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ABSTRACT

Adversarial examples are a pervasive phenomenon of machine learning models
where seemingly imperceptible perturbations to the input lead to misclassifica-
tions for otherwise statistically accurate models. Adversarial training, one of the
most successful empirical defenses to adversarial examples, refers to training on
adversarial examples generated within a geometric constraint set. The most com-
monly used geometric constraint is an Lp-ball of radius ε in some norm. We
introduce adversarial training with Voronoi constraints, which replaces the Lp-
ball constraint with the Voronoi cell for each point in the training set. We show
that adversarial training with Voronoi constraints produces robust models which
significantly improve over the state-of-the-art on MNIST and are competitive on
CIFAR-10.

1 INTRODUCTION

Deep learning at scale has led to breakthroughs on important problems in computer vi-
sion (Krizhevsky et al. (2012)), natural language processing (Wu et al. (2016)), and robotics (Levine
et al. (2015)). Shortly thereafter, the interesting phenomena of adversarial examples was observed.
A seemingly ubiquitous property of machine learning models where perturbations of the input
that are imperceptible to humans reliably lead to confident incorrect classifications (Szegedy et al.
(2013); Goodfellow et al. (2014)). What has ensued is a standard story from the security literature: a
game of cat and mouse where defenses are proposed only to be quickly defeated by stronger attacks
(Athalye et al. (2018)). This has led researchers to develop methods which are provably robust under
specific attack models (Wong and Kolter (2018); Sinha et al. (2018); Raghunathan et al. (2018); Mir-
man et al. (2018)) as well as empirically strong heuristics (Madry et al. (2018); Zhang et al. (2019)).
As machine learning proliferates into society, including security-critical settings like health care Es-
teva et al. (2017) or autonomous vehicles Codevilla et al. (2018), it is crucial to develop methods that
allow us to understand the vulnerability of our models and design appropriate counter-measures.

Adversarial training has been one of the few heuristic methods which has not been defeated by
stronger attacks. In this paper, we propose a modification to the standard paradigm of adversarial
training. We replace the Lp-ball constraint with the Voronoi cells of the training data, which have
several advantages detailed in Section 3. In particular, we need not set the maximum perturbation
size ε as part of the training procedure. The Voronoi cells adapt to the maximum allowable pertur-
bation size locally on the data distribution. We show how to construct adversarial examples within
the Voronoi cells and how to incorporate Voronoi constraints into standard adversarial training. In
Section 5 we show that adversarial training with Voronoi constraints gives state-of-the-art robustness
results on MNIST and competitive results on CIFAR-10.

2 RELATED WORK

Adversarial training, the process of training on adversarial examples generated in Lp-balls around
the training data, is a very natural approach to constructing robust models and was originally pro-
posed by Goodfellow et al. (2014). Madry et al. (2018) formalized the adversarial training objective
and highlighted the importance of a strong adversary for constructing adversarial examples in the
inner training loop. Their approach to adversarial training, which utilized a projected gradient de-
scent adversary, produced some of the first empirically robust models which were not later broken
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by stronger attacks. There’s was the only approach surveyed by Athalye et al. (2018) which was not
either fully circumvented by Athalye et al. (2018) or in a later paper (Jalal et al. (2019)). More re-
cently, the celebrated algorithm TRADES (Zhang et al. (2019)) has been proposed, which attempts
to provide a principled way to trade off between robustness and natural accuracy. The analysis that
inspires TRADES decomposes the robust error into two terms: natural error and error near the de-
cision boundary. The yields an objective function with two terms, one which encourages accuracy
and another which pushes the decision boundary away from the data distribution. Constructing a
decision boundary that is far from the data distribution is explored in other heuristic works such as
Ding et al. (2018); Jakubovitz and Giryes (2018); Hoffman et al. (2019). Our approach falls into this
class of defenses and so we will compare exclusively against such defenses.

