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ABSTRACT

We analyze the joint probability distribution on the lengths of the vectors of hidden
variables in different layers of a fully connected deep network, when the weights
and biases are chosen randomly according to Gaussian distributions, and the input
is in {−1, 1}N . We show that, if the activation function φ satisfies a minimal set
of assumptions, satisfied by all activation functions that we know that are used
in practice, then, as the width of the network gets large, the “length process”
converges in probability to a length map that is determined as a simple function of
the variances of the random weights and biases, and the activation function φ.
We also show that this convergence may fail for φ that violate our assumptions.

1 INTRODUCTION

The size of the weights of a deep network must be managed delicately. If they are too large, signals
blow up as they travel through the network, leading to numerical problems, and if they are too small,
the signals fade away. The practical state of the art in deep learning made a significant step forward
due to schemes for initializing the weights that aimed in different ways at maintaining roughly
the same scale for the hidden variables before and after a layer [9, 4]. Later work [7, 14, 2] took
into account the effect of the non-linearities on the length dynamics of a deep network, informing
initialization policies in a more refined way.

In this paper, we continue this line of work, theoretically analyzing what might be called the “length
process”. That is, for a given input, chosen for simplicity from {−1, 1}N , we study the probability
distribution over the lengths of the vectors of hidden variables, when the parameters of a deep
network are chosen randomly. We analyze the case of fully connected networks, with the same
activation function φ at each hidden node and N hidden variables in each layer. As in [14], we
consider the case where weights between nodes are chosen from a zero-mean Gaussian with variance
σ2
w/N , and where the biases are chosen from a zero-mean distribution with variance σ2

b .

Our first result holds for activation functions φ that satisfy the following properties: (a) the restriction
of φ to any finite interval is bounded; (b) as z gets large, |φ(z)| = exp(o(z2)); (c) φ is measurable.
We refer to such φ as permissible. Note that conditions (a) and (c) both hold for any non-decreasing
φ.

We show that, for all permissible φ and all σw and σb, as N gets large, the length process converges
in probability to a length map that is a simple function of φ, σw and σb. This length map was first
discovered in [14], where it was claimed that it holds for all φ; it has since been used in a number of
other papers [15, 17, 12, 10, 16, 1, 13, 5].

In Section 4, to motivate our new analysis, we provide examples of φ that are not permissible that
lead the length processes with arguably surprising properties. For example, we show that, for arbi-
trarily small positive σw, even if σb = 0, for φ(z) = 1/z, the distribution of values of each of the
hidden nodes in the second layer diverges as N gets large. For finite N , each node has a Cauchy
distribution, which already has infinite variance, and as N gets large, the scale parameter of the
Cauchy distribution gets larger, leading to divergence. We also show that the hidden variables in the
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second layer may not be independent, even for some permissible φ like the ReLU. The results of
this section contradict claims made in [14, 10].

Section 5 describes some simulation experiments verifying some of the findings of the paper, and
illustrating the dependence among the values of the hidden nodes.

Our analysis of the convergence of the length map borrows ideas from Daniely, et al. [2], who
studied the properties of the mapping from inputs to hidden representations resulting from random
Gaussian initialization. Their theory applies in the case of activation functions with certain smooth-
ness properties, and to a wide variety of architectures. Our analysis treats a wider variety of values
of σw and σb, and uses weaker assumptions on φ.

2 PRELIMINARIES

2.1 NOTATION

For n ∈ N, we use [n] to denote the set {1, 2, . . . , n}. If T is a n×m× p tensor, then, for i ∈ [n],
let Ti,:,: = 〈Ti,j,k〉jk, and define Ti,j,:, etc., analogously.

2.2 THE FINITE CASE

Consider a deep fully connected width-N network with D layers. Let W ∈ RD×N×N . An activa-
tion function φ maps R to R; we will also use φ to denote the function from RN to RN obtained
by applying φ componentwise. Computation of the neural activity vectors x0,:, ..., xD,: ∈ RN and
preactivations h1,:, ..., hD,: ∈ RN proceeds in the standard way as follows:

h`,: =W`,:,:x`−1,: + b`,: x`,: = φ(h`,:), for ` = 1, . . . , D.

