Under review as a conference paper at ICLR 2019

GRAPH TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks (GNN) have gained increasing research interests as a mean
to the challenging goal of robust and universal graph learning. Previous GNNs
have assumed single pre-fixed graph structure and permitted only local context en-
coding. This paper proposes a novel Graph Transformer (GTR) architecture that
captures long-range dependency with global attention, and enables dynamic graph
structures. In particular, GTR propagates features within the same graph structure
via an intra-graph message passing, and transforms dynamic semantics across
multi-domain graph-structured data (e.g. images, sequences, knowledge graphs)
for multi-modal learning via an inter-graph message passing. Furthermore, GTR
enables effective incorporation of any prior graph structure by weighted averaging
of the prior and learned edges, which can be crucially useful for scenarios where
prior knowledge is desired. The proposed GTR achieves new state-of-the-arts
across three benchmark tasks, including few-shot learning, medical abnormality
and disease classification, and graph classification. Experiments show that GTR is
superior in learning robust graph representations, transforming high-level seman-
tics across domains, and bridging between prior graph structure with automatic
structure learning.

1 INTRODUCTION

There is an increasing research interest in graph neural networks (GNN). Compared to traditional
convolutional networks that are usually limited to grid-structured data, and recurrent networks that
are designed for sequence modeling, GNN has demonstrated superiority on modeling dynamic and
complex graph-structured data. On one hand, as a mainstream category of graph neural networks
spectral approaches such as graph convolutional neural networks (GCN) (,

) generalize traditional convolutional networks in the spectral domain, and
employ local receptlve fields for robust graph learning. However, these approaches are restricted to
fixed graph structure, and require costly matrix computation (,) such as eigen de-
composition. The significant shortcoming of GCNs, namely their lack of global context for updating
nodes state which prevents long-range relation modeling, as well as the equal importance of nodes
during aggregation, also limit its wide application. On the other hand, GNNs equipped with atten-
tion mechanism, such as graph attention networks (GAT) (R), have emerged as
an effective alternative to GCNs by alleviating these issues. GAT incorporates self-attention mech-
anism (,) which selectively attends to connected graph nodes according to their
importance to the considered node. Despite these advantages, GATs, the same as many existing
graph neural network approaches (, ; ,), are still limited to
evolution within the same graph structure, and lack of the capability of transforming representa-
tions across different graph structures, or various data domains (e.g. images, sequences, knowledge
graphs, and 3D meshes).

The recently proposed Transformer (,) architecture for sequence modeling has
been proven useful for tasks such as machine translation (,). By addressing
the inherent sequential computation shortcoming of recurrent neural networks, Transformer enables
efficient and paralleled computation by invoking a self-attention mechanism for global context mod-
eling. Transformer also avoids vanishing gradients problem (,), and automat-
ically approximates relations among a dynamic range of symbols, which is crucial for learning
real-world data of arbitrary structures.

Under review as a conference paper at ICLR 2019

Updated target graph

Self Attention

Source Attention
Self Attention

Self Attention

Source Attention Self Attention Source graph Target graph

Source Attention

Source graph Target graph

Figure 1: Illustration of Graph Transformer on updating a target graph node (left panel) and its
stacked version (right panel). h; and h; indicates latent state of the ¢;;, source graph node and the
14y, target graph node respectively, where source graph and target graph are two different graphs. e;;
indicates edge connecting source node ¢ and target node j. GTR evolves a target graph by recurrently
performing Source Attention on a source graph in an inter-graph message passing process, and Self
Attention on target graph in an intra-graph message passing process.

Inspired by this work, we proposed a novel Graph Transformer (GTR) architecture which is a
straightforward yet effective extension of the sequential Transformer architecture to a variety of
complex graph-structured data, such as knowledge graphs, images, and sequences. The goal of GTR
is to transform a source graph to a target graph of possibly different structures by considering global
context and realizing computation parallelism across all graph nodes. An illustration is provided
in Figure 1. GTR invokes an intra-graph message passing paradigm to progressively refine graph
representations within the same graph structure, and an inter-graph message passing paradigm to
attentively distill related semantics from source graphs for target graph learning. By alternatively
propagating information either within the same graph structure or from the source graph to the target
graph, GTR is able to extract key information embedded in the source graph, and refine target graph
representations by considering both local and global context.

Our contributions are three-fold: 1) We propose a novel Graph Transformer (GTR) which not only
learns graph representations of the same structure, but also across different structures. 2) We pro-
pose formulations of converting various real-world data types (e.g. images, sequences, knowledge
graphs) to graph-structured, and the application of GTR on converting semantics across these var-
ious types of data. 3) We propose an effective way of incorporating prior graph structure with
learning-based structure, and thus reconciles traditional knowledge-based and modern learning-
based approaches in the down-stream tasks (e.g. few-shot learning, medical abnormality and disease
classification).

We conduct experiments on three benchmark tasks: few-shot learning, medical abnormality and
disease classification, and graph classification. Experiments show that GTR achieves new state-of-
the-arts on all tasks, demonstrating its superior capability in learning robust graph representations,
propagating information across multi-domain data types, and effective utilization of prior knowl-
edge. Specifically, on 1-shot learning on minilmageNet dataset, GTR improves the state-of-the-art
by 1.32% by incorporating category relations in novel class weight generation. GTR also improves
abnormality classification accuracy by more than 7% on all evaluated data sets, demonstrating its
effectiveness on knowledge graph representation learning and transformation. And, on graph clas-
sification task, GTR outperforms all compared standard graph neural networks and kernel-based
networks with roughly the same computational cost, demonstrating its efficiency.

