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ABSTRACT

Ensuring robustness of Deep Neural Networks (DNNs) is crucial to their adoption
in safety-critical applications such as self-driving cars, drones, and healthcare.
Notably, DNNs are vulnerable to adversarial attacks in which small input per-
turbations can produce catastrophic misclassifications. In this work, we propose
EMPIR, ensembles of quantized DNN models with different numerical precisions,
as a new approach to increase robustness against adversarial attacks. EMPIR is
based on the observation that quantized neural networks often demonstrate much
higher robustness to adversarial attacks than full precision networks, but at the
cost of a substantial loss in accuracy on the original (unperturbed) inputs. EM-
PIR overcomes this limitation to achieve the “best of both worlds”, i.e., the higher
unperturbed accuracies of the full precision models combined with the higher ro-
bustness of the low precision models, by composing them in an ensemble. Further,
as low precision DNN models have significantly lower computational and storage
requirements than full precision models, EMPIR models only incur modest com-
pute and memory overheads compared to a single full-precision model (<25%
in our evaluations). We evaluate EMPIR across a suite of DNNs for 3 different
image recognition tasks (MNIST, CIFAR-10 and ImageNet) and under 4 different
adversarial attacks. Our results indicate that EMPIR boosts the average adversar-
ial accuracies by 42.6%, 15.2% and 10.5% for the DNN models trained on the
MNIST, CIFAR-10 and ImageNet datasets respectively, when compared to single
full-precision models, without sacrificing accuracy on the unperturbed inputs.

1 INTRODUCTION

The success of Deep Neural Networks (DNN5s) in different machine learning tasks has fueled their
use in safety-critical applications like autonomous cars, unmanned aerial vehicles and healthcare,
wherein errors (misclassifications) made by DNNs can lead to severe — in the extreme case, fatal
— consequences. Therefore, robustness, i.e., the ability to cope with erroneous or malicious inputs
fed to an application, is emerging as an important requirement for DNNs.

Several efforts have in fact shown that DNNs behave in unexpected and incorrect ways for small,
specifically designed input perturbations (Goodfellow et al. (2014)). An attacker can take advan-
tage of this behavior to intentionally modify the inputs in a manner that forces the DNN model to
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mis-classify, and the overall system that uses the DNN to fail. A variety of methods for launching
adversarial attacks on DNNs have been proposed over the years. These adversarial attacks system-
atically modify a given original input to cause a misclassification while keeping the input distortion
minimal. A few examples of adversarial attacks that have been successfully applied to various DNN
models are the Fast Gradient Sign Method (FGSM) (Goodfellow et al. (2014)), Jacobian-based
Saliency Map Attack (JSMA) (Papernot et al. (2015)), Carlini-Wagner (CW) (Carlini & Wagner
(2016)) and the Basic Iterative Method (BIM) (Kurakin et al. (2016)).

Prior works have tried to overcome these vulnerabilities by proposing various defense mechanisms
against adversarial attacks. Adversarial training (Goodfellow et al. (2014)), defensive distillation
(Papernot et al. (2015)) and input gradient regularization (Ross & Doshi-Velez (2017)) are a few
representative defense techniques. Each of these approaches, albeit promising, has limitations with
respect to the kind of attacks they can defend against, the increase in training complexity, as well
as their effect on the model’s accuracy on the original unperturbed inputs. To address these short-
comings, we propose EMPIR, an ensemble of mixed precision ! DNN models, as a new form of
defense against adversarial attacks and demonstrate that it can significantly improve the robustness
of a variety of DNN models across a wide range of adversarial attacks.

Ensembles have been widely explored as an approach to improve the performance of machine learn-
ing models and classifiers (Hansen & Salamon (1990)). Examples of various successful ensembling
methods include averaging, bagging (Breiman (1996)), boosting (Dietterich (2000)), efc. Recently,
it has also been suggested that ensembles may help boost the robustness of DNNs (Strauss et al.
(2017); Pang et al. (2019); He et al. (2017); Tramer et al. (2017)). The individual models in these
ensembles are restricted to full precision DNN models, i.e., models utilizing 32 bits of numeri-
cal precision to represent different data-structures. Such ensembles are very expensive in terms of
the computational and memory overhead (e.g., 10x the baseline for an ensemble with 10 models
(Strauss et al. (2017))). In contrast, the use of quantized models in EMPIR, which entail the use of
significantly lower number of bits in storage and compute, ensures that the overhead is modest (less
than 25% in our evaluations).