We will study the process arising from fixing an arbitrary input x0,: ∈ {−1, 1}N and choosing the

parameters independently at random: the entries of W are sampled from Gauss
(
0,

σ2
w

N

)
, and the

entries of b from Gauss
(
0, σ2

b

)
. For each ` ∈ [D], define q` = 1

N

∑N
i=1 h

2
`,i.

Note that for all ` ≥ 1, all the components of h`,: and x`,: are identically distributed.

2.3 THE WIDE-NETWORK LIMIT

For the purpose of defining a limit, assume that, for a fixed, arbitrary function χ : N→ {−1, 1}, for
finiteN , we have x0,: = (χ(1), ..., χ(N)). For ` > 0, if the limit exists (in the sense of “convergence
in distribution”), let x` be a random variable whose distribution is the limit of the distribution of x`,1
as N goes to infinity. Define h` and q

`
similarly.

2.4 TOTAL VARIATION DISTANCE

If P and Q are probability distributions, then dTV (P,Q) = supE P (E)−Q(E), and if p and q are
their densities, dTV (P,Q) = 1

2

∫
|p(x)− q(x)| dx.

3 CONVERGENCE IN PROBABILITY

In this section we characterize the length map of the hidden nodes of a deep network, for all activa-
tion functions satisfying the following assumptions.

Definition 1 An activation function φ is permissible if, (a) the restriction of φ to any finite interval
is bounded; (b) |φ(x)| = exp(o(x2)) as |x| gets large.1; and (c) φ is measurable.

Conditions (b) and (c) ensure that a key integral can be computed. The proof of Lemma 1 is in
Appendix A.

1 This condition may be expanded as follows, limsupx→∞
log |φ(x)|

x2
= 0 and limsupx→−∞

log |φ(x)|
x2

= 0.
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Lemma 1 If φ is permissible, then, for all positive constants c, the function g defined by g(x) =
φ(cx)2 exp(−x2/2) is integrable.

Now, we recall the definition of a length map from [14]; we will prove that the the length process
converges to this length map. Define q̃0, ..., q̃D and r̃0, ..., r̃D recursively as follows. First q̃0 =
r̃0 = 1. Then, for ` > 0,

q̃` = σ2
w r̃`−1 + σ2

b

and
r̃` = Ez∈Gauss(0,1)[φ(

√
q̃`z)

2].

If φ is permissible, then, since φ(cz)2 exp(−z2/2) is integrable for all c, we have that
q̃0, ..., q̃D, r̃0, ..., r̃D are well-defined finite real numbers.

The following theorem shows that the length map q0, ..., qD converges in probability to q̃0, ..., q̃D.

Theorem 2 For any permissible φ, σw, σb ≥ 0, any depth D, and any ε, δ > 0, there is an N0 such
that, for all N ≥ N0, with probability 1− δ, for all ` ∈ {0, ..., D}, we have |q` − q̃`| ≤ ε.

The rest of this section is devoted to proving Theorem 2. Our proof will use the weak law of large
numbers.

Lemma 3 ([3]) For any random variable X with a finite expectation, and any ε, δ > 0, there is an
N0 such that, for all N ≥ N0, if X1, ..., XN are i.i.d. with the same distribution as X , then

Pr

(∣∣∣∣∣E[X]− 1

N

N∑
i=1

Xi

∣∣∣∣∣ > ε

)
≤ δ.

In order to divide our analysis into cases, we need the following lemma, whose proof is in Ap-
pendix B.

Lemma 4 If φ is permissible and not zero a.e., for all σw > 0, for all ` ∈ {0, ..., D}, q̃` > 0 and
r̃` > 0.

We will also need a lemma that shows that small changes in σ lead to small changes in Gauss(0, σ2).

Lemma 5 (see [8]) There is an absolute constant C such that, for all σ1, σ2 > 0,
dTV (Gauss(0, σ2

1),Gauss(0, σ2
2)) ≤ C

|σ1−σ2|
σ1

.