2 RELATED WORK

Graph neural networks (GNN) have attracted increasing research interests (
; ,) and provided flexible representatron learning of real world
graph structured data. There has been work that study message passing in graph learning (,
,), and equip GNNs with attention mechanisms
as whrch is shown powerful for sequence and image modeling (
,). However, most existing methods learn to encode the mput feature mto
hrgher-level feature through selective attention over the object itself (, ;

Under review as a conference paper at ICLR 2019

,), while our method works on multiple graphs, and models not only the data structure
within the same graph but also the transformation rules among different graphs.

Among all related works, Transformer (,) can be formulated as a particular in-
stance of Graph Transformer where input and output are both sequences, and no prior graph structure
is provided. Besides, GTR is close to graph attention networks (GAT) (,) in
that they both employ attention mechanism for learning importance-differentiated relations among
graph nodes. However, GTR differs from GAT in several aspects. First, GTR attends to all graph
nodes at every graph update disregard of whether two nodes are directly connected or not, while
GAT only attends to directed connected neighboring nodes for a considered node by a proposed
masked attention. Thus, GAT is still limited to differentiating importance among locally connected
nodes. GTR, on the other hand, is able to capture global context as which is significant for modeling
long-range relations and fasten graph learning by allowing information propagation between im-
plicitly connected nodes. Second, GTR incorporates both prior graph structure and graph structure
learning where using prior edge weights allows the efficient utilization of prior knowledge. Third,
GTR is able to transform representations across various graph structures while GAT is restricted to
the same graph propagation.

3 GRAPH TRANSFORMER

Graph Transformer (GTR) transforms a source graph to a target graph by encoding features of
the same graph structure into higher-level semantics, and fusing latent semantics between different
graphs (e.g. from visual features to knowledge graphs). We represent a graph as G = (V, E') where
V = {v;}i=1.~ is a set of nodes with each v; € R4 representing a node’s feature of dimension d,
and N is the number of nodes in the graph. E = {e; ; };. j=[1,N] Tepresents a set of edges between
any possible pair of nodes. Here we consider the setting where each edge is associated with a scalar
value indicating closeness between nodes, while it is straightforward to extend the formalism to
other cases where edges are represented as non-scalar values such as vectors.

GTR takes a source graph G = (V, E) as input, and transforms it to a target graph G' = (V', E'),
where G and G’ are two different graphs and can have different structures and characteristics (e.g.
N # N/, d #d,and e; ; # €]) This property differs from many previous methods (

,) which are restricted to the same graph
structures For both source and target graph, the set of nodes V' and V'’ has to be given in prior,
such as the vocabulary size when the considered graph is sequences, and abnormality nodes if the
considered graph is an abnormality graph. We consider two scenarios for the edges among graph
nodes: 1) the edges are given in prior, and denoted as e, ;, where s; is the 4y, node of source graph
and ¢; is the jy;, node of target graph; 2) the edges are unknown, and thus source and target nodes
are represented as fully connected with uniform weights. We assume e, ;, as normalized, to avoid
notation of averaging. Two types of message passing are considered in GTR: the one from source
graph to target graph denoted as inter-graph message passing, and another within the same graph
denoted as intra-graph message passing.

3.1 INTER-GRAPH MESSAGE PASSING

To distill relevant information from a source graph, the features of source nodes are transformed and
passed to target nodes with their corresponding edge weights, which can be formulated as:

N
/ /
V; :vj+a(zi: sirt; WsVi) (1)
where o is a nonlinear activation, and Wy is a projection matrix of size d’ X d.

Considering that the edge information between source and target graphs may not be available in
many cases such as translating a sequence of words into another sequence of words, we propose
to learn edge weights automatically by an attention mechanism (,). By doing
so, target node update is enabled to consider the varying importance of the source nodes in global
context. Specifically,

Csiit; = Attention(Wev;, W?V;) @

where €, ;, is the attention weight of edge from source node i to target node j; Wg and Wy
are weights in attention mechanism to project nodes features of source graph and target graph to a

Under review as a conference paper at ICLR 2019

common space of dimension g respectively; and Attention: R? — R is the attention mechanism that
transforms the two projected features Wv;, Wiv’ € R? to a scalar é, ¢, as the edge’s attention
weight. In our experiments, Attention is parameterized as a scaled dot-product operation with multi-
head attention (,).

The attention weights are normalized across all source nodes for each target node, representing the
relative importance of each source node to a target node among all source nodes. The formulation
can be written as:

- exXp (ésmtj)
- N N
Zk:l exp (eSk,fj)

Once obtained, the normalized attention coefficients are be combined with prior edge weights in
order to pass features of connected source nodes to target nodes. The combined features serve as the
target node’s updated features with source graph knowledge encoded. We adopt weighted sum of
the learned attention edge weights and prior edge weights as final edge weights. Other methods such
as multiplication of the learned and prior edge weights followed by softmax also works. However,
in our experiments, we observed that the first method performs better and avoids under-fitting. The
formulation can be written as:

és;.t; = softmats, (és;,t;) 3)

Coint; = Aesy ity + (1= N)és, e @

where A is a user-defined weight controlling importance of prior edges and learned edges. If A is
set to 1, the edges between source graph and target graph are fixed, and no attention machanism
is required. The formulation is then the same as Equation 1. If X is set to 0, the edges between
source graph and target graph are completely learned by the model. With the updated weight, one
can obtain updated target nodes features via Equation 1.

