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ABSTRACT

As deep neural net architectures minimize loss, they build up information in a
hierarchy of learned representations that ultimately serve their final goal. Different
architectures tackle this problem in slightly different ways, but all models aim
to create representational spaces that accumulate information through the depth
of the network. Here we build on previous work that indicated that two very
different model classes trained on two very different tasks actually build knowledge
representations that have similar underlying representations. Namely, we compare
word embeddings from SkipGram (trained to predict co-occurring words) to several
CNN architectures (trained for image classification) in order to understand how this
accumulation of knowledge behaves in CNNs. We improve upon previous work by
including 5 times more ImageNet classes in our experiments, and further expand the
scope of the analyses to include a network trained on CIFAR-100. We characterize
network behavior in pretrained models, and also during training, misclassification,
and adversarial attack. Our work illustrates the power of using one model to explore
another, gives new insights for CNN models, and provides a framework for others
to perform similar analyses when developing new architectures.

1 INTRODUCTION

Convolutional Neural Networks (CNNs) manipulate information in the pixels of images by applying
a hierarchy of learned functions, and can even outperform humans for some tasks (Karpathy, 2014).
While CNNs have become incredibly accurate, they have also become deeper and more complex,
making it more difficult to understand why they work, and how they fail. It is not always clear why
one CNN architecture outperforms another, and when we design networks, the architectural decisions
and innovations can be ad hoc, mostly verified by trial and error.

In this paper, we use a technique that allows for the measurement and tracking of information through
the layers of a CNN, and offer insights into the function and performance of CNNs. Specifically, we
use distributional semantic (DS) models trained on text corpora to explore the hidden representations
through the layers of a CNN under a variety of conditions. The methodology is inspired by techniques
originally developed to study the brain’s semantic representations via neuroimaging data, but has
proven useful for understanding CNNs (Dharmaretnam & Fyshe, 2018). Our contributions are:

1) Evaluation using 5 times more concepts than previous work (Dharmaretnam & Fyshe, 2018),
including experiments with new architectures (FractalNet), and additional datasets (CIFAR-100).

2) An exploration of the behavior of hidden layers during training.

3) A case study of the information available in the hidden representations of misclassified images for
more complex network architectures.

4) An application of the technique to describe hidden representations for adversarial images.

Each of these points illustrate how DS models can help us to understand CNNs, but also how we might
use DS models to train better, more robust CNNs. We illustrate here a framework for understanding
the behavior of CNNs in a variety of settings to show how this technique could be used to imagine
and test better architectures, and possibly protect against adversarial attack.
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2 RELATED WORK

Distributional models of word meaning (word embeddings) use patterns of word co-occurrence to
estimate vector representations for words. These vectors have proven useful for a variety of Natural
Language Processing tasks, and have been shown to correlate strongly to human judgments of word
similarity (Hill et al., 2015; Bruni & Baroni, 2013), and behavioral norms (Hollis et al., 2017). In fact,
several DS models include both text and images to create one joint model (Bruni & Baroni, 2013;
Anderson et al., 2013). However, the idea of using DS models to understand CNNs has been largely
untouched.

Distributional models have been used in conjunction with CNNs in a variety of ways. CNNs have
been trained to predict word vector dimensions as output instead of discrete classification (Frome
et al., 2013). Predicting into a space shared with the word vectors allows CNNs to predict for classes
not seen during training (zero shot learning) (Socher et al., 2013; Lazaridou et al., 2014). Previously,
distributional semantic models have also been used to explore CNNs (Dharmaretnam & Fyshe,
2018). Compared to Dharmaretnam & Fyshe (2018), our work includes 5 times more concepts,
new architectures (FractalNet), additional datasets (CIFAR-100), and additional explorations of the
behavior of the hidden layers during training, and for adversarial examples.