The frequency with which heuristic defenses have been defeated by stronger attacks has led to a line
of work on certifiable robustness, which can guarantee that there exists no perturbation within an Lp-
ball of radius εwhich causes the classifier to change its classification. One of the first works by Wong
and Kolter (2018) proposed to approximate the set of possible activations of every L∞-bounded
perturbation by propagating upper and lower bounds for each activation through the network. These
upper and lower bounds are used to construct a convex outer approximation to the set of possible
activations in the final layer, and a linear program is used to certify that this convex approximation
does not intersect the decision boundary. This initial work had several notable drawbacks, and
several subsequent works have attempted to improve upon these initial results (Weng et al. (2018);
Mirman et al. (2018); Gehr et al. (2018); Wong et al. (2018); Singh et al. (2019)). However the
fundamental problems have remained: (1) these approaches do not scale to larger networks despite
considerable effort, (2) they often depend crucially on the specific details of the architecture, and
(3) the size of ε which can be certified is often considerably smaller than what we observe to be
empirically robust. A different approach to certified robustness which addresses some of these
concerns, called randomized smoothing (Lecuyer et al. (2018); Cohen et al. (2019)), has recently
been proposed. Randomized smoothing leverages the ability of any classifier f to perform well
on Gaussian noise to construct a new classifier g which is certifiably robust under adversarial L2

perturbations. Unlike prior approaches to certified robustness, randomized smoothing is a simple
approach which does not depend on the architecture details of the classifier. Its main drawback is
that it is currently, and possibly fundamentally, limited to L2. We also note that more recent work
has combined randomized smoothing with adversarial training to produce even more certifiably
robustness classifiers in L2 (Salman et al. (2019)). Since the goal and limitations of these method are
often different from heuristic approaches we do not compare our method against these approaches.

Finally there has been a long line of work on the theory of adversarial examples. Schmidt et al.
(2018) explore the sample complexity required to produce robust models. They demonstrate a sim-
ple setting, a mixture of two Gaussians, in which a linear classifier with near perfect natural accuracy
can be learned from a single sample, but any algorithm that produces any binary classifier requires
Ω(
√
d) samples to produce a robust classifier. Followup work by Bubeck et al. (2019) suggests

that adversarial examples may arise from computational constraints. They exhibit pairs of distribu-
tions that differ only in a k-dimensional subspace, and are otherwise standard Gaussians, and show
that while it is information-theoretically possible to distinguish these distributions, it requires ex-
ponentially many queries in the statistical query model of computation. We note that both of these
constructions produce distributions whose support is the entirety of Rd.

Additionally there is a line work that attempts to explain the pervasiveness of adversarial examples
through the lens of high-dimensional geometry. The work of Gilmer et al. (2018) experimentally
evaluated the setting of two concentric under-sampled 499-spheres embedded in R500, and con-
cluded that adversarial examples occur on the data manifold. Shafahi et al. (2019) suggest that
adversarial examples may be an unavoidable consequence of the high-dimensional geometry of
data. Their result depends upon the use of an isopermetric inequality. The main drawback of these
works, as well as the constructions in the previous paragraph, is that they assume that the support
of the data distribution has full or nearly full dimension. We do not believe this to be the case in
practice, instead we believe that the data distribution is often supported on a very low-dimensional
subset of Rd. This case is addressed in Khoury and Hadfield-Menell (2018), where they consider the
problem of adversarial robustness in the case where data is drawn from a low-dimensional manifold
embedded in Rd. They highlight the role of co-dimension, the difference between the dimension of
the embedding space and the dimension of the data manifold, as a key source of the pervasiveness
of adversarial vulnerability. Said differently, it is the low-dimensional structure of features embed-
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ded in high-dimensional space that contributes, at least in part, to adversarial examples. This idea
is also explored in Nar et al. (2019), but with emphasis on the cross-entropy loss. We build on
the work of Khoury and Hadfield-Menell (2018), specifically their results on adversarial training in
high-codimensions, which make clear several drawbacks of the Lp-ball formulation. In Section 5.1
we show that our approach improves robustness in high-codimension settings.

3 ADVERSARIAL EXAMPLES FROM VORONOI CELLS

Goodfellow et al. (2014) originally proposed adversarial training where adversarial examples were
constructed inside of an Lp-ball of radius ε. The use of the Lp-ball was meant to represent a simple
notion of similarity between two images, delaying the complicated question of what is an adversarial
image in favor of a tractable research problem. However it was never meant to be the final say on the
threat model of the adversary and recent work has begun to explore alternative adversaries (Kang
et al. (2019); Hendrycks et al. (2019)).