3.2 INTRA-GRAPH MESSAGE PASSING

Intra-graph message passing aims at modeling the correlation among nodes of the same graph, and
fusing features according to the closeness between them. Specifically, a target node is updated by
combining features of neighboring nodes and itself. The formulation can be written as:

’

N
Vi =Vito(Y] @ Wiv))

where W, is weight to project features of target nodes from dimension d to output dimension.
To learn the edge weights through attention mechanism, one can directly apply Equations 1-4 by
changing source and target nodes notation to be of the same graph.

3.3 GTR AS A MODULE/BUILDING BLOCK

As shown in Figure 1, we formulate GTR as a module denoted as GTR by first concatenating intra-
graph message passing and inter-graph message passing into one step (that is, first conduct message
passing within the target graph, then conducting message passing from a source graph), then stacking
multiple such steps into one module in order to progressively convert target graph features into
high-level semantics. To denote different variants of GTR for different input or output domains,
we use s to denote sequence, ¢ to denote images, and g to denote knowledge graphs, and represent
GTR for image input and knowledge graph output as GT'R;54, GTR for knowledge graph input and
knowledge graph output as G1'R 424 and the rest possible combinations in the same manner.

3.4 GTR FOR MULTIPLE DOMAINS

Most real-world data types (e.g. images, sequences, graphs) can be formulated as graph-structured.
For example, a 2-dimensional image can be formulated as a graph whose nodes are pixels of the
image where every node is connected with its neighboring pixel nodes; and a sequence of words
can be formulated as a graph whose nodes are the individual words where edges among nodes are
the consecutive relation among words. If the global context of the data is considered, which is
commonly adopted in attention mechanism (,), the graph nodes are then fully-
connected. In the following, we describe the variants of GTR for different data domains by first
formulating data as graph-structured, and then perform GTR operations on it.

Under review as a conference paper at ICLR 2019

Base category prototype

Training data of]
base categories @ B B

T Triceratops : Toucan .-dugong
House finch g Green - =
-, Ropity--. " “'mamba Harvestman “Jellyfish

Few training data of
novel categories

Category
knowledge .
graph 0.060 AT B
King crab . 0.071 qun 0:155 Vase i " Malamute - School bus

I @ ﬂ i 0

Novel ca(egory pro(ctype

Feature
Extractor

sa11068)e0 [9A0U % 9SE] JO $81008 AJljIqeqOId

Test image

Few-shot classification weight generator (GTR)

Figure 2: Architecture of Graph Transformer for few-shot learning. Images are first fed into a
Feature Extractor for extracting features. The few-shot classification weight generator implemented
as GTR takes a target graph whose nodes are the novel categories and features are initialized as the
extracted visual features of the few training samples of novel categories, and a source graph whose
nodes are the base categories and features are the corresponding category prototypes. GTR updates
the target graph features by considering similarity among node features of the target graph, and that
of the source graph and target graph. The final node features of the target graph are used as the
generated novel category prototypes for subsequent classification.

GTR for sequential input/output. To apply GTR for sequential input or output (e.g. a sequence of
words, a sequence of retrieved items), we employ positional encoding (,)to GTR
so as to add relative and absolute position information to the input or output sequence. Specifically,
we use sine and cosine functions of different frequencies:

PEpos.2i = sin(pos/10000%/%) (6)

PEpps2i41 = cos(pos/10000%/4) (7)

where pos is the position and ¢ is the dimension. If both input and output are sequences, GTR is
close to a Transformer (s), however, with additional prior edge weights.

GTR for image input. We denote visual features of an image as I € RP*W:H where D is the
dimension of latent features, W and H is width and height. To apply GTR for image input, we first
reshape visual features by flattening the 2-dimension into 1-dimension R *#:P_ Then each pixel
is treated as graph node whose features are used as graph node features.

4 EXPERIMENTS

4.1 FEW-SHOT LEARNING

We evaluate GTR for few-shot learning on minilmageNet dataset (,) which con-
sists of 100 ImageNet classes with each with 600 samples. We follow the same category split
proposed by Ravi et al (,) with 64, 16, 20 for training, validation and testing
respectively. An N-way K-shot learning is defined as classifying N categories with each only giving
K training examples. We conduct 5 way 1-shot and 5-shot classification and develop our model
based on the framework proposed by (). First, the few-shot learning
comprises two stages: base category classification, and episodic learning. During base category
classification learning, the images of the base categories are sampled and used for training a set
of prototypes with each corresponding to a base category. The forward procedure includes feature
extraction via a feature extractor, and a classification operation such as dot product and cosine simi-
larity to classify images. During episodic learning, specifically testing, N categories are first sampled
from novel categories, each with K images as examples. The K images are first fed to feature ex-
tractor to extract features, then used as initialization of novel class prototypes. The initialized novel
class prototypes are further used by an attention block proposed by () to
selectively attends to base class prototypes in order to learn novel prototypes without forgetting base
category prototypes.