The interpretation of CNNs has taken many forms, but most have relied on visual exploration of
the images that most “excite” a neuron (Yosinski et al., 2015), or the areas of an image that most
contribute to a prediction (Zeiler & Fergus, 2014). Semantic parts (e.g. wheels, legs) have also been
identified within CNN representations (Gonzalez-Garcia et al., 2018), another piece of evidence that
CNNs capture semantic meaning. There have also been several variants of Canonical Correlation
Analysis (CCA) proposed to project the hidden layers into a shared representational space with either
the raw image pixels or the layers of another CNN (Morcos et al., 2018; Saini & Papalexakis, 2018;
Raghu et al., 2017). In this work, we use an independent model trained on very different data (text)
as a sort of “third-party” evaluation of the information that exists in the layers of the CNN. This
allows us to move beyond the similarities that exist image space (e.g. many animals are pictured in
outdoor scenes) and instead correlate to another notion of semantics built from the usage of the word
associated with the concept.

3 METHODOLOGY

Our initial experiments reproduce and expand upon a previous study of the hidden representations
of two popular CNNs both trained on ImageNet (Deng et al., 2009): ResNet-50, and Inception-v3.
We proceed with experiments on FractalNet, which we train on CIFAR-100 (Krizhevsky & Hinton,
2009), to study both the behavior of a network trained on a different image classification dataset, and
the behavior of a network during the training process.

ResNet-50: The ResNet architecture (He et al., 2015) was introduced as an entry to the 2015 Large
Scale Visual Recognition Challenge (Russakovsky et al., 2015; Szegedy et al., 2015a). ResNet
introduces residual blocks, which contain residual connections that give each block’s final layer
access to the block’s original input. This helps both with stability during training, and also with
predictive accuracy. We study ResNet-50, the 50 layer variant that achieved a top-5 error rate of
5.25% on the ILSVRC 2015 test dataset. We studied the 49 activation layers spread across 16 residual
blocks in this network.

Inception-v3: Inception-v3 is a variant of the original GoogLeNet architecture (Szegedy et al.,
2015b). It has 94 convolutional blocks followed by ReLu activations. The network has nine inception
modules. The outputs of each branch within an inception module are concatenated before they are
passed to the next inception layer. We studied both activation and filter concatenation layers ( mixed
layers in Keras (Chollet et al., 2015)).

FractalNet: FractalNet is an interesting architecture trained with both deep and shallow connection
paths made up of fractal expansions of the same base architecture (Larsson et al., 2016). Unlike
ResNet (a network with comparable deep and shallow connection paths), the FractalNet architecture
continues to improve with added depth (though with diminishing returns).
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3.1 DISTRIBUTIONAL SEMANTIC MODELS

We selected SkipGram as our Distributional Semantic (DS) model for studying the semantic repre-
sentations in CNNs. Previous work showed SkipGram’s performance to be approximately equal to
other DS models (Dharmaretnam & Fyshe, 2018), and its coverage over ImageNet classes is higher.
SkipGram is part of the Word2vec package, and is trained on the Google News dataset to predict
context words given a central word (Mikolov et al., 2013). We used the 300-dimensional version of
the model.

3.2 CONCEPT SELECTION

Two of the CNNs used in our study are pretrained on ImageNet (Deng et al., 2009) which has 1000
labeled image classes organized to align with the WordNet hierarchy (Fellbaum, 1998). ImageNet
classes often are a list of synonymous concepts (e.g. class 286: “cougar, puma, catamount, mountain
lion, painter, panther, Felis concolor”). For these cases, we use the vector of the first word that
matches a SkipGram vector, and we were able to find matches to 838 ImageNet classes. Matching
word vectors to CIFAR-100 was more straightforward, as most of the classes are single words (or
could be represented as a single word), and all 100 were present in the SkipGram word list.

3.3 ANALYZING LEARNED REPRESENTATIONS

Following Dharmaretnam & Fyshe (2018), we randomly selected 5 distinct images for each of the
w = 838 matched concepts from the ImageNet cross-validation dataset (Russakovsky et al., 2015).
All images were rescaled to 224× 224 for ResNet-50 and VGG-16, and 299× 299 for Inception-v3.
After resizing, the pixel values were mean normalized, and we generated representations for each
layer1 of each CNN. This results in 5 matrices I ∈ Rw∗k where k is the dimension of a flattened
CNN layer. Thus, for a network with 50 layers, there will be 5 I matrices per layer, for a total of 250
matrices. Each row in a matrix I represents the hidden representation of one image example of a
concept extracted from one layer of the CNN.