Quantized DNNs are characterized by the use of lower numbers of bits to represent DNN data-
structures like weights and activations (Venkataramani et al. (2014); Hubara et al. (2017); Zhou
et al. (2016); Courbariaux et al. (2015)). They have been widely explored as an approach to reduce
the high computational and memory demands of DNNs. Recent studies have also observed that
these quantized models demonstrate higher robustness to adversarial attacks (Galloway et al. (2017);
Siraj Rakin et al. (2018); Panda et al. (2019)). However, the loss in information associated with the
quantization process often makes these quantized models perform significantly worse than their full-
precision counterparts while classifying the original unperturbed inputs. This motivates the design
of EMPIR, which successfully combines the higher robustness of low-precision models with the
higher unperturbed accuracy of the full-precision models. In the general case, EMPIR comprises
of M full-precision models and N low-precision models with the final prediction determined by an
ensembling technique such as averaging the probabilities or counting the number of predictions for
each class. In practice, we find that A/ = 1 and N = 2 or 3 provides a significant improvement in
adversarial accuracy with small overheads.

In summary, the key contributions of this work are

e We propose the use of ensembles of mixed precision models as a defense against adversarial
attacks on DNNs.

e We analyze the effect of ensemble size and ensembling techniques on the overall robustness
as well as the computational and storage overheads of the ensemble.

e Across a suite of 3 different DNN models under 4 different adversarial attacks, we demon-
strate that EMPIR exhibits significantly higher robustness when compared to individual
models as well as ensembles of full-precision models.

'Here, the term precision refers to the numerical precision of the models, or the number of bits used to
represent their weights and activations.
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2 ADVERSARIAL ATTACKS: BACKGROUND

Adversarial attacks modify inputs in a manner that force a DNN model to misclassify, while ensur-
ing that the input changes are small and imperceptible to human eyes. In the context of DNNs that
operate on images, which are the focus of most prior work, various attack methods have been pro-
posed to systematically modify pixel values in the input image so as to result in a mis-classification.
A few such methods are described below.

Fast Gradient Sign Method (FGSM) (Goodfellow et al. (2014)). FGSM is a single-step at-
tack that operates by calculating the gradient of the loss function with respect to the input pixels
(V.L(6,X,Y)). Based on the sign of the loss, the input pixels are increased or decreased by a small
constant, €, to help move the image towards the direction of increased loss. The adversarial input,
Xadv can be computed as:

Kadv = X + €Sign(v,L(0,X,Y)) (D)
Here, X is the original input image associated with an output Y and 6 refers to the weights of the
network.

Basic Iterative Method (BIM) (Kurakin et al. (2016)). BIM is an iterative version of the FGSM at-
tack which performs a finer optimization by modifying pixels by small values in each iteration. Fur-
ther, the image generated in each iteration has its pixel values clipped to ensure minimal distortion.
Mathematically, this attack can be described as:

X0y =X, XN = Clipx XN, + aSign(V.L(O, X 1))} )

adv adv adv
Here, the terms X, Y, 6 and e have the same meaning as in Equation 1 and X é\év refers to the
adversarial input generated at the N*" iteration and « is the step size in each iteration.

Carlini-Wagner (CW) (Carlini & Wagner (2016)). CW is another iterative attack that employs
optimizers to create strong adversarial inputs by simultaneously minimizing the input distortion and
maximizing the misclassification error. It can be described mathematically as:

mginnang + ¢+ f(X + 6) such that (X + §) € [0,1]"

f(X) = maX(r?gg{Z(X)i} = Z(X)t,0) 3)
Xado = X + 0

where § is the input distortion, ¢ is the Lagrangian multiplier, Z (X)) is the logit output for the input
X, t is the target class and f(X) is an objective function that satisfies the condition f(X + J) <0
for all misclassifications.