Khoury and Hadfield-Menell (2018) describe a number of issues associated with the use of Lp-balls.
Their results are formalized in the manifold setting, where samples from each class are sampled
from one of C class manifolds M1, . . . ,MC , and the data manifold M = ∪1≤j≤CMj is a k-
dimensional manifold embedded in Rd. When p = 2, they show that theL2-balls centered on a dense
sample ofM covers a negligible fraction of the neighborhood aroundM. Thus, when constructing
adversarial examples in the inner training loop, the adversary is restricted to constructing adversarial
examples in a negligible fraction of the neighborhood around the data manifold. This vulnerability
increases with the codimension d − k of M. Furthermore they show that, for any p, a nearest
neighbor classifier more effectively covers the neighborhood around M than a robust empirical
risk minimization oracle, which outputs a classifier that is guaranteed to be correct in the Lp-balls
centered on the data.

Figure 1: The Voronoi diagram for a dense sample drawn from a low-dimensional distribution with
two classes, one in red and one in black. The Voronoi cells, shown in green, vary in size depending
on how close a sample is to samples in the other class. The Voronoi edges that are adjacent to
two samples from two different classes are shown in solid green, and approach a decision boundary
which is as far from the data distribution as possible.

To remedy these shortcomings, we replace the Lp-ball constraint with a different geometric con-
straint, namely the Voronoi cell at each sample x, defined as

Vorp x = {x′ ∈ Rd : ‖x− x′‖p ≤ ‖z − x′‖p ∀z ∈ X\{x}}. (1)

In words, the Voronoi cell Vorp x of x is the set of all points in Rd that are closer to x than to any
other sample in X . The Voronoi diagram is defined as the collection of Voronoi cells, and their
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lower dimensional faces, for each sample in X . Figure 1 shows the Voronoi diagram for a dense
sample from a dataset with two classes of data.

The Voronoi cell constraint has many advantages over the Lp-ball constraint. First the Voronoi cells
partition the entirety of Rd and so the interiors of Voronoi cells generated by samples from different
classes do not intersect. This is in contrast to Lp-balls which may intersect for sufficiently large
ε. In particular the Voronoi cells partition the neighborhood aroundM and, for dense samples, are
elongated in the directions normal to the data manifold (Dey (2007)). Thus the Voronoi cells are
well suited for high codimension settings. Second, the size of the Voronoi cells adapts to the data
distribution. A Voronoi cell generated by a sample which is close to samples from a different class
manifold is smaller, while those further away are larger. See Figure 1. Thus we do not need to set
a value for ε in the optimization procedure. The constraint naturally adapts to the largest value of ε
possible locally on the data manifold. Note that the maximum perturbation size possible will often
vary as we move along the data manifold, and cannot be captured by a single number which, by
necessity, is upper bounded by the smallest distance to a different class. In summary, the Voronoi
constraint gives the adversary the freedom to explore the entirety of the neighborhood aroundM.

At each iteration of standard adversarial training, we must solve the inner optimization problem
maxδ∈B(0,ε) L(x + δ, y; θ) to generate an adversarial example. Goodfellow et al. (2014) solve this
problem using the fast gradient sign method (FGSM), while Madry et al. (2018) use projected gradi-
ent descent. To incorporate Voronoi constraints, at each iteration of the outer training loop we must
solve the inner optimization problem

maximize
x̂

L(x̂, y; θ)

subject to ‖x− x̂‖p − ‖z − x̂‖p ≤ 0 ∀z ∈ X − {x}.
(2)

When p = 2 the Voronoi cells are convex and so we can project a point onto a Voronoi cell by
solving a quadratic program. Thus we can solve Problem 2 using projected gradient descent, as in
Madry et al. (2018). When p 6= 2 the Voronoi cells are not necessarily convex. In this setting there
are many approaches, such as barrier and penalty methods, one might employ to approximately
solve Problem 2 (Boyd and Vandenberghe (2004)).

However we found that the following heuristic is both fast and works well in practice. At each
iteration of the outer training loop, for each training sample x in a batch, we generate adversarial
examples by taking iterative steps in the direction of the gradient starting from x. Instead of pro-
jecting onto a constraint after each iterative step, we instead check if any of the Voronoi constraints
of x shown in Equation 1 are violated. If no constraint is violated we perform the iterative update,
otherwise we simply stop performing updates for x. Figure 2 illustrates the procedure.

Figure 2: To construct an adversarial example within a Voronoi cell, we repeatedly take steps in
the direction of the gradient of the loss, shown in blue. After each iteration we check if any of the
Voronoi constraints are violated. We take the last iteration before a constraint is violated as our
adversarial example.
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Problem 2 has n − 1 constraints, one for each sample in X\{x}. In practice however very few
samples contribute to the Voronoi cell of x. Even fewer contribute to the faces of the Voronoi cell
that are shared by samples in different classes, as shown in Figure 1. At each iteration, we perform
a nearest neighbor search query to find the m nearest samples to x in each other class. That is we
search for m(C − 1) samples where C is the number of classes. We do not impose constraints from
samples in the same class as x; there is no benefit to restricting the adversary’s movement with the
neighborhood around the class manifold of x. In our experiments we set m = 10.