We then compute the Pearson correlation of every concept in a CNN’s matrix I with every other
concept in the same I matrix, resulting in a correlation matrix CI ∈ Rw∗w. Thus, every row CI(i)
in the correlation matrix CI represents the similarity of the hidden representation of a concept i with
every concept j = 1 → w in the matrix I . This process is repeated for all the 5 CNN matrices I
resulting in 5 CNN correlation matrices CI per layer.

We extract the SkipGram vectors for the same 838 concepts, resulting in a matrix D ∈ Rw∗n, where
w is the number of concepts and n is the number of dimension of the SkipGram vectors. We then
compute the Pearson correlation of every word in word vector matrix D with every other word in
the matrix resulting in the correlation matrix CD where CD ∈ Rw∗w. Row i of the matrix CD(i)
represents the similarity of a word i with every word j = 1 → w in the matrix D. Now we have
matrices CI and CD which represent the similarity of concepts in CNN and DS space.

How can we compare the similarities between representations in CI and CD? We could just compute
the correlation of the upper triangle of CI and CD, but this would obfuscate which concepts are best
represented in each layer. Instead, we use the 2 vs. 2 test (Dharmaretnam & Fyshe, 2018) that allows
us to better explore the representations at the level of individual concepts. For the 2 vs. 2 test, we
select the rows corresponding to two concepts (c1 and c2) from our correlation matrices CI and CD.
We then omit the columns corresponding to the same two concepts (c1 and c2), resulting in vectors
with w − 2 elements. These vectors represent the correlation of the representations of c1 and c2 to
every other concept in both CNN and DS space. Let’s rename the reduced vectors as cI1 , cI2 from
the CNN correlation matrix CI , and cD1

, cD2
from the DS correlation matrix CD. In a 2 vs. 2 test,

the correlation of the concepts are compared to test if the correlation of the correctly matched pairs:

corr(cI1 , cD1
) + corr(cI2 , cD2

) (1)

is greater than the correlation of the mismatched pairs:

corr(cI1 , cD2) + corr(cI2 , cD1) (2)

A 2 vs. 2 test is considered to pass if Eq. 1 is greater than Eq. 2. The test is repeated for all possible
pairs of concepts in our set of 838 concepts. This results in

(
w
2

)
tests for a dataset with w = 838

1A layer can be any node in the computation graph. Here, we focus on activation and concatenation layers.
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concepts. The 2 vs. 2 accuracy is the percentage of 2 vs. 2 tests passed, and chance is 50%. Note
that this method is based entirely on correlation, and so can only detect linear relationships. Still we
were impressed with the results this simple approach yielded. Future work might consider learning
a (possibly non-linear and/or regularized) mapping to further explore the relationship between
representational spaces.

The 2 vs. 2 tests were repeated for the 5 CI matrices independently, and the scores were averaged
to get a single score for a given layer of the CNN. This accounts for variability across images for a
single concept in ImageNet (though in practice we found the average variation across the 5 matrices
to be very small, e.g. 0.0064 for Inception-v3). The whole process is then repeated for each layer in
each CNN.

4 STUDYING MISCLASSIFICATION AND ADVERSARIAL EXAMPLES

We were also interested in studying when and how CNNs fail. For this, we explore unaltered
images that are misclassified by a CNN, and adversarial images designed to mislead CNNs. We
search through the hierarchical layers of the CNN to identify layers where misclassifications emerge,
illustrating the vulnerabilities in CNN architectures, and providing a road map to debug and improve
CNNs.

Out of the 838 total Skip-Gram concepts, we collected a set of 89 images which were incorrectly
classified by ResNet-50, and 61 incorrectly classified by Inception-v3.

To study adversarial examples, we randomly selected 100 source concepts. For each source concept,
we select 6 target concepts for a total of 600 adversarial targets. To select targets, we calculate the
correlation of the source concept’s word vector with every other concept’s word vector. We select
six target concepts including the most similar target concept, the least similar target concept, and
four other target concepts spaced evenly between. For each source and target pair, we perform a
targeted adversarial attack against Inception-v3 using v2.0.0 of Cleverhans (Papernot et al., 2017).
Our attack algorithm is the Momentum Iterative Method with an L∞ norm perturbation bound of
ε = 0.3 using a decay factor of µ = 1.0 over 20 iterations (Dong et al., 2017). We then tested each
of the 600 adversarial images and discarded the four images that were not predicted to be the target
class (failed attacks), resulting in 596 total adversarial images. Examples of the adversarial images
are available in Appendix A.