The following technical lemma is proved in Appendix C.

Lemma 6 If φ is permissible, for all 0 < r ≤ s, for all β > 0, there is an a ≥ 0 such that, for all
q ∈ [r, s],

∫∞
a
φ(
√
qz)2 exp(−z2/2) dz ≤ β and

∫ −a
−∞ φ(

√
qz)2 exp(−z2/2) dz ≤ β.

Armed with these lemmas, we are ready to prove Theorem 2.

First, if φ is zero a.e., or if σw = 0, Theorem 2 follows directly from Lemma 3, together with a
union bound over the layers. Assume for the rest of the proof that φ(x) is not zero a.e., and that
σw > 0, so that q̃` > 0 and r̃` > 0 for all `.

For each ` ∈ [D], define r` = 1
N

∑N
i=1 x

2
`,i.

Our proof of Theorem 2 is by induction. The inductive hypothesis is that, for any ε, δ > 0 there
is an N0 such that, if N ≥ N0, then, with probability 1 − δ, for all `′ ≤ `, |q`′ − q̃`′ | ≤ ε and
|r`′ − r̃`′ | ≤ ε.
The base case holds because q0 = q̃0 = r0 = r̃0 = 1, no matter what the value of N is.

Now for the induction step; choose ` > 0, 0 < ε < min{q̃`/4, r̃`} and 0 < δ ≤ 1/2. (Note that
these choices are without loss of generality.) Let ε′ ∈ (0, ε) take a value that will be described later,
using quantities from the analysis. By the inductive hypothesis, whatever the value of ε′, there is an
N ′0 such that, if N ≥ N ′0, then, with probability 1− δ/2, for all `′ ≤ `− 1, we have |q`′ − q̃`′ | ≤ ε′
and |r`′ − r̃`′ | ≤ ε′. Thus, to establish the inductive step, it suffices to show that, after conditioning
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on the random choices before the `th layer, if |q`−1 − q̃`−1| ≤ ε′, and |r`−1 − r̃`−1| ≤ ε′, there is
an N` such that, if N ≥ N`, then with probability at least 1 − δ/2 with respect only to the random
choices of W`,:,: and b`,:, that |q` − q̃`| ≤ ε and |r` − r̃`| ≤ ε. Given such an N`, the inductive step
can be satisfied by letting N0 be the maximum of N ′0 and N`.

Let us do that. For the rest of the proof of the inductive step, let us condition on outcomes of the
layers before layer `, and reason about the randomness only in the `th layer. Let us further assume
that |q`−1 − q̃`−1| ≤ ε′ and |r`−1 − r̃`−1| ≤ ε′.

Recall that q` = 1
N

∑N
i=1 h

2
`,i. Since we have conditioned on the values of h`−1,1, ..., h`−1,N ,

each component of h`,i is obtained by taking the dot-product of x`−1,: = φ(h`−1,:) with W`,i,:

and adding an independent b`,i. Thus, conditioned on h`−1,1, ..., h`−1,N , we have that h`,1, ..., h`,N
are independent. Also, since x`−1,: is fixed by conditioning, each h`,i has an identical Gaussian
distribution.

Since each component of W and b has zero mean, each h`,i has zero mean.

Choose an arbitrary i ∈ [N ]. Since x`−1,: is fixed by conditioning and W`,i,1, ...,W`,i,N and b`,i are
independent,

E[q`] = E[h2`,i] = σ2
b +

σ2
w

N

∑
j

x2`−1,j = σ2
b + σ2

wr`−1
def
= q`. (1)

We wish to emphasize the q` is determined as a function of random outcomes before the `th layer,
and thus a fixed, nonrandom quantity, regarding the randomization of the `th layer. By the inductive
hypothesis, we have

|E[q`]− q̃`| = |E[h2`,i]− q̃`| = |q` − q̃`| = σ2
w|r`−1 − r̃`−1| ≤ ε′σ2

w. (2)