() updates novel category prototypes by selectively attending to available
base category prototypes, and modeling the data-dependent relations among the base and novel

Under review as a conference paper at ICLR 2019

Model

Accuracy

1-shot

5-shot

Matching networks (
Prototypical networks (
Meta-learner LSTM (

43.56 £0.84 %
49.42 +0.78 %
43.44 £0.77 %

55.31 £0.73 %
68.20 0.66 %
60.60 +0.71 %

MAML (,) 4870 £1.84 % 63.11 £0.92 %
LLAMA (,) 49.40 £1.83 % -
REPTILE (s) 4997 £032% 65.99 +0.58 %
PLATIPUS (,) 50.13 +1.86 % -
SNAIL (,) 55.71 1099 % 68.88 £0.92 %

Meta network (

56.32 +0.86 %
56.30 £0.40 %
57.10 £0.70 %

73.00 £0.64 %
73.90 £0.30 %
70.04 £0.63 %

TADAM (,2018) 58.50 £0.30 % 76.70 £0.30 %

(2017) 59.60 £0.41 % 73.74 £0.30 %
LEO (,2018) 60.06 £0.05 % 75.72 £0.18 %
GTR 61.58 F0.69 % 7321 £0.63 %

Table 1: Accuracy on minilmageNet for 5-way 1-shot and 5-shot classification. For GTR episodic
training, we use initial learning rate 0.01, and decrease by 10 times when encountering validation
performance plateau. Feature extractor is fixed during episodic training. The weight on prior edges
A (in Equation 4) is chosen by validation (see Table 6).

categories in each episodic learning. However, machine learning models are often fooled by visual
illusions. For example, images of different animals with the same color and similar posture taken in
the same environment may have higher probability of being classified to the same class than images
of the same animal postured differently and located in the different environment. When training
samples are few and visual features may not be a reliable source, having the prior knowledge of how
similar categories are can help improve visual recognition drastically. To achieve this, we propose to
replace the novel category weight generation process in () with our GTR
incorporated with a prior category relation graph. The architecture is shown in Figure 2. During an
episodic learning, we treat the base and novel categories as graph nodes, and replace the attention
mechanism in the weight generator in () with GTR. We define the input
source graph of GTR as the base categories whose features are their prototypes, and the target graph
as novel categories whose features are initialized by the visual features of the K examples as initial
target graph. GTR evolves the target graph by sequentially attending to source graph and itself.
We further define the edges among different graph nodes as the similarity between the category
words computed by path_similarity() API of wordnet (,) which returns the shortest
path between two nodes in the is-a taxonomy. To encourage sparsity, we further prune edges with
smaller than 0.1 scores, and normalize the remaining out-going edges per node. The similarity scores
are used as prior edge weights, and are weighted averaged with the learned edges weights during
training and inference. We denote the importance weight of prior edges as A (see Equation 4),
and experiment different values for A € {0.3,0.4,0.5,0.6}. The GTR in our experiment has 3
layers and 6 heads, and is trained with 0.1 dropout, and maximum 60 epochs. For base category
classification, we use 0.1 initial learning rate, and decrease it to 0.06, 0.012, 0.0024 at epoch 20, 40,
50 respectively. For episodic training, we use 0.01 learning rate. We use ConvNet128 as proposed
in () for extracting visual features of dimension 128 x 5 x 5.

Results. We compare to a range of state-of-the-art methods including that use convolutional net-
works and deep residual networks as shown in Table 1 along with the results. GTR achieves a
new state-of-the-art result on 1-shot learning, and has improved on 5-shot learning compared to

(). Furthermore, GTR obtains larger improvements on 1-shot than 5-shot,
demonstrating that the incorporation of prior category relations takes larger effect when less training
samples are given, and thus prior knowledge from textual semantic domains helps the model learn
novel visual patterns more effectively and accurately.

4.2 MEDICAL ABNORMALITY & DISEASE CLASSIFICATION

To demonstrate the capability of GTR on transforming graph features between graph-structured data
of different domains such as from image features to knowledge graph, and from knowledge graph
to another knowledge graph, we conduct the experiment on medical abnormality and disease clas-

Under review as a conference paper at ICLR 2019

J | [Hyperexpansion
0.04 | oflungs (0.78) J
\ 0.24

Tortuous

7 —\
(Effusion)

A

< () \
| % aorta (0.12) \‘ Focal airspace \ “‘/ A Infilration)
CNN |— = — GTR, — [|oo2 { consolidaon — GTR, |— L/
@ i2g (929 (a) |
S \ (0.01) (Pneumonia)
i % Lowlung \ \
' | volumes \ (Emphysema)
N
(0.00) \(Enlarged \)
| heartsize | Disease graph

(0.04)
Abnormality graph

Figure 3: Architecture of Graph Transformer for medical abnormality and disease classification.
A GT Ry, is first used to convert visual features extracted by CNN from images to an abnormality
graph whose nodes are potential medical abnormalities. A GT Rg2g then transforms the abnormality
graph to a disease graph by considering correlations among diseases and abnormalities.

sification. Specifically, we formulate the abnormality and disease categories as graph nodes where
the edges among nodes represent their correlation (e.g. co-occurrence frequency). The learning
of abnormality and disease classification is thus learning abnormality and disease graph features
whose semantics represent clinical conditions that could lead to the diagnosis of abnormalities or
diseases. In detail, we first compile an off-the-shelf abnormality graph that contains frequent abnor-
malities stem from thoracic organs. For example, “disappearance of costophrenic angle”, ”low lung
volumes”, and “blunted costophrenic angle”. Additionally, we design a disease graph containing
common thorax diseases (e.g. nodule, pneumonia and emphysema) which are commonly concluded
from the single or combined condition of abnormalities. For example, atelectasis may be concluded
if ”interval development of bandlike opacity in the left lung base” is present;

As described in Figure 3, a set of images are first fed into a CNN for extracting visual features which
are then transformed into an abnormality graph via GT'R;25. A GT R4z, module then converts
the abnormality graph into a disease graph. The node features of abnormality graph and disease
graph are passed to separate classification layers for predicting abnormality and disease categories
respectively.