Projected Gradient Descent (PGD) (Madry et al. (2017)). PGD is a third type of iterative attack
very similar in nature to the BIM attack. Unlike BIM, which starts with the original image itself,
PGD starts with a random perturbation of the original input image. PGD can be described by the
following equations:

X0 = X 4 randomUni form(shape(X), {—¢, €})

adv
“4)
XN = Clipx X2, + aSign(VoL(0, X2, 9))}

Here, the terms X, Y, X é\fiv, 0, € and o have the same meaning as in Equation 2.

To summarize, different adversarial attacks have been proposed that expose the lack of robustness
in current DNN models by constructing adversarial inputs that force a misclassification. Developing
defenses to these adversarial attacks is critical to enable the deployment of DNNss in safety-critical
systems.

3 EMPIR: ENSEMBLES OF MIXED PRECISION DEEP NETWORKS FOR
INCREASED ROBUSTNESS AGAINST ADVERSARIAL ATTACKS

To improve the robustness of DNN models, we propose EMPIR, or ensembles of mixed precision
models. In this section, we will detail the design of EMPIR models and discuss the overheads
associated with them.
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3.1 ADVERSARIAL ROBUSTNESS OF LOW-PRECISION NETWORKS

DNNs have conventionally been designed as full precision models utilizing 32-bit floating point
numbers to represent different data-structures like weights, activations and errors. However, the
high compute and memory demands of these full-precision models have driven efforts to move
towards quantized or low-precision DNNs (Venkataramani et al. (2014); Hubara et al. (2017); Zhou
et al. (2016); Courbariaux et al. (2015); Wang et al. (2018)). A multitude of quantization schemes
have been proposed to minimize the loss of information associated with the quantization process.
While our proposal is agnostic to the quantization method used, for the purpose of demonstration we
adopt the quantization scheme proposed in DoReFaNet (Zhou et al. (2016)), which has been shown
to produce low-precision models with competitive accuracy values. The quantization scheme can be
described by Equation 5.

quantizey(x) = round((2¥ — 1) - z)

2k — 1
tanh(w) 1
3 maz(tanh(@))) T 2/

(&)

wy, = 2 - quantizey( —1, ax = quantizeg(a)

where k refers to the number of quantization bits in the low precision network, w and wy, refer to
weight values before and after quantization, and a and ay, refer to activation values before and after
quantization.
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Figure 1: Unperturbed accuracies and adversarial accuracies Figure 2: Overview of EMPIR
of low-precision models trained for the MNIST dataset

In addition to the widely known advantages of reduced model size and reduced complexity of arith-
metic computations, recent research efforts have also brought to light another lesser known advan-
tage of low-precision models in the form of increased robustness to adversarial attacks. It has been
observed that low-precision models in general exhibit higher values of adversarial accuracy than
full-precision models with identical network structures (Galloway et al. (2017); Panda et al. (2019)).
One possible explanation for this property is that higher quantization introduces higher amounts of
non-linearity, which prevents small changes in the input from drastically altering the output and
forcing a misclassification (Galloway et al. (2017)). Figure 1 shows the adversarial accuracies of
different low precision models trained on the MNIST dataset under the FGSM attack. Unlike the
activations and weights, the gradients utilized in the attack generation process were not quantized,
allowing the adversary to launch a stronger attack. From the figure, it is apparent that models with
lower numbers of bits used for representing weights and activations exhibit significantly higher lev-
els of adversarial accuracy.

However, increasing the robustness of a system by simply replacing the full-precision model with
its low-precision variant can negatively impact its accuracy on the original unperturbed inputs (un-
perturbed accuracy). In other words, the model may now start to mis-classify inputs that were not
adversarially perturbed. Figure 1 also shows the unperturbed accuracies of low-precision models.
As expected, models with weights and activations represented using lower numbers of bits exhibit
lower unperturbed accuracies.

Based on the above observations, we propose the use of ensembles of mixed-precision models to
achieve the best of both worlds, i.e., increase robustness against adversarial attacks without sacrific-
ing the accuracy on unperturbed inputs.
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3.2 EMPIR: OVERVIEW

Figure 2 presents an overview of EMPIR. In the general case, an EMPIR model comprises of M full-
precision (FP) models and N low-precision (LP) models. The full-precision models help in boosting
the unperturbed accuracy of the overall model, while the low-precision models contribute towards
higher robustness. All the individual models are fed the same input and their predicted classes or
probabilities are combined with the help of an ensembling technique at the end to determine the
final prediction of the EMPIR model. In practice, we found that a single full-precision model (M=1)
and a small number of low-precision models (N=2 or 3) are sufficient to achieve high adversarial
accuracies without any noticeable compromises in the unperturbed accuracies.