4 ADVERSARIAL TRAINING WITH VORONOI CONSTRAINTS

Madry et al. (2018) formalize adversarial training by introducing the robust objective

min
θ

E(x,y)∈D

[
max

x̂∈B(x,ε)
L(x̂, y; θ)

]
(3)

where D is the data distribution and B is a Lp-ball centered at x with radius ε. Their main contri-
bution was the use of a strong adversary which used projected gradient descent to solve the inner
optimization problem.

To incorporate Voronoi constraints, we replace the Lp-ball constraint in Equation 3 with the Voronoi
cell at x. That is, we formalize the adversarial training objective as

min
θ

E(x,y)∈D

[
max

x̂∈Vorp x
L(x̂, y; θ)

]
, (4)

where we use the optimization procedure described in Section 3 to solve the inner optimization
problem.

5 EXPERIMENTS

Datasets. Khoury and Hadfield-Menell (2018) introduce a synthetic dataset, PLANES, to investigate
how the codimension (low-rank features) of a dataset influences robustness. The PLANES dataset
consists of two 2-dimensional planes, the first in the xd = 0 and the second in xd = 2. The first two
axis of both planes are bounded as −10 ≤ x1, x2 ≤ 10, while x3 = . . . = xd−1 = 0. The training
set is sampled at the vertices of a regular grid with side length

√
2, and the test set at the centers

of the grid cubes. This sampling is chosen so that the L2-balls of radius 1 cover the 2-dimensional
planes, and so a classifier that does well inside these balls also has perfect natural accuracy. The
spacing along the axis xd is chosen so the maximum perturbation size is 1. The codimension of this
dataset is d− 2. We also evaluate on MNIST and CIFAR-10.

Models. Our controlled experiments on synthetic data consider a fully connected network with 1
hidden layer, 100 hidden units, and ReLU activations. We set the learning rate for Adam (Kingma
and Ba (2015)) as α = 0.1. Our experimental results are averaged over 20 retrainings. For a fair
comparison to adversarial training, our experiments on MNIST and CIFAR-10 use the same model
architectures as in Madry et al. (2018). We train the MNIST model using Adam for 100 epochs and
the CIFAR-10 model using SGD for 250 epochs.

Attacks. On MNIST we apply 300-step projected gradient descent (PGD), with step
sizes {0.05, 0.07, 0.1, 0.15, 0.17, 0.2}. On CIFAR-10 we apply 20-step PGD with step sizes
{2.0, 3.0, 4.0}. For both datasets we also apply the fast gradient sign method (FGSM) Goodfel-
low et al. (2014) to uncover possible gradient masking as recommended in Athalye et al. (2018). We
evaluate these attacks per sample, meaning that if any attack successfully constructs an adversarial
example for a sample x at a specific ε, it reduces the robust accuracy of the model at that ε.

Accuracy measures. We plot the robust classification accuracy as a function of ε, for each of our
datasets. Since one of the primary advantages of Voronoi constraints is that we do not need to set
ε, we need a measure of robustness that considers the total robustness of the model. Thus we report
the normalized area under the curve (NAUC) defined as

NAUC(acc) =
1

εmax

∫ εmax

0

acc(ε) dε, (5)
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where acc : [0, εmax] → [0, 1] measures the classification accuracy and εmax is the largest per-
turbation considered. Note that NAUC ∈ [0, 1] with higher values corresponding to more robust
models.

Implementation Details. Constructing adversarial examples within the Voronoi cells, as described
in Section 3, requires a nearest neighbor search query to find the m nearest samples to x in each
other class. When the dataset remains constant throughout the course of training, this search can
be performed once before training begins and reused at each iteration. However when the dataset is
augmented during training, as in the case of data augmentation on CIFAR-10, the nearest neighbor
search query must be computed at each iteration. Since this computation is performed on the CPU,
we create 16 threads, each with a copy of a k-d tree, which constantly pull mini-batches of samples
from a queue and perform nearest neighbor queries. With 16 threads running in parallel, the bottle-
neck for training became the construction of adversarial examples on the GPU, and so adversarial
training with Voronoi constraints ran in time similar to standard adversarial training.