The key consequence of this might be paraphrased by saying that, to establish the portion of the in-
ductive step regarding q`, it suffices for q` to be close to its mean. Now, we want to prove something
similar for r`. We have

E[r`] =
1

N

N∑
i=1

E[x2`,i] =
1

N

N∑
i=1

E[φ(h`,i)2] = E[φ(h`,1)2],

since h`,1, ..., h`,N are i.i.d. Recall that, earlier, we showed that h`,i ∼ Gauss(0, q`). Thus

E[r`] = Ez∼Gauss(0,q`)
[φ(z)2] = Ez∼Gauss(0,1)[φ(

√
q`z)

2] =

√
1

2π

∫
φ(
√
q`z)

2 exp(−z2/2) dz.

which gives

|E[r`]− r̃`| ≤
∣∣Ez∼Gauss(0,q`)

[φ(z)2]− Ez∼Gauss(0,q̃`)[φ(z)
2]
∣∣ .

Since |q` − q̃`| ≤ ε′σ2
w and we may choose ε′ to ensure ε′ ≤ q̃`

2σ2
w

, we have q̃`/2 ≤ q` ≤ 2q̃`.

For β > 0 and κ ∈ (0, 1/2) to be named later, by Lemma 6, we can choose a such that, for all
q ∈ [q̃`/2, 2q̃`],∫ −a

−∞
φ(
√
qz)2 exp(−z2/2) dz ≤ β/2 and

∫ ∞
a

φ(
√
qz)2 exp(−z2/2) dz ≤ β/2

and 1√
2πq

∫ a
−a exp

(
− z

2

2q

)
dz ≥ 1− κ. Choose such an a.
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We claim that
∣∣∣∫ a−a φ(√qz)2 exp(−z2/2) dz − ∫ φ(√qz)2 exp(−z2/2) dz∣∣∣ ≤ β for all q̃`/2 <

q ≤ 2q̃`. Choose such a q. We have∣∣∣∣∫ a

−a
φ(
√
qz)2 exp(−z2/2) dz −

∫
φ(
√
qz)2 exp(−z2/2) dz

∣∣∣∣
=

∫ −a
−∞

φ(
√
qz)2 exp(−z2/2) dz +

∫ ∞
a

φ(
√
qz)2 exp(−z2/2) dz

≤ 2max

{∫ −a
−∞

φ(
√
qz)2 exp(−z2/2) dz,

∫ ∞
a

φ(
√
qz)2 exp(−z2/2) dz

}
≤ β.

So now we are trying to bound
∣∣∣∫ a−a φ(√q`z)2 exp(−z2/2) dz − ∫ a−a φ(√q̃`z)2 exp(−z2/2) dz∣∣∣

using q̃`/2 ≤ q` ≤ 2q̃`.

Using changes of variables, we have∣∣∣∣∫ a

−a
φ(
√
q`z)

2 exp(−z2/2) dz −
∫ a

−a
φ(
√
q̃`z)

2 exp(−z2/2) dz
∣∣∣∣

=

∣∣∣∣∣ 1√
q`

∫ a
√
q`

−a
√
q`

φ(z)2 exp

(
− z2

2q`

)
dz − 1√

q̃`

∫ a
√
q̃`

−a
√
q̃`

φ(z)2 exp

(
− z2

2q̃`

)
dz

∣∣∣∣∣ .
Since φ is permissible, φ2 is bounded on [−a

√
2q̃`, a

√
2q̃`]. If P is the distribution obtained by con-

ditioning Gauss(0, q`) on [−a
√
q`, a
√
q`], and P̃ by conditioning Gauss(0, q̃`) on [−a

√
q̃`, a
√
q̃`],

then if M =
√
2π supz∈[−a

√
2q̃`,a

√
2q̃`]

φ(z)2, since q` ≤ 2q̃`,∣∣∣∣∣ 1√
q`

∫ a
√
q`

−a
√
q`

φ(z)2 exp(− z2

2q`
) dz − 1√

q̃`

∫ a
√
q̃`

−a
√
q̃`

φ(z)2 exp(− z2

2q̃`
) dz

∣∣∣∣∣ ≤MdTV (P, P̃ ).

