover, our model achieves comparable
performance to a model trained on a small fully-annotated joint dataset. Our work shows that the
knowledge learnt from one modality is preserved when more modalities are used as input. In the
future, we will evaluate our approach on datasets with annotations protocols showing less variabil-
ity. Furthermore, exploitation of recent techniques for domain adaptation could help us bridge the
gap and improve the performance by helping to better satisfy some of our assumptions. Finally, we
plan to integrate uncertainty measures in our framework as a future work. As one of the first work
to methodologically address the problem of joint learning from hetero-modal datasets, we believe
that our approach will help DNN make further impact in clinical scenarios.
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Dean C. Barratt, Sébastien Ourselin, M. Jorge Cardoso, and Tom Vercauteren. NiftyNet: a deep-
learning platform for medical imaging. Computer Methods and Programs in Biomedicine, 158:
113–122, 2018.

Mohammad Havaei, Nicolas Guizard, Nicolas Chapados, and Yoshua Bengio. HeMIS: Hetero-
modal image segmentation. In Proceedings of the 19th International Conference on Medical
Image Computing and Computer Assisted Intervention (MICCAI’16), pages 469–477, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the 25th International
Conference on Computer Vision (ICCV’15), pages 1026–1034, December 2015.

Juan Eugenio Iglesias and Mert R Sabuncu. Multi-atlas segmentation of biomedical images: a
survey. Medical Image Analysis, 24(1):205–219, August 2015.

Mark Jenkinson, Christian F. Beckmann, Timothy E.J. Behrens, Mark W. Woolrich, and Stephen M.
Smith. FSL. Neuroimage, 62(2):782–790, 2012.

Konstantinos Kamnitsas, Christian Baumgartner, Christian Ledig, Virginia Newcombe, Joanna
Simpson, Andrew Kane, David Menon, Aditya Nori, Antonio Criminisi, Daniel Rueckert, et al.
Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In Pro-
ceedings of the 20th International Conference on Medical Image Computing and Computer As-
sisted Intervention (MICCAI’17), pages 597–609, 2017.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision? In Proceedings of Advances in Neural Information Processing Systems 30 (NIPS 2017),
pages 5574–5584, 2017.

173



JOINT LESION AND TISSUE SEGMENTATION FROM TASK-SPECIFIC HETERO-MODAL DATASETS

Dong-Jin Kim, Jinsoo Choi, Tae-Hyun Oh, Youngjin Yoon, and In So Kweon. Disjoint multi-task
learning between heterogeneous human-centric tasks. In Proceedings of the 2018 IEEE Winter
Conference on Applications of Computer Vision (WACV) (2018), pages 1699–1708, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.
arXiv:1412.6980.

Sven Kosub. A note on the triangle inequality for the Jaccard distance. Pattern Recognition Letters,
December 2018.

Wenqi Li, Guotai Wang, Lucas Fidon, Sebastien Ourselin, M. Jorge Cardoso, and Tom Vercauteren.
On the compactness, efficiency, and representation of 3D convolutional networks: Brain parcel-
lation as a pretext task. In Proceedings of Information Processing in Medical Imaging (IPMI’17),
pages 348–360, 2017.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 40(12):2935–2947, November 2017.

Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-Net: Fully convolutional neural
networks for volumetric medical image segmentation. In Proceedings of the 2016 Fourth Inter-
national Conference on 3D Vision (3DV), pages 565–571, 2016.
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