We conduct experiments on two medical image datasets. First, Indiana University Chest X-Ray
Collection (IU X-Ray) (,) is a public dataset consisting of 7,470 chest
x-ray images paired with their corresponding diagnostic reports. Each patient has a frontal view and
a lateral view image, a report, and corresponding MeSH (,) tags. We text-mined
80 most frequent abnormality labels and 14 disease labels from reports and MeSH tags respectively.
Examples of abnormality and disease labels are shown in Figure 3 and Table 3. CX-CHR is a
private dataset of chest X-ray images collected from a professional medical institution. The dataset
consists of 35,609 patients and 45,598 images. Each patient has one or multiple chest x-ray images
in different views (e.g. frontal and lateral), and a corresponding Chinese report. We select patients
with no more than 2 images and obtain 33,236 patient samples in total which covers over 93% of the
dataset. We text-mine most popular abnormalities and diseases mentioned in reports, which yields
155 abnormalities and 14 most popular thorax diseases. On both datasets, we randomly split the
data by patients into training, validation and testing by a ratio of 7:1:2. There is no overlap between
patients in different sets.

For abnormality classification, we compare our GTR with a DenseNet (s) on
classifying the same set of abnormality labels. For ablation study, we compare our method by
solely training on abnormality classification (GTR-1graph), and jointly training on both abnormal-
ity and disease classification (GTR-2graphs). For disease classification, we compare our method
with DenseNet on CX-CHR dataset, and TieNet (s) on IU X-Ray dataset. We use
learning rate 1e 2 for training and 1e~° for fine-tuning, and reduce by 10 times when encountering
validation performance plateau.

Results. The area under the curve (AUC) of abnormality classification is shown in Table 2, and
AUC of disease classification is shown in Table 3. On both abnormality and disease classification,
GTR achieves the best results on both dataset, demonstrating its superior capability of learning and
transforming graph features.

Under review as a conference paper at ICLR 2019

IU X-Ray CX-CHR
DenseNet GTR-1graph GTR-2graphs | DenseNet GTR-l1graph GTR-2graphs
0.612 0.674 0.686 0.689 0.721 0.760

Table 2: Averaged AUC of abnormality classification.

IU X-Ray CX-CHR
TieNet (,) GTR-2graphs | DenseNet (,) GTR-2graphs
0.719 0.727 0.800 0.862

Table 3: Averaged AUC of disease classification.

Model Category | Model PROTEINS D&D
AWE (N) - 71.51
FGSD (s) 73.42 77.10
PK (s) 73.68 78.25
Kemel-based | 0 APHLET (L0009) | 7291 7485
WL (N) 73.76 74.02
WL-OA (s) 75.26 79.04
DCNN (s) 61.29 58.09
DGK (s) 71.68 -
PATCHYSAN (s) 75.00 76.27
GNN-based GRAPHSAGE (s) 70.48 75.42
ECC (s) 72.65 74.10
SET2SET (S) 74.29 78.12
GTR 75.70 79.15

Table 4: Graph classification accuracy in percent.

4.3 GRAPH CLASSIFICATION

To probe the ability of Graph Transformer on transforming same graph features from low-level
semantics to high-level semantics, we conduct the experlment on two benchmark protein datasets for
graph classification: PROTEINS (R) and D&D (

,). PROTEINS contains 1113 graphs and 43472 nodes in total. Each graph has nodes
representing secondary structure elements (SSEs), and edges representing neighboring relations in
the amino acid sequence or in 3D space (,). The maximum number of nodes
in a graph is 620, the average number of nodes is 39.06, and the average number of edges is 72.8.
D&D contains 1178 protein graphs and 334926 nodes in total. The graph nodes representing amino
acids are connected if they are less than 6 Angstroms apart (,). The maximum
number of nodes in a graph is 5748, the average number of nodes is 284.32.

We use le-4 learning rate and train maximum 20 epochs on one GPU. The graph nodes of both data
sets are first re-organized as its unique BFS ordering before feeding into the model. We use 3 layers,
6 heads and 0.5 dropout in GTR. We pad or trim number of nodes to 100 and 500 during training and
inference for PROTEINS and D&D dataset respectively. We take mean of all nodes features after
GTR and feed the averaged features to a linear fully-connected layer for prediction graph labels.

Results. We compare with 6 kernel-based methods and 6 deep learning-based methods as shown in
Table 4. We report averaged classification accuracy of 10-fold cross-validation in Table 4. Compared
with kernel-based and graph neural network-based (GNN-based) baselines, our proposed method
GTR achieves the best graph classification performance on both datasets, demonstrating the capa-
bility of GTR on classifying large-scale and dynamic graphs with simple architecture and avoidance
of sophisticated kernels or network design.