But since, for κ < 1/2, conditioning on an event of probability at least 1 − κ only changes a
distribution by total variation distance at most 2κ, and therefore, applying Lemma 5 along with the
fact that |q` − q̃`| ≤ ε′σ2

w, for the constant C from Lemma 5, we get

dTV (P, P̃ ) ≤ 4κ+ dTV (Gauss(0, q`),Gauss(0, q̃`))

≤ 4κ+
C|
√
q` −

√
q̃`|√

q̃`

= 4κ+
C|q` − q̃`|

|
√
q` +

√
q̃`|
√
q̃`

≤ 4κ+
Cε′σ2

w

q̃`
.

Tracing back, we have∣∣∣∣∫ a

−a
φ(
√
q`z)

2 exp(−z2/2) dz −
∫ a

−a
φ(
√
q̃`z)

2 exp(−z2/2) dz
∣∣∣∣ ≤M (

4κ+
Cε′σ2

w

q̃`

)
which implies

|E[r`]− r̃`| ≤
∣∣∣∣∫ φ(

√
q`z)

2 exp(−z2/2) dz −
∫
φ(
√
q̃`z)

2 exp(−z2/2) dz
∣∣∣∣

≤M
(
4κ+

Cε′σ2
w

q̃`

)
+ 2β.

If κ = min{ ε
24M , 13}, β = ε

12 , and ε′ = min
{
ε
2 ,

ε
2σ2
w
, q̃`
2σ2
w
, q̃`ε
6CMσ2

w

}
this implies |E[r`] − r̃`| ≤

ε/2.
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Recall that q` is an average of N identically distributed random variables with a mean between 0
and 2q̃` (which is therefore finite) and r` is an average ofN identically distributed random variables,
each with mean between 0 and r̃`+ε/2 ≤ 2r̃`. Applying the weak law of large numbers (Lemma 3),
there is an N` such that, if N ≥ N`, with probability at least 1 − δ/2, both |q` − E[q`]| ≤ ε/2 and
|r` − E[r`]| ≤ ε/2 hold, which in turn implies |q` − q̃`| ≤ ε and |r` − r̃`| ≤ ε, completing the proof
of the inductive step, and therefore the proof of Theorem 2.

4 DIVERSITY OF BEHAVIOR IN THE DISTRIBUTION OF HIDDEN NODES

In this section, we show that, for some activation functions, the probability distribution of hidden
nodes can have some surprising properties.

4.1 NON-GAUSSIAN

In this subsection, we will show that the hidden variables are sometimes not Gaussian. Our proof
will refer to the Cauchy distribution.

Definition 2 A distribution over the reals that, for x0 ∈ R and γ > 0, has a density f given by
f(x) = 1

πγ
[
1+( x−x0γ )

2
] is a Cauchy distribution, denoted by Cauchy(x0, γ). Cauchy(0, 1) is the

standard Cauchy distribution.

Lemma 7 ([6]) If X1, ..., Xn are i.i.d. random variables with a Cauchy distribution, then
1
n

∑n
i=1Xi has the same distribution.

Lemma 8 ([11]) If U and V are zero-mean normally distributed random variables with the same
variance, then U/V has the standard Cauchy distribution.

The following shows that there is a φ such that the limiting h2 is not defined. It contradicts claims
made on line 7 of Section A.1 of [14] and line 7 of Section 2.2 of [10].

Proposition 9 There is a φ such that, for every σw > 0, if σb = 0, then (a) for finite N , h2,1 does
not have a Gaussian distribution, and (b) h2,1 diverges as N goes to infinity.

Proof: Consider φ defined by φ(y) =
{

1/y if y 6= 0
0 if y = 0.