The ensembling function plays a vital role in the overall performance of the model as it determines
the final classification boundary. In this work, we consider two of the most commonly used en-
sembling functions, namely, averaging and max voting. The averaging function averages the output
probabilities of each model and identifies the class with the maximum average probability as the fi-
nal predicted class. On the other hand, max voting considers the predictions of each model as votes
and determines the class with the maximum number of votes to be the final class. In our experi-
ments, we found that averaging achieves better adversarial accuracies on ensembles of size 2 while
max voting achieves better adversarial accuracies on ensembles of size greater than 2.

In order to allow an ensemble model to work better than a single model, the individual models
should also be designed to be diverse (Hansen & Salamon (1990)). This ensures that the models
dont produce similar errors and hence, that the probability of two models misclassifying the same
input is lower. We introduce diversity in the individual models of EMPIR by training them with
different random initializations of weights.

3.3 COMPUTATIONAL AND MEMORY COMPLEXITY OF EMPIR

The ensembling of multiple full-precision and low-precision models in EMPIR increases its com-
putational and storage requirements as these models need to be stored and evaluated. In this work,
we keep these memory and computational complexities within reasonable limits by restricting the
precision of weights and activations in the low-precision models of EMPIR to a maximum of 4 bits.

The increasing popularity of low-precision DNN models has prompted recent hardware platforms
including GPUs and neural network accelerators to add native hardware support for operating on low
precision data (Fleischer et al. (2018); Kilgariff et al. (2019)). These hardware platforms reconfigure
a common datapath to perform computations on full-precision data (32 or 64 bits) as well as low-
precision data (4, 8 or 16 bits). Low-precision operations can achieve higher throughputs than
full-precision operations on these platforms as the same number of compute elements and the same
amount of memory bandwidth can support a larger number of concurrent operations. Consequently,
the additional execution time required to evaluate the low-precision models in EMPIR is much less
than that of a full-precision model. Overall, we quantify the execution time and storage overhead of
an EMPIR model using the formula described by Equation 6.

N

TimeOverhead{ EMPIR(M,N)} = M+ Ops-per-sec(F'P)
=1

Ops_per_sec(k;)

(6)

N

k;
StorageOverhead{ EMPIR(M,N)} = M + Z P
i=1

where k; is the precision of the i*" low-precision model, F P is the precision of the full-precision

models, and Ops_per_sec(b) is the throughput of b bit operations on the underlying hardware plat-
form.

4 EXPERIMENTS

In this section, we describe the experiments performed to evaluate the advantages of EMPIR models
over baseline full-precision models.
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4.1 BENCHMARKS

We studied the robustness of EMPIR models across three different image recognition DNNs, namely,
MNISTconv, CIFARconv and AlexNet. The individual full-precision and-low precision networks
within the EMPIR models were designed to have identical network topologies. The details of the
individual networks in these benchmarks are listed in Table 3 within Appendix A. The benchmarks
differ in the number of convolutional layers, fully connected layers as well as the datasets. We
consider three different datasets, namely, MNIST (Lecun et al. (1998)), CIFAR-10 (Krizhevsky
(2009)) and ImageNet (Deng et al. (2009)) which vary significantly in their complexity. The low
precision networks were obtained using the quantization scheme proposed in DoReFa-Net (Zhou
et al. (2016)). The full precision models were trained using 32 bit floating point representations for
all data-structures.

4.2 EVALUATION OF ROBUSTNESS

We implemented EMPIR within TensorFlow (Abadi et al. (2015)) and have released the source code
for our implementation 2. The robustness of the EMPIR models was measured in terms of their
adversarial accuracies under a variety of white-box attacks within the Cleverhans library (Papernot
et al. (2018)). We specifically consider the four adversarial attacks described in Section 2. The
adversarial parameters for the attacks on the different benchmarks are presented in Table 1. The
attacks were generated on the entire test dataset for each of the benchmarks. Generating these
white-box attacks involves computation of the gradient V,L(#, X,Y") (Section 2), which is not
directly defined for ensembles. For the EMPIR models, we compute this gradient as an average over
all individual models for an averaging ensemble and as an average over the individual models that
voted for the final identified class for a max-voting ensemble.