For a given misclassified concept i (either an unaltered misclassified image or an adversarial image),
there is a true class ti and a predicted class pi. We need to compare these true and predicted classes
to the representations of other concepts, and to ensure accuracy we select exclusively from the
set of correctly predicted concepts. We randomly sampled 100 correctly predicted concepts, and
extracted hidden layer representation using a single image per concept. This resulted in a matrix
Icorrect ∈ R100∗k where k is the dimension of the flattened CNN layer. Similarly, word vectors
corresponding to the same 100 concepts were extracted from the Skip-Gram model. Lets call this
matrix Dcorrect ∈ R100∗n where n is the dimension of the Skip-Gram word vectors. The 100 concepts
represented in Icorrect and Dcorrect never include ti or pi.

Next, for each misclassified concept i, hidden representations were extracted for each CNN layer, and
correlations were computed with every concept in Icorrect resulting in the vector imisclassified ∈ R100.
The word vectors corresponding to true class ti and predicted class pi were also extracted, and
correlations computed with every concept in Dcorrect resulting in two vectors dtrue and dpredicted, both
of dimension R100. The vector imisclassified represents the correlation of concepts in CNN vector space
whereas dtrue and dpredicted represents correlation of concepts in word vector space. We then check to
see if the imisclassified is more correlated to dtrue or dpredicted:

corr(imisclassified, dtrue)
?
> corr(imisclassified, dpredicted) (3)

This is the 1 vs. 2 test (Dharmaretnam & Fyshe, 2018), and the chance accuracy is again 50%. The
test is repeated for all misclassified concepts and adversarial images, which gives us a measure of if
the semantic information of the true class exists anywhere in the CNN’s hierarchy.

4.1 TESTING FOR STATISTICAL SIGNIFICANCE

The 2 vs. 2 and 1 vs. 2 tests were designed to study the relationship between concepts in different
vector spaces. The chance accuracy for both these tests is 50%, but we need to calculate a confidence
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Figure 1: 2 vs. 2 accuracy for the
activation layers of ResNet-50.

Figure 2: 2 vs. 2 accuracy for the layers of
Inception-v3. Inception modules introduce par-
allel paths each containing activation nodes.
To demarcate Inception module boundaries,
marker types alternate.

interval around 50%, outside of which results are significant. We do this by running 1000 permutation
tests (Wasserman, 2004), approximating p-values for our observed 2 vs. 2 and 1 vs. 2 accuracies, and
correcting for multiple comparisons using Benjamini-Hochberg-Yekutieli (BHY) false discovery rate
correction (Benjamini & Yekutieli, 2001). This is standard practice for estimating significance, while
making very few statistical assumptions.

5 RESULTS AND DISCUSSION

CNNs Learn Semantics from Images Figures 1 and 2 show a general upward trend in 2 vs. 2
accuracy through the layers of both the convolutional networks (see also the annotated architecture
diagrams in the Appendix B and C). However, we also observed that the accuracy increase through
the layers of ResNet-50 and Inception-v3 was very noisy. In Figure 1, we observed that the 2 vs. 2
accuracy in the layer immediately before or after a residual block is always higher than the layers
inside a residual block. For example, this can be seen in layer 19 of Figure 1 (the end of a residual
block) when the 2 vs. 2 accuracy vastly improves. This may be explained by residual learning
theory. The ResNet-50 architecture is composed of residual blocks which contain convolutional
layers internally and a skip-connection that connects the input of the residual block to the final
layer (He et al., 2015). Conceptually, each residual block is a module that calculates a small change
F(x) for a given input x to the residual block. The add layer at the end of residual blocks combines
F(x) with original input x via the skip connections. Combining F(x) with x provides additional
information to the activation layer after a residual block. This effect is also very clear in the annotated
ResNet-50 architecture diagram (Appendix Figure 8). These results provide a semantic argument for
the effectiveness of residual learning theory, and illustrate the power of the 2 vs. 2 technique