Fix a value of N and σw > 0, and take σb = 0. Each component of h1,: is a sum of zero-mean
Gaussians with variance σ2

w/N ; thus, for all i, h1,i ∼ Gauss(0, σ2
w). Now, almost surely, h2,1 =∑N

j=1W2,1,jφ(h1,j) =
∑N
j=1W2,1,j/h1,j . By Lemma 8, for each j, W2,1,j/h1,j has a Cauchy

distribution, and since (NW2,1,1), ..., (NW2,1,N ) ∼ Gauss(0, Nσ2
w), recalling that h1,1, ..., h1,N ∼

Gauss(0, σ2
w), we have that NW2,1,1/h1,1, ..., NW2,1,N/h

1
N are i.i.d. Cauchy(0,

√
N). Applying

Lemma 7, h2,1 =
∑N
j=1W2,1,jφ(h2,j) =

1
N

∑N
j=1NW2,1,jφ(h1,j) is also Cauchy(0,

√
N).

So, for all N , h2,1 is Cauchy(0,
√
N). Suppose that h2,1 converged in distribution to some dis-

tribution P . Since the cdf of P can have at most countably many discontinuities, we can cover
the real line by a countable set of finite-length intervals [a1, b1], [a2, b2], ... whose endpoints are
points of continuity for P . Since Cauchy(0,

√
N) converges to P in distribution, for any i,

P ([ai, bi]) ≤ limN→∞
|bi−ai|
π
√
N

= 0. Thus, the probability assigned by P to the entire real line
is 0, a contradiction.

4.2 INDEPENDENCE

The following contradicts a claim made on line 8 of Section A.1 of [14].

Theorem 10 If φ is either the ReLU or the Heaviside function, then, for every σw > 0, σb ≥ 0, and
N ≥ 2, (h2,1, ..., h2,N ) are not independent.
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Proof: We will show that E[h22,1h22,2] 6= E[h22,1]E[h22,2], which will imply that h2,1 and h2,2 are not
independent.

As mentioned earlier, because each component of h1,: is the dot product of x0,: with an independent
row of W1,:,: plus an independent component of b1,:, the components of h1,: are independent, and
since x1,: = φ(h1,:), this implies that the components of x1,: are independent. Since each row of
W1,:,: and each component of the bias vector has the same distribution, x1,: is i.i.d.

We have

E[h22,1] = E


∑

i∈[N ]

W2,1,ix1,i

+ b2,1

2


=
∑

(i,j)∈[N ]2

E [W2,1,iW2,1,jx1,ix1,j ] +
∑
i∈[N ]

E [W2,1,ix1,ib2,1] + E
[
b22,1
]
.

The components ofW2,:,: and x1,:, along with b2,1, are mutually independent, so terms in the double

sum with i 6= j have zero expectation, and E[h22,1] =
(∑

i∈[N ] E
[
W 2

2,1,i

]
E
[
x21,i
])

+ E[b22,1]. For
a random variable x with the same distribution as the components of x1,:, this implies

E[h22,1] = σ2
wE
[
x2
]
+ σ2

b . (3)

Similarly,
E[h22,1h22,2]

= E


∑
i∈[N ]

W2,1,ix1,i + b2,1

2 ∑
i∈[N ]

W2,2,ix1,i + b2,2

2


=
∑

(i,j,r,s)∈[N ]4

E[W2,1,iW2,1,jW2,2,rW2,2,sx1,ix1,jx1,rx1,s]

+ 2
∑

(i,j,r)∈[N ]3

E[W2,1,iW2,1,jW2,2,rx1,ix1,jx1,rb2,2]+2
∑

(i,r,s)∈[N ]3

E[W2,1,iW2,2,rW2,2,sx1,ix1,rx1,sb2,1]

+ 4
∑

(i,r)∈[N ]2

E[W2,1,iW2,2,rx1,ix1,rb2,1b2,2]

+
∑

(i,j)∈[N ]2

E[W2,1,iW2,1,jx1,ix1,jb
2
2,2] +

∑
(r,s)∈[N ]2

E[W2,2,rW2,2,sx1,rx1,sb
2
2,1]

+ 2
∑
i∈[N ]

E[W2,1,ix1,ib2,1b
2
2,2] + 2

∑
r∈[N ]

E[W2,2,rx1,rb
2
2,1b2,2]