Network Cw FGSM BIM PGD
MNISTconv itera?ig?lz]; 50 < 03 N(f.:o(;'i;rati;zguo Ns.:o(;‘ft’erati):nggzo
CIFARconv itera?ig?;]; 50 < 0.1 N(f.:o(;.iltlirat(iyo:nzguo Ns.:o(;‘ilt’erati):nggzo

AlexNet Attack = 0.1 e=0.1, «=0.01 e=0.1, «a=0.01

iterations = 50

No. of iterations = 40

No. of iterations = 5

Table 1: Attack parameters

5 RESULTS

In this section, we present the results of our experiments highlighting the advantages of EMPIR mod-
els.

5.1 ROBUSTNESS OF EMPIR MODELS ACROSS ALL ATTACKS

Table 2 presents the results of our experiments across different benchmarks. The EMPIR mod-
els presented in the table are the ones exhibiting highest average adversarial accuracies under
the constraints of <25% compute and memory overhead and <2% loss in unperturbed accuracy.
We observed that across all the benchmarks, ensembles comprised of two low-precision and one
full-precision model combined with the max-voting ensembling technique satisfy these constraints.
However, the individual configurations of the low-precision models, i.e., the precisions of weights
and activations in the ensembles, differ across the benchmarks. For example, both low-precision
models in the EMPIR model for MNISTconv have weight precisions of 2 bits and activation pre-
cisions of 4 bits. On the other hand, the two low-precision models in the AlexNet EMPIR model
have {weight,activation} bit-precisions of {2,2} and {4,4}, respectively. In general, we observe that

https://github.com/sancharisen/EMPIR
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Unperturbed Adversarial Accuracy (%)
Network Approach Accuracy (%) CW FGSM BIM PGD Average

Baseline FP 98.87 3.69 14.32 0.9 0.77 4.92

EMPIR 98.89 86.73 67.06 18.61 17.51 47.48

Defensive Distill. 98.12 234  40.22 7.61 3.28 13.36

MNISTconv Inp. Grad. Reg. 99.01 6.83 30.15 1.14 1.20 9.83

FGSM Adv. Train 99.06 309 7656 0.87 039 20.23
EMPIR (FGSM

Adyv. Train) 99.09 90.54 7598 33.16 5.17 51.21

Baseline FP 74.54 13.38 10.28 11.97 10.69 11.58

EMPIR 72.56 48.51 2045 24.59 13.55 26.78

CIFAR FGSM Adyv. Train 72.36 1436 4158 1292 11.24 20.03
oV EMPIR (FGSM

Adyv. Train) 73.62 4573 31.67 29.55 14.74 3042

PGD Adyv. Train 73.55 12.62 1245 1097 8.52 11.14

AlexN Baseline FP 53.23 9.94 10.29 10.81 10.30 10.34

exNet EMPIR 55.09 29.36 21.65 20.67 11.76 20.86

Table 2: Unperturbed and adversarial accuracies of the baseline and EMPIR models across different
attacks

the EMPIR models exhibit substantially higher adversarial accuracies across all attacks for the three
benchmarks.

We also compare the benefits of EMPIR with four other popular approaches for increasing robust-
ness, namely, defensive distillation (Papernot et al. (2015)), input gradient regularization (Ross &
Doshi-Velez (2017)), FGSM based adversarial training (Goodfellow et al. (2014)) and PGD based
adversarial training (Madry et al. (2017)). The distillation process was implemented with a softmax
temperature of 7' = 100, the gradient regularization was realized with a regularization penalty of
A = 100, while the adversarial training mechanisms utilized adversarial examples generated with
a maximum possible perturbation of ¢ = 0.3. Table 2 presents the results for the approaches that
were able to achieve <5% loss in unperturbed accuracy for a particular benchmark. We observe
that FGSM based adversarial training significantly boosts the adversarial accuracies of the MNIST-
conv and CIFARconv models under the FGSM attack but is unable to increase the accuracies un-
der the other three attacks, often hurting them in the process. A similar result is observed for the
MNISTconv model trained with defensive distillation and gradient regularization. In contrast, EM-
PIR successfully increases the robustness of the models under all four attacks. In fact, it can even be
combined with the other approaches to further boost the robustness, as evident from the adversar-
ial accuracies of an EMPIR model comprising of adversarially trained models for the MNISTconv
and CIFARconv benchmarks. EMPIR also achieves a higher adversarial accuracy than PGD based
adversarial training for the CIFARconv benchmark. Overall, EMPIR increases robustness with zero
training overhead, as opposed to considerable training overheads associated with the other defense
strategies like adversarial training, defensive distillation and input gradient regularization.