5.1 ADVERSARIAL TRAINING IN HIGH CODIMENSIONS

Khoury and Hadfield-Menell (2018) showed that as the codimension of the PLANES dataset in-
creases, the adversarial training approach of Madry et al. (2018) with training ε = 1 became less
robust. They suggested that this was because the L2-balls with radius 1 around the dataset covered
an increasingly smaller fraction of the neighborhood around the data manifold.

Figure 3 shows that replacing the L2 ball constraint with the Voronoi cells improves robustness in
high codimension settings, on average. In codimension 10 (Figure 3 (Left)), our approach achieves
NAUC of 0.99, while Madry’s approach achieves NAUC of 0.94. In codimension 500 (Figure 3
(Right)), our approach achieves NAUC of 0.92, while Madry’s approach achieves NAUC of 0.87.
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Figure 3: Adversarial training Voronoi constraints offers improved robustness in high codimension
(10, 500) over standard adversarial training, on average.

5.2 MNIST AND CIFAR-10

To explore the performances of adversarial training with Voronoi constraints on more realistic
datasets, we evaluate on MNIST and CIFAR-10 and compare against the robust pretrained mod-
els of Madry et al. (2018).12. We include the recently proposed Jacobian regularization algorithm of
Hoffman et al. (2019) with λjr = 1.0 as an additional baseline.

Figure 4 (Left) shows that our model maintains near identical robustness to the Madry model on
MNIST up to ε = 0.3, after which our model significantly outperforms the Madry model. The
Madry model was explicitly trained for ε = 0.3 perturbations. We emphasize that one advantage of
our approach is that we did not need to set a value for the maximum perturbation size ε. The Voronoi
cells adapt to the maximum size allowable locally on the data distribution. Our model maintains
76.3% accuracy at ε = 0.4 compared to 2.6% accuracy for the Madry model. Furthermore our

1https://github.com/MadryLab/mnist_challenge
2https://github.com/MadryLab/cifar10_challenge
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model achieves NAUC of 0.81, while the Madry model achieves NAUC of 0.67, an improvement
of 20.8% and over the baseline. To our knowledge, this is the most robust MNIST model to L∞
attacks.

Figure 4 (Right) shows the results of our approach on CIFAR-10. Both our model and the Madry
model achieve NAUC of 0.29. However our approach trades natural accuracy for increased robust-
ness against larger perturbations. This tradeoff is well-known and explored in Tsipras et al. (2019);
Ilyas et al. (2019).
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Figure 4: Left: Adversarial training with Voronoi constraints on MNIST. Our model has NAUC 0.81
and high classification accuracy after ε = 0.3. In particular, our model maintains 76.3% accuracy
at ε = 0.4, compared to 2.6% accuracy for the Madry model. Right: On CIFAR-10, both models
achieve NAUC of 0.29, but our model trades natural accuracy for robustness to larger perturbations.

5.3 INCREASING THE RADIUS OF THE NORM BALL CONSTRAINT

A natural approach to improving the robustness of models produced by the adversarial training
paradigm of Madry et al. (2018) is to simply increase the maximum allowable perturbation size ε
of the norm ball constraint. As shown in Figure 5, increasing the size of ε to 0.4, from the 0.3 with
which Madry et al. (2018) originally trained, and training for only 100 epochs produces a model
which exhibits significantly worse robustness in the range [0, 0.3] than the pretrained model. If we
increase the number of training epochs to 150, the approach of Madry et al. (2018) with ε = 0.4
produces a model with improved robustness in the range [0.3, 0.4], but that still exhibits the sharp
drop in accuracy after 0.4. Additionally the model trained with ε = 0.4 for 150 epochs performs
worse than both the pretrained model and our model in the range [0, 0.3]. Our model achieves NAUC
0.81, while the model trained with ε = 0.4 for 150 epochs achieves NAUC 0.76. We emphasize
that our approach does not require us to set ε, which is particularly important in practice where the
maximum amount of robustness achievable may not be known a-priori.

6 CONCLUSIONS

The Lp-ball constraint for describing adversarial perturbations has been a productive formalization
for designing robust deep networks. However, the use of Lp-balls has significant drawbacks in high-
codimension settings and leads to sub-optimal results in practice. Adversarial training with Voronoi
constraints improves robustness by giving the adversary the freedom to explore the neighborhood
around the data distribution.
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