5 CONCLUSION

This paper introduces the Graph Transformer that generalizes the Transformer model to multi-
domain graph-structured data types, and enables the incorporation of prior knowledge. The pro-
posed Graph Transformer achieves state-of-the-art results on three challenging benchmark tasks,
namely few-shot learning, medical abnormality and disease classification, and graph classification.
Graph Transformer reconciles traditional knowledge-based approaches with modern learning-based
approaches, and demonstrates its significant contributions to many tasks such as few-shot learning,
and abnormality and disease classification.

Under review as a conference paper at ICLR 2019

REFERENCES

Kamal Al-Sabahi, Zhang Zuping, and Mohammed Nadher. A hierarchical structured self-attentive
model for extractive document summarization (hssas). https://arxiv.org/abs/1805.07799, 2018. 2

Anonymous. Graph2graph networks for multi-label classification. 2018. URL https://
openreview.net/forum?id=rlxYr3C5t7. 12

James Atwood and Don Towsley. Diffusion-convolutional neural networks. In NIPS, 2016. 8

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron
Courville, and Yoshua Bengio. An actor-critic algorithm for sequence prediction. In ICLR, 2017.
1

Matthias Bauer, Mateo Rojas-Carulla, Jakub Bartlomiej Swiatkowski, Bernhard Scholkopf, and
Richard E Turner. Discriminative k-shot learning using probabilistic models. ICLR, 2018. 6

Karsten M Borgwardt, Cheng Soon Ong, Stefan Schonauer, SVN Vishwanathan, Alex J Smola, and
Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 2005. 8

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In NIPS, 2016. 1,2, 3, 13

Dina Demner-Fushman, Marc D Kohli, Marc B Rosenman, Sonya E Shooshan, Laritza Rodriguez,
Sameer Antani, George R Thoma, and Clement J] McDonald. Preparing a collection of radiology
examinations for distribution and retrieval. JAMIA, 2015. 7

Kien Do, Truyen Tran, Thin Nguyen, and Svetha Venkatesh. Attentional multilabel learning over
graphs-a message passing approach. arXiv preprint arXiv:1804.00293, 2018. 2, 12

Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without
alignments. Journal of molecular biology, 2003. 8

Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venu-
gopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional networks for visual
recognition and description. In CVPR, 2015. 12

Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne, and Karsten Borgwardt. Scal-
able kernels for graphs with continuous attributes. In NIPS, 2013. 8

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. ICML, 2017. 6

Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. arXiv
preprint arXiv:1806.02817, 2018. 6

Pascal Jean Frey and Paul-Louis George. Mesh generation: application to finite elements. ISTE,
2007. 7

Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without forgetting. In
CVPR, 2018. 5,6, 13, 14

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. ICML, 2017. 2

Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Recasting gradient-
based meta-learning as hierarchical bayes. arXiv preprint arXiv:1801.08930, 2018. 6

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In NIPS, 2017. 8

Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016. 12

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jiirgen Schmidhuber, et al. Gradient flow in
recurrent nets: the difficulty of learning long-term dependencies, 2001. 1

https://openreview.net/forum?id=r1xYr3C5t7.
https://openreview.net/forum?id=r1xYr3C5t7.

Under review as a conference paper at ICLR 2019

Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten. Densely connected
convolutional networks. In CVPR, 2017. 7, 8, 12

Sergey Ivanov and Evgeny Burnaev. Anonymous walk embeddings. ICML, 2018. 8, 12

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. ICLR, 2017. 1,2,3,13

Nils M Kriege, Pierre-Louis Giscard, and Richard Wilson. On valid optimal assignment kernels and
applications to graph classification. In NIPS, 2016. 8

George A Miller. Wordnet: a lexical database for english. ACM, 1995. 6

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-
learner. ICLR, 2018. 6

Federico Monti, Michael Bronstein, and Xavier Bresson. Geometric matrix completion with recur-
rent multi-graph neural networks. In NIPS, 2017. 2, 13

Tsendsuren Munkhdalai and Hong Yu. Meta networks. CoRR, 2017. 6

Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang Liu, and Santhoshkumar Sam-
inathan. subgraph2vec: Learning distributed representations of rooted sub-graphs from large
graphs. arXiv preprint arXiv:1606.08928, 2016. 12

Marion Neumann, Novi Patricia, Roman Garnett, and Kristian Kersting. Efficient graph kernels by
randomization. In ECML PKDD, 2012. 8

Alex Nichol and John Schulman. Reptile: a scalable metalearning algorithm. arXiv preprint
arXiv:1803.02999, 2018. 6

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural net-
works for graphs. In ICML, 2016. 1, 8

Boris N Oreshkin, Alexandre Lacoste, and Pau Rodriguez. Tadam: Task dependent adaptive metric
for improved few-shot learning. arXiv preprint arXiv:1805.10123, 2018. 6

Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan L Yuille. Few-shot image recognition by predicting
parameters from activations. CoRR, 1, 2017. 6

Marc’ Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level train-
ing with recurrent neural networks. In ICLR, 2016. 12

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. ICLR, 2017. 5, 6

Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osin-
dero, and Raia Hadsell. Meta-learning with latent embedding optimization. arXiv preprint
arXiv:1807.05960, 2018. 6

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European Semantic
Web Conference, 2018. 2

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt. Ef-
ficient graphlet kernels for large graph comparison. In AISTATS, 2009. 8

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M Borg-
wardt. Weisfeiler-lehman graph kernels. JMLR, 2011. 8