5.2 COMPARISON WITH INDIVIDUAL MODELS

Figure 3(a) illustrates the tradeoff between the adversarial and unperturbed accuracies of the individ-
ual DNN models and EMPIR models for two of the benchmarks under the CW attack. The circular
blue points correspond to individual models with varying weight and activation precisions while the
red diamond points correspond to the EMPIR models presented in Section 5.1. The figure clearly
indicates that the EMPIR models in both the benchmarks are notably closer to the desirable top right
corner with high unperturbed as well as high adversarial accuracies. Among the individual mod-
els, the ones demonstrating higher adversarial accuracies but lower unperturbed accuracies (towards
the top left corner) correspond to lower activation and weight precisions while those demonstrating
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lower adversarial accuracies and higher unperturbed accuracies (towards the bottom right corner)
correspond to higher activation and weight precisions.

5.3 ANALYSIS OF CONFUSION MATRICES

Figure 3(b) presents the confusion matrices of the baseline FP model and the EMPIR model for
the MNISTconv benchmark under the FGSM attack. The actual ground truth class labels are listed
vertically while the predicted labels are listed horizontally. The colors represent the number of
images in the test dataset that correspond to the combination of actual and predicted class labels.
The diagonal nature of EMPIR’s confusion matrix clearly illustrates its superiority over the FP
model, which frequently misclassifies the generated adversarial images.

5.4 IMPACT OF VARYING THE NUMBER OF LOW-PRECISION AND FULL-PRECISION MODELS

In this subsection, we vary the number of low-precision and full-precision models in EMPIR be-
tween 0 and 3 to observe its effect on the unperturbed and adversarial accuracies of the MNISTconv
benchmark under the FGSM attack. We also measure the execution time and memory footprint of
the EMPIR models to quantify their overheads with respect to a baseline single full-precision model.
We restrict the low-precision models to have weight and activation precisions between 2 and 4 bits
and choose the configurations that maximize the adversarial accuracies of the EMPIR models while
introducing <1% drop in unperturbed accuracies.

Figure 4 presents the results of this experiment. Figure 4(a) and (b) clearly indicates that a higher
number of low-precision models in EMPIR helps in boosting the adversarial accuracies while a
higher number of full-precision models help in boosting the unperturbed accuracies. For instance,
an EMPIR model comprising of only three low-precision models demonstrates unperturbed and ad-
versarial accuracies of 98.8% and 56.9% respectively while an EMPIR model comprising of only
three full-precision models demonstrates unperturbed and adversarial accuracies of 99.2% and 31%,
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respectively. The execution time and memory footprint associated with the former are only 0.38x
and 0.25 x over the baseline, as opposed to 3x in case of the latter. Overall, we observe that an EM-
PIR model comprising of a single full-precision model and two low-precision models (configuration
presented in Table 2) achieves a good balance between adversarial and unperturbed accuracies with
modest execution time and storage overheads.

6 RELATED WORK

Popular defense strategies against adversarial attacks include adversarial training, defensive distilla-
tion and input gradient regularization. Adversarial training (Goodfellow et al. (2014); Madry et al.
(2017)) involves modifying the loss function to include the adversarial loss term, which tries to re-
duce the effect of input perturbations. Defensive distillation (Papernot et al. (2015)), on the other
hand, is based on the technique of distillation that was originally proposed to efficiently transfer
knowledge across different DNN models. It involves training networks on the output probabilities
of classes instead of the conventional approach of training on hard output class labels. As shown in
Table 2, the benefits of these techniques are limited to only one or a couple of adversarial attacks.
In contrast, EMPIR is able to boost the adversarial accuracies of DNNs across all four white-box
attacks considered here.