+ E[b22,1b22,2]

=
∑

(i,r)∈[N ]2,i6=r

E[W 2
2,1,iW

2
2,2,r]E[x21,i]E[x21,r] +

∑
i∈[N ]

E[W 2
2,1,iW

2
2,2,i]E[x41,i]

+
∑
i∈[N ]

E[W 2
2,1,i]E[x21,i]E[b22,2] +

∑
r∈[N ]

E[W 2
2,2,r]E[x21,r]E[b22,1]

+ E[b21,2b22,2]

=
(N2 −N)σ4

wE[x2]2

N2
+
Nσ4

wE[x4]
N2

+
2Nσ2

wE[x2]σ2
b

N
+ σ4

b

= σ4
wE[x2]2 +

σ4
w(E[x4]− E[x2]2)

N
+ 2σ2

wσ
2
bE[x2] + σ4

b .

Putting this together with (3), we have

E[h22,1h22,2]− E[h22,1]E[h22,2] =
σ4
w(E[x4]− E[x2]2)

N
. (4)

7
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(a) N = 10 (b) N = 100 (c) N = 1000

Figure 1: Histograms of h[2, :], averaged over 100 random initializations, for N ∈ {10, 100, 1000},
along with Cauchy(0,

√
N) (shown in green) and Gauss(0, σ2) for σ estimated from the data

(shown in red).

Now, we calculate the difference using (4) for the Heaviside and ReLU functions.

Heaviside. Suppose φ is Heaviside function, i.e. φ(z) is the indicator function for z > 0. In this
case, since the components of h1,: are symmetric about 0, the distribution of x1,: is uniform over

{0, 1}N . Thus E[x4] = E[x2] = 1/2, and so (4) gives E[h22,1h22,2]− E[h22,1]E[h22,2] =
3σ4
w

4N 6= 0.

ReLU. Next, we consider the case that φ is the ReLU. Recalling that, for all i, h1,i ∼ Gauss(0, σ2
w),

we have E[x2] = 1√
2πσ2

w

∫∞
0
z2 exp

(
−z2
2σ2
w

)
dz. By symmetry this is 1

2Ez∼Gauss(0,σ2
w)[z

2] = σ2
w/2.

Similarly, E[x4] = 1
2Ez∼Gauss(0,σ2

w)[z
4] = 3σ4

2 . Plugging these into (4) we get that, in the case the
φ is the ReLU, that

E[h22,1h22,2]− E[h22,1]E[h22,2] =
σ4
w

(
(3/2)σ4

w − σ4
w/4

)
N

=
5σ8

w

4N
> 0,

completing the proof.

4.3 UNDEFINED LENGTH MAP

Here, we show, informally, that for φ at the boundary of the second condition in the definition
of permissibility, the recursive formula defining the length map q̃` breaks down. Roughly, this
condition cannot be relaxed.

Proposition 11 For any α > 0, if φ is defined by φ(x) = exp(αx2), there exists a σw, σb s.t. q̃`, r̃`
is undefined for all ` ≥ 2.

Proof: Suppose σ2
w + σ2

b = 1
4α2 . Then q̃1 = 1

4α2 , so that

r̃1 =
1√
2π

∫ ∞
−∞

φ(
√
q̃1z) exp

(
−z

2

2

)
dz =

1√
2π

∫ ∞
−∞

exp(α
√
q̃1z

2) exp

(
−z

2

2

)
dz

=
1√
2π

∫ ∞
−∞

exp(z2/2) exp

(
−z

2

2

)
dz =∞,

and downsteam values of q̃` and r̃` are undefined.

5 EXPERIMENTS

Our first experiment fixed x[0, :] = (1, ..., 1), σw = 1, σb = 0, φ(z) = 1/z.

For each N ∈ {10, 100, 1000}, we (a) initialized the weights 100 times, (b) plotted the his-
tograms of all of the values of h[2, :], along with the Cauchy(0,

√
N) distribution from the proof

of Proposition 9, and Gauss(0, σ2) for σ estimated from the data. Consistent with the theory, the
Cauchy(0,

√
N) distribution fits the data well.