Martin Simonovsky and Nikos Komodakis. Dynamic edgeconditioned filters in convolutional neural
networks on graphs. In CVPR, 2017. 8

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
NIPS, 2017. 6

10

Under review as a conference paper at ICLR 2019

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017. 1, 2, 3, 4, 5,
12

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. ICLR, 2018. 1,2, 3

Shaileshh Bojja Venkatakrishnan, Mohammad Alizadeh, and Pramod Viswanath. Graph2seq: Scal-
able learning dynamics for graphs. arXiv preprint arXiv:1802.04948, 2018. 12

Saurabh Verma and Zhi-Li Zhang. Hunt for the unique, stable, sparse and fast feature learning on
graphs. In NIPS, 2017. 8, 12

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence for sets.
ICLR, 2015. 8

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. In NIPS, 2016. 5, 6

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks.
CVPR, 2018a. 2

Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, and Ronald M Summers. Tienet: Text-image
embedding network for common thorax disease classification and reporting in chest x-rays. In
CVPR, 2018b. 7, 8

Kun Xu, Lingfei Wu, Zhiguo Wang, and Vadim Sheinin. Graph2seq: Graph to sequence learning
with attention-based neural networks. arXiv preprint arXiv:1804.00823, 2018. 12

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In ACM, 2015. 8

Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention generative
adversarial networks. ECCV, 2018a. 2

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In AAAZ, 2018b. 1

11

Under review as a conference paper at ICLR 2019

Appendices

A RELATED WORK

Our work is also close to Graph Attentional Multi-Label Learning (GAML) (,) which
studies graph representation learning via attention mechanism. However, our work differs in that
(1) GAML is proposed specifically for multi-label classification while GTR can not only be formu-
lated for multi-label classification, but also for graph-level classification and few-shot classification
which is shown in our three diverse experiments. Furthermore, GTR uses different mechanism for
multi-labeling by expanding extra classification layers to each graph node while GAML treats all
class labels are auxiliary nodes which are modeled in parallel with input graph nodes. (2) GAML
does not actually study transformation from one graph to another but only intra-graph message
passing by formulating all label nodes and input nodes into one unified graph. However, GTR
formulates input nodes and label nodes as separate graphs, and studies both intra- and inter-graph
message passing. This formulation is structure-agnostic and allows substantial difference between
input and label graphs including graph size, edges types, and graph node feature dimension. (3)
GTR uses different mechanism for multi-labeling by expanding extra classification layers to each
graph node while GAML treats all class labels are auxiliary nodes which are modeled in parallel
with input graph nodes. (4) GTR also can be easily extended to existing deep learning models such
as DenseNet (,) and ResNet (,) without significant change to the
deep network so as to explicitly and effectively uncover label relations and feature-label relations.
On the contrary, GAML requires extra configuration of the last layer of existing deep networks in
order to merge all labels nodes and features nodes into the same graph, and provides no flexibility to
feature dimension or edge types to the extended GAML. Our extensive set of experiments verify that
GTR serves better purposes of intra- and inter- graph message passing compared to several strong
baselines.

Compared to some previous/parellel work on graph transformation such as graph2vec (

,), graph2graph (,), graph2seq (, ,

), AWE (s), and FGSD (s), GTR proposes a novel
and unified strategy of formulating and learning from multi-modal data types such as visual features,
knowledge graphs and sequential text, where graph2vec (,) and graph2seq (

s ; s) can be seen as particular instances of GTR with vector or
sequence as output respectively. Besides, graph2graph (,) is specifically designed
for multi-label classification and its output in the conducted experiments is not actually graphs. As
explained in (), graph2graph does not following the conventional phrasing such as
Seq2Seq in which the output is a sequence, but just representing the input and output space as two
separate graphs. However, GTR indeed studies the graph to graph transformation, and follows the
convention where output can be graphs such as in medical abnormality and disease classification
task, as well as other data types (e.g., graph-level labels in graph classification task, and classifier
parameters in few-shot learning). Thus, GTR is at the core of graph to graph transformation, and
shows more flexibility towards application on a diverse set of tasks. GTR is also explainable as the
label prediction probability and learned edges/relations between labels can be visualized directly.
Additionally, AWE (,) uses random walk for graph representation learning
which is limited to local context encoding, and only uses predefined edge weights, while GTR en-
ables global context encoding via global attention mechanism and incorporation of predefined edge
weights and learnable edge weights. FGSD (,) uses graph spectral distances
for learning graph features which requires complex computation such as eigendecomposion while
our method does not require such cost. Furthermore, both AWE and FGSD use SVM as algorithm
for graph classification, while our method does not use any additional classifier.

B MEMORY COMPLEXITY

In terms of memory overhead, GTR scales linearly with the graph size thanks to the proposed global
attention mechanism. GTR does not require any additional memory compared to the standard Trans-
former (s) and recurrent neural networks (s

). Table 5 (second column) summarizes the memory complexity for sequence and graph out-

12

Under review as a conference paper at ICLR 2019

Output type | Memory Complexity of Each Layer Train Time Complexity = Test Time Complexity
Sequence O((N+M) * d) o(1) o)
Graph O((N+M) * d) O(1) O(1)
Table 5: Memory and time complexity of Graph Transformer. IV is the number of input graph nodes,
M is the number of output graph nodes, d is the models hidden state dimension. GTR scales linearly
with graph size, and uses constant time for training and testing on graph outputs.