Recent efforts have also proposed the use of ensembles of full precision models for defending DNNs
against adversarial attacks (Strauss et al. (2017); Pang et al. (2019); He et al. (2017); Tramer et al.
(2017)) However, the presence of multiple full-precision models in these ensembles increases the
compute and memory requirements significantly (10x for an ensemble with 10 models in Strauss
et al. (2017)), which prevents the application of this approach to larger state-of-the art models. In
contrast, with the use of low precision models in the ensemble, we are able to reduce the overhead
significantly and restrict it to <25%. Also, as shown in Figure 4, mixed-precision ensembles demon-
strate higher adversarial accuracies than the full-precision ensembles for identical number of models
in the ensemble.

In addition to the above efforts, there have been a parallel set of efforts studying the robustness of
low-precision or quantized DNNs. For example, binary neural networks with single bit precisions
for weights and activations have been shown to exhibit higher adversarial robustness than their full-
precision counterparts on different white-box attacks (Galloway et al. (2017); Panda et al. (2019)).
Stochastic quantization of activations has also been proposed as an approach to make DNNs more
robust (Siraj Rakin et al. (2018)). However, as shown in Figure 1, the individual quantized models
in these efforts often demonstrate lower accuracies on unperturbed or clean examples due to the loss
in information associated with the quantization process. On the other hand, the combination of full-
precision models along with low-precision models in EMPIR helps to overcome this limitation and
achieve the best of both worlds — higher robustness combined with high unperturbed accuracy.

7 CONCLUSION

As deep neural networks get deployed in applications with stricter safety requirements, there is a dire
need to identify new approaches that make them more robust to adversarial attacks. In this work,
we boost the robustness of DNNs by designing ensembles of mixed-precision DNNs. In its most
generic form, EMPIR comprises of M full-precision DNNs and N low-precision DNNs combined
through ensembling techniques like max voting or averaging. EMPIR combines the higher robust-
ness of low-precision DNNs with the higher unperturbed accuracies of the full-precision models.
Our experiments on 3 different image recognition benchmarks under 4 different adversarial attacks
reveal that EMPIR is able to significantly increase the robustness of DNNs without sacrificing the
accuracies of the models on unperturbed inputs.
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A BENCHMARK DETAILS

Network Dataset Configuration

Conv(8x8x64), ReLU, Conv(6x6x128), ReLU,

MNISTconv ~ MNIST Conv(5x5x 128), ReLU, Fully_ Connected(10), SoftMax

Conv(5x5x32), ReLU, MaxPool(3 x3), Conv(8x8x64), ReLU
CIFARconv  CIFAR-10 AvgPool(3%3), Conv(8x8x64), ReLU, AvgPool(3x3),
Fully_Connected(64), Fully_Connected(10), SoftMax

Conv(12x12x96), ReLU, Conv(5x5x256), BatchNorm,
ReLU, MaxPool(3x3), Conv(3 x3x384), BatchNorm, ReL.U,
MaxPool(3x3), Conv(3x3x384), BatchNorm, ReLLU,
Conv(3x3x256), BatchNorm, ReLU, MaxPool(3 x 3),
Fully_Conn(4096), BatchNorm, ReLU, Fully_Conn(4096),
BatchNorm, ReLU, Fully_Conn(1000), SoftMax

AlexNet ImageNet

Table 3: Benchmarks

B ROBUSTNESS TO ATTACKS OF VARYING STRENGTHS

To further illustrate the benefits of EMPIR, we observed its robustness under attacks of varying
strength. We specifically varied the e value in the FGSM attack between 0.1 and 0.8 and the number
of attack iterations in the CW attack between 10 and 90, and measured the adversarial accuracies of
the EMPIR model as well as the baseline FP model for the MNISTconv benchmark. Figure 5 clearly
illustrates that EMPIR exhibits higher adversarial accuracies across attacks of different strengths for
both FGSM and CW.

FGSM attack CW attack
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Figure 5: (a) Adversarial accuracies under FGSM attack of varying strength (b) Adversarial accura-
cies under CW attack of varying strength
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