To illustrate the fact that the values in the second hidden layer are not independent, for N = 1000
and the parameters otherwise as in the other experiment, we plotted histograms of the values seen

8
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Figure 2: Histograms of h[2, :] for nine random weight initializations.

in the second layer for nine random initializations of the weights in Figure 2. When some of the
values in the first hidden layer have unusually small magnitude, then the values in the second hidden
layer coordinately tend to be large. This is in contrast with the claim made at the end of Section
2.2 of [10]. Note that this is consistent with Theorem 2 establishing convergence in probability for
permissible φ, since the φ used in this experiment is not permissible.
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A PROOF OF LEMMA 1

Choose c > 0. Since limsupx→∞
log |φ(x)|

x2 = 0 and limsupx→−∞
log |φ(x)|

x2 = 0, we also have
limsupx→∞

log |φ(cx)|
x2 = 0 and limsupx→−∞

log |φ(cx)|
x2 = 0. Thus, there is an a such that, for all

x 6∈ [−a, a], log |φ(cx)| ≤ x2

8 , which implies φ(cx)2 ≤ exp
(
x2

4

)
. Since φ is permissible, it is

bounded on [−a, a]. Thus, we have∫
φ(cx)2 exp(−x2/2) dx

=

∫ −a
−∞

φ(cx)2 exp(−x2/2)dx+

∫ a

−a
φ(cx)2 exp(−x2/2)dx+

∫ ∞
a

φ(cx)2 exp(−x2/2)dx

≤
∫ −a
−∞

exp(−x2/4)dx+

(
sup

x∈[−a,a]
φ(cx)2

)∫ a

−a
exp(−x2/2)dx+

∫ ∞
a

exp(−x2/4)dx

<∞
completing the proof.

B PROOF OF LEMMA 4

The proof is by induction. The base case holds since q̃0 = r̃0 = 1.

To prove the inductive step, we need the following lemma.

Lemma 12 If φ is not zero a.e., then, for all c > 0, Ez∈Gauss(0,1)(φ(cz)
2) > 0.

Proof: If µ is the Lebesgue measure, since
µ({x ∈ R : φ2(cx) > 0}) = lim

n→∞
µ({x : φ2(cx) > 1/n} ∩ [−n, n]) > 0,

there exists n such that µ({x : φ2(cx) > 1/n} ∩ [−n, n]) > 0. For such an n, we have

Ez∈Gauss(0,1)(φ(cz)
2) ≥ 1

n
e−n

2/2µ({x : φ2(cx) > 1/n} ∩ [−n, n]) > 0.

Returning to the proof of Lemma 4, by the inductive hypothesis, r̃`−1 > 0, which, since σw > 0,
implies q̃` > 0. Applying Lemma 12 yields r̃` > 0.

10
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C PROOF OF LEMMA 6

Since limsupx→∞
log |φ(x)|

x2 = 0 there is an b such that, for all x ≥ b, log |φ(x)| ≤ x2

8s , which implies

φ(x)2 ≤ exp
(
x2

4s

)
. Now, choose q ∈ [r, s]. For a = b/

√
r, we then have∫ ∞

a

φ(
√
qx)2 exp(−x2/2) dx

=
1
√
q

∫ ∞
a
√
q

φ(z)2 exp

(
−z

2

2q

)
dz

≤ 1
√
q

∫ ∞
a
√
q

exp

(
z2

4s

)
exp

(
−z

2

2q

)
dz

≤ 1
√
q

∫ ∞
a
√
q

exp

(
−z

2

4q

)
dz

≤ 1
√
q

∫ ∞
b

exp

(
−z

2

4q

)
dz.

By increasing b if necessary, we can ensure 1√
q

∫∞
b

exp
(
− z

2

4q

)
dz ≤ β which

then gives
∫∞
a
φ(
√
qx)2 exp(−x2/2) dx ≤ β. A symmetric argument yields∫ a

−∞ φ(
√
qx)2 exp(−x2/2) dx ≤ β, completing the proof.
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