Figure 2 shows the 2 vs. 2 accuracy of activation layers of Inception-v3. The Inception-v3 architecture
consists of three different types of inception modules occurring in series (Szegedy et al., 2015b).
Within each module, multiple convolutional and pooling operations happen in parallel that are
concatenated at the end of the module. Because of these parallel connections, the activations along
the x axis in Figure 2 cannot be linearly ordered. For this reason, the points are marked with
alternating markers, which indicate the module boundaries (i.e. all activations within a module appear
in a block with the same marker type). Similar to ResNet-50, within an inception module we see 2 vs.
2 accuracy decreases and increase again at the end of the module when mixing the various parallel
convolution operations together (this is most clear in the architecture diagram, Appendix Figure 9).
Interestingly, shallower parallel connections seem to maintain 2 vs. 2 accuracy better than paths with
many convolutions, which implies that the lower-dimensional convolutions may be driving some of
the early performance. It should also be noted that the average pooling at the end of the last inception
module also provides a tremendous boost in network performance while reducing the number of
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Figure 3: The emergence of semantic information during training of FractalNet on CIFAR-100. Left:
training and test error for the first 60 epochs training. Right: the 2 vs. 2 accuracy for layers of
FractalNet during training. We show 2 vs. 2 accuracy at the first convolutional layer, the end of every
second fractal network block, and the last fully connected layer. The initial layers of the CNN learn
semantics before the later layers, but later layers continue to improve in later epochs.

parameters. These two case studies show how using this framework can allow those building new
architectures to quantitatively test which innovations are truly benefiting the performance of a new
system.

5.1 TRAINING CNNS

The study of the development of semantic information in the hidden layers of CNNs during
training could offer additional insights. We trained FractalNet (Larsson et al., 2016) on CIFAR-
100 (Krizhevsky & Hinton, 2009), using methods described in the original paper. At every five epochs
during the training process, we extracted the hidden layers of the network and performed 2 vs. 2 tests
using the images from the training set of CIFAR-100. The results for the first 60 epochs appears
in Figure 3, and Appendix D shows all 400 epochs. Note that the initial layers of the CNN learn
semantics before the later layers, and that they learn semantics within the first few epochs of training.
The 2 vs. 2 accuracy for the initial layers remains constant throughout the remainder of training,
and the 2 vs. 2 accuracy for the later layers continues to increase until the end of the first 60 epochs.
Thus, a significant part of later learning is driven by the middle and later layers of the CNN. We also
measured the 2 vs. 2 accuracy for test images, and found it to be 2%-3% lower than the accuracy on
train images.

We also noted that as the network starts to overfit, the 2 vs. 2 accuracy curve becomes noisy, raising
the question of what the 2 vs. 2 accuracy would look under the regime of permuted labels (Zhang
et al., 2016). We trained FractalNet after randomly permuting both the train and test image labels,
and trained the until we achieved 99.9% training accuracy. As expected, the test accuracy was close to
chance (1%). We conducted the 2 vs. 2 tests for various layers of CNN. We found that, even though
the network achieves close to perfect classification accuracy on train images, the 2 vs. 2 accuracy
stays consistently low. This points to another method for identifying overfitting during CNN training:
a network fitting to noise does not learn semantics.

5.2 MISCLASSIFICATIONS IN CNNS

No CNN is perfect, so every CNN misclassified some images. This prompted us to search through the
learned representations to see if the information required to make the correct prediction exists in any
layer of ResNet-50 or Inception-v3. Contrary to previous work by Dharmaretnam & Fyshe (2018),
we found no points to be statistically above chance once we corrected for multiple comparisons.
Because the results were very noisy, we also tried averaging 2 vs. 2 accuracy for activation nodes
within residual blocks for ResNet-50, and within Inception modules for Inception-v3. Figures 4
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Figure 4: 1 vs. 2 accuracy for misclassified
images, averaged within modules of ResNet-
50.

Figure 5: 1 vs. 2 accuracy for misclassi-
fied images, averaged within modules of
Inception-v3.

and 5 show the block/module average 1 vs. 2 accuracy for ResNet-50 and Inception-v3 respectively.
Even with this averaging scheme, we found no points above chance. So, though a less sophisticated
network (VGG-16) was found to represent some signatures of the true class (reaching nearly 0.65 1
vs. 2 accuracy), the more modern ResNet-50 and Inception-v3 have much lower 1 vs. 2 accuracy and
do not show this characteristic.