Accuracy

Model 1-shot 5-shot

GTR (A =0.0) | 56.08 £0.79 % 72.12 £0.64 %
GTR (A =0.1) | 59.82+0.74 % 72.41 £0.65 %
GTR (A =0.2) | 60.73 £0.71 % 72.94 £0.63 %
GTR (A =10.3) | 61.24 £0.71 % 72.99 £0.62 %
GTR (A =0.4) | 61.07 £0.71 % 73.07 £0.64 %
GTR (A =0.5) | 61.43+0.69% 73.14 £0.64 %
GTR (A =0.6) | 61.17£0.70 % 72.95 £0.62 %
GTR (A =0.7) | 61.36 £0.71 % 73.21 +£0.63 %
GTR (A =0.8) | 60.85+0.70% 72.82 £0.65 %
GTR (A =0.9) | 61.58 £0.71 % 73.09 £0.63 %
GTR (A =1.0) | 61.56 £0.72 % 72.95 £0.64 %

Table 6: Accuracy on minilmageNet for 5-way 1-shot and 5-shot classification using different A
values. GT R(\ = z) indicates GT R using x importance weight on prior edges, and thus (1 —)
importance weight on learned edges. For GTR episodic training, we use initial learning rate 0.01,
and decrease by 10 times when encountering validation performance plateau. Feature extractor is
fixed during episodic training.

puts where Let N is the number of input graph nodes, M is the number of output graph nodes, d is
the models hidden state dimension.

C TIME COMPLEXITY

Compared to many graph neural networks (, ; s ;

,), GTR is more parallelizable and requires significantly less time to train as every graph
message propagation learns the global relations of all nodes, as opposed to only transferring features
to connected neighboring nodes in the case of graph convolutional networks (GCN), or propagating
previous states to subsequent states sequentially in the case of recurrent neural networks (RNN).
Furthermore, in case of graph output, GTR only requires constant training and testing time as the
joint probability of nodes/labels is not estimated using chain rules but predicted in parallel via global
attention mechanism. Table 5 (last two columns) summarizes the training time and testing time com-
plexity. Lastly, GTR does not suffer from vanished gradients due to the same merit of global context
encoding while vanished gradients being one of the biggest challenges of most RNNs and poten-
tially GCNs where only local context encoding is enabled. Last but not least, explicitly representing
latent features as knowledge graphs may hold the key to classification performance and explainabil-
ity. GTR enables intuitive visualizations for better understanding of the knowledge structure and
label relations, and explanation of the model behaviors.

D ABLATION STUDY ON WEIGHT OF PRIOR EDGES.

The results on few-shot learning using different weight of prior edges is shown in Table 6. The
highest 1-shot accuracy is achieved by A = 0.9. The highest 5-shot accuracy is achieved by A = 0.7.
The results demonstrate that: 1) GTR with prior category similarity improves few-shot learning
performance over its direct baseline framework () on both 1-shot and
5-shot learning, and achieves the state-of-the-art performance on 1-shot learning; 2) 1-shot learning
relies more on the prior knowledge of similarity between base and novel categories than 5-shot
learning; 3) GTR(A=0.0) is slightly lower than that achieved by (),
however not statistically significant, indicating that the attention mechanisms in both models have
similar effectiveness in this task.

13

Under review as a conference paper at ICLR 2019

Model F-Dim. H-Dim. | P-Size (M) Memory (G) Validation Accuracy Test Accuracy
3200 - 10.6638 0.0407 - 56.32£0.86%
3200 3200 87.2579 0.3409 62.0833+0.4356% 61.4333+0.6942%
3200 512 38.0314 0.1486 62.1060+0.4386% 60.6067+0.7231%

GTR 3200 256 33.3432 0.1303 61.722040.4415% 60.5933%0.7206%
2048 512 30.6823 0.1199 62.30871+0.4527% 61.0089+0.7210%
1024 512 15.4665 0.0546 62.2427+0.4464% 60.7222+0.6967%
512 512 7.8586 0.0278 62.1507+0.4427% 60.6778+0.7095%

Table 7: Accuracy on minilmageNet for 5-way 1-shot classification using different feature and hid-
den feature dimensions. We use initial learning rate 0.01, and decrease by 10 times when encoun-
tering validation performance plateau. All other hyper-parameters are fixed. We use 0.5 prior edge
weights. We compare GTR with its direct baseline Gidiaris et al. (,).
F-Dim. indicates feature dimension. H-Dim. indicates hidden feature dimension. P-Size indicates
parameter size.

E ABLATION STUDY ON MODEL SIZE

We conduct ablation study on how performance changes with parameter size/memory usage on 1-
shot learning by changing feature dimensions and hidden feature dimensions, and fixing all other
hyper-parameters. Table 7 summarizes the results. It can be observed that the performance drops
slightly when reducing either feature dimension or hidden feature dimension. However, all changes
are not statistically significant. Furthermore, the memory usage reduces greatly from 0.3409G to
0.0278G. More importantly, GTR using 512 as feature dimension and hidden feature dimension
(last row of Table 7) only consumes 0.0278G memory which is less than that used by

() (the first row of Table 7), and improved result greatly by 4.3578%. This demon-
strates that GTR is not only effective, but also memory efficient. Lastly, all results are still larger
than that of all baseline models, maintaining GTRs state-of-the-art performance. A line chart of
model size v.s. graph size is provided in Appendix.

14