To explain these results, we surveyed the mistakes made by these two networks by calculating
the cosine similarity between the word vectors corresponding to the true and predicted class. We
compared this against 89 mistakes made by VGG-16, for which misclassifications had been previously
studied (Dharmaretnam & Fyshe, 2018). We found that VGG-16 makes more egregious classification
mistakes (average of 0.22 cosine similarity) as compared to Inception-v3 and ResNet-50 (0.27 and
0.29 cosine similarity, respectively). When there is a high similarity between true and predicted
concepts, it becomes difficult for the 1 vs. 2 tests to separate the semantics of the true and predicted
class. Conversely, less similar true and predicted classes make it easier to distinguish the semantics of
true class from the predicted class. This helps to explain why VGG-16 has statistically significant 1
vs. 2 accuracy in previous work, whereas ResNet-50 and Inception-v3, which make more acceptable
misclassifications, do not.

5.3 ADVERSARIAL EXAMPLES

Adversarial examples are one of the more serious threats to the adoption of CNNs for practical use,
and the vulnerability of neural systems to relatively minor perturbations is a growing concern. We
explored the hidden representations through the layers of Inception-v3 for adversarial examples
to better understand the internal representation of CNNs during adversarial attack. We focus on
the Inception-v3 model here as it has the highest ImageNet challenge top-1 accuracy of the three
models (Canziani et al., 2016; Russakovsky et al., 2015). Like the study of misclassification, we use
the 1 vs. 2 test, which passes if the true class (dtrue) is closer than the adversarial class (dpredicted) to
the CNN correlation vector (imisclassified).

Figure 6 shows the 1 vs. 2 accuracy through layers of Inception-v3 for the 596 adversarial examples,
broken down into six target concepts based on the level of word vector correlation between the target
and source concept. For simplicity here, we show only the 1 vs. 2 accuracy for “Mixed” layers, which
join the result of several parallel paths within a module. On average, in earlier layers of the network,
the 1 vs. 2 accuracy is higher, but by the later layers of the network, the hidden representations have
become more similar to the adversarial class (dpredicted), pushing the 1 vs. 2 accuracy below 50.
Below 50, the hidden representations are correlated to the adversarial concept.

Compared to other target concepts, the most similar target concept has lower correlation in the earlier
layers and higher correlation in the later layers. This is because the semantic representation for two
highly related concepts is more difficult to disambiguate, so the 1 vs. 2 accuracy will be closer to
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Figure 6: 1 vs. 2 accuracy through layers of Inception-v3 for adversarial examples. When the accuracy
is above 50, there is more evidence for the true class than the adversarial class. Left: Average 1 vs.
2 accuracy for the six categories of adversarial targets. Right: average 1 vs. 2 accuracy for all six
categories of adversarial targets. ACT: activation layer, Mixed: concatenation block at the end of a
module.

chance. For all other target concepts, which are less related to the source concept, we see a pattern
much more similar to the average: high 1 vs. 2 accuracy in early layers, and lower 1 vs. 2 accuracy for
later layers. This implies it is the later layers that are being targeted by adversarial attacks, probably
by an accumulation of small perturbations through the network.

These results suggest interesting avenues for further exploration. The results in Figures 1 and 2 show
that, for non-adversarial examples, we should expect there to be a correlation between the predicted
word vector’s semantic representation and the convolutional neural network’s semantic representation.
This correlation should increase and become high in the later layers. Because adversarial attacks
work through minor perturbations which leverage the details of the network’s decision boundary,
they may not display this pattern. The detection of this behavior could be a potential mechanism for
defense against the current generation of adversarial attacks. One potential implementation would
calculate a 1 vs. 2 test at each layer using the input image, the predicted label, and one other label.
This would be repeated for all labels. The resulting average 1 vs. 2 signature may be an effective
indicator for verifying the semantic representation pattern is idiomatic of a non-adversarial input.

Conversely, this also suggests a mechanism for improving adversarial attacks, which currently
suffer from transferability problems, possibly because decision boundaries can vary widely between
networks (Liu et al., 2017). Since all three neural networks we studied are learning representations
that produce high 2 vs. 2 results against Skip-Gram, it may be possible to implement an adversarial
attack which is regularized toward producing hidden representations that have high correlation to that
of the target class rather than purely optimized for a single network’s decision boundary. This sort of
attack could be more robust to new and different networks.

6 SUMMARY

Here, we studied the representations learned by CNNs, using the representations learned by SkipGram.
We measured the behavior of fully trained networks, a network during training, and during the
processing of a misclassified or adversarial images. Our results point to several new avenues for
training CNNs, and also for characterizing their behavior during failure modes. This is a new
approach to understanding CNNs that brings quantifiable interpretability without requiring the visual
inspection of images or activation patterns. This method of analysis could further operationalize the
development of deep learning architectures by providing a framework within which to reason about
changes to an architecture, and what each new architectural innovation brings in our quest to help
computers understand our world.
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APPENDIX

A GENERATED ADVERSARIAL EXAMPLES

We generated a series of targeted adversarial examples against InceptionV3 using a recent adversarial
attack. In Figure 7 we show eight example images from the attack with our chosen parameters. While
the pixel changes to the image are visually detectable, they are minor and the true semantic concepts
of the images are clearly retained.

Figure 7: A sample of eight targeted adversarial examples.

B ANNOTATED RESNET ARCHITECTURE DIAGRAM

We created an network architecture diagram graphic of ResNet-50 which is shown in Figure 8. We
annotated the activations on the architecture diagram using a color gradient correlating to the 2 vs
2 accuracy for that layer. Layers which are more strongly represent the semantics of the true label
score higher on the 2 vs 2 test. We can see here that the semantic representation becomes stronger as
the ResNet network becomes deeper.

However, a unique feature of interest is the skip connections in ResNet. A consistent pattern through
the layers augmented with skip connections is that the semantic representation will decrease through
the branch, until the final add layer with the skip connection which leads to a higher semantic
representation than before the branch. This provides evidence that skip connections are useful
techniques for passing along semantic representation in deeper networks.

C ANNOTATED INCEPTIONV3 ARCHITECTURE DIAGRAM

We created an network architecture diagram graphic of Inception-v3 which is shown in Figure 9. We
annotated the activations on the architecture diagram using a color gradient correlating to the 2 vs
2 accuracy for that layer. Layers which are more strongly represent the semantics of the true label
score higher on the 2 vs 2 test. As with the prior two networks, we continue to see a general pattern
of increasing semantic representation through later layers of the network.

Inception-v3 has a complicated architecture, which makes it a good candidate for exploration using
this semantic annotation method. We see a similar pattern to ResNet-50, where parallel layers within
Inception-v3 blocks may decrease in semantic representation before increasing again at the mixing
layer of the block. However, not all parallel layers decreasing in semantic representation suggesting
some parallel layers may provide more semantic value than others within the block.

Of particular note in this network is the very large decrease in semantic representation in the final
layers for some parallel components of the block. This annotation method may be a useful tool for
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identifying steps in the network which are not improving semantic representation, and removal or
adjustment or those layers may provide a positive affect on classification accuracy.
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Figure 8: The 2 vs. 2 accuracy through architecture diagram of ResNet-50. The architecture diagram
of ResNet-50 is annotated with 2 vs. 2 accuracy of layers against Skip-Gram word-vectors (He et al.,
2015). This is a high resolution image and can be zoomed/viewed in a pdf.
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Figure 9: 2 vs. 2 accuracy through architecture diagram of Inception-v3. The architecture diagram of
Inception-v3 is annotated with 2 vs. 2 accuracy of layers against Skip-Gram word-vectors (Szegedy
et al., 2015b). This is a high resolution image and can be zoomed/viewed in a pdf.
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Figure 10: The emergence of semantic information during training of FractalNet on CIFAR-100.
Left: training and test error for the 400 epochs of training. Right: the 2 vs. 2 accuracies for layers of
FractalNet during training.

D FRACTALNET 2 VS. 2 ACCURACY FOR 400 EPOCHS

The train/test error and 2 vs. 2 accuracy for the entire 400 epochs of training of the FractalNet is
shown in the Figure 10. The change in behavior around 200 epochs corresponds to a reduction in
learning rate.
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