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Abstract

A key goal in neuroscience is to understand brain mechanisms of cognitive func-
tions. An emerging approach is to study “brain states” dynamics using functional
magnetic resonance imaging (fMRI). So far in the literature, brain states have
typically been studied using 30 seconds of fMRI data or more, and it is unclear
to which extent brain states can be reliably identified from very short time series.
In this project, we applied graph convolutional networks (GCN) to decode brain
activity over short time windows in a task fMRI dataset, i.e. associate a given
window of fMRI time series with the task used. Starting with a populational brain
graph with nodes defined by a parcellation of cerebral cortex and the adjacent
matrix extracted from functional connectome, GCN takes a short series of fMRI
volumes as input, generates high-level domain-specific graph representations, and
then predicts the corresponding cognitive state. We investigated the performance
of this GCN "cognitive state annotation" in the Human Connectome Project (HCP)
database, which features 21 different experimental conditions spanning seven ma-
jor cognitive domains, and high temporal resolution task fMRI data. Using a
10-second window, the 21 cognitive states were identified with an excellent average
test accuracy of 89% (chance level 4.8%). As the HCP task battery was designed to
selectively activate a wide range of specialized functional networks, we anticipate
the GCN annotation to be applicable as a base model for other transfer learning
applications, for instance, adapting to new task domains.

1 Introduction

Identifying brain networks involved in human cognition has been one of the main goals of neu-
roscience research. Modern imaging techniques, such as functional magnetic resonance imaging
(fMRI), provide an opportunity to accurately map the neural substrates of human cognition. An
emerging topic in the literature is the identification of “brain states”, characterized by a canonical
spatial pattern of functional activity, which were found to associate with specific cognitive states. A
popular approach to identify these brain states, called multi-voxel pattern analysis (MVPA), uses
machine learning tools to decode which task a subject performed based on recordings of brain activity
in task fMRI (8). But the algorithm is usually limited to specific cognitive domains and relies on long
acquisition of brain activity with repeated blocks to accurately decode a brain state.

In this project, we proposed a GCN architecture for annotating human brain activity on a cognitive
battery of 21 task states. Instead of using the averaging BOLD signals or statistical constrast maps,
GCN takes a short series of fMRI volumes as input, generates task-specific graph representations,
and then predicts the corresponding cognitive labels. Comparing to the multi-class support vector
machines classification, GCN achieved much higher performance in identifying a variety of cognitive
states.
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2 Datasets and Preprocessing

In this project, we are using block-design task fMRI data from the Human Connectome Project (HCP)
S1200 release. The minimal preprocessed fMRI data of the CIFTI format were used, which maps
individual fMRI time series onto the standard surface template with 32k vertices per hemisphere.
Further details on fMRI data acquisition, task design and preprocessing can be found in (2) and (5).

The task fMRI data includes seven cognitive tasks, which are emotion, gambling, language, motor,
relational, social, and working memory. In total, there are 23 different cognitive states. Considering
the short event design nature of the gambling trials (1.5s for button press, 1s for feedback and 1s for
ITI), we evaluated the decoding models with and without the two gambling conditions and found
a much lower precision and recall scores for gambling task (average f1-score = 61%) than other
cognitive domains (average f1-score > 91%). In the following experiments, we excluded the two
gambling conditions and only reported results on the remaining 21 cognitive states. The detailed
description of the tasks can be found in (2). A summary table is also shown in Tab. 1.

Table 1: Parameters of task-designs from HCP dataset.

Task domain Subjects Runs Cond Volumes
per run

Trials
per run

Minimal
Dura(sec)

Working Memory 1085 2 8 405 10 25
Motor 1083 2 5 284 8 12

Language 1051 2 2 316 8 12
Social Cognition 1051 2 2 274 5 23

Relational Processing 1043 2 2 232 6 16
Emotion Processing 1047 2 2 176 6 18

3 Graph Signal Processing and Graph Convolution Network

Starting with a brain signal x, Graph signal processing (GSP) first maps the signal onto a weighted
graph G = (V, E ,W ) that defines a network structure among a set of brain regions. The set V is a
parcellation of cerebral cortex into N regions, and E is a set of connections between each pair of
brain regions, with its weights defined as Wi,j . Here we used the multimodal cortical parcellation
of the cerebral cortex (4), which delineates 180 functional areas per hemispheree bounded by sharp
changes in cortical architecture, function, connectivity, and topography. The connections between
brain areas were estimated by calculating the group averaged resting-state functional connectivity
(RSFC) based on 1080 minimal prepossessed resting-state fMRI data (5). The spectral analysis of the
graph signal relies on the graph Laplacian, defined as:

L = I −D−1/2WD−1/2, (1)

whereD is a diagonal matrix of node degrees and I is the identity matrix. As we assume the weights to
be undirected and symmetric, the matrix L can be factored as U∆UT , where U = (u0, . . . , uN−1) is
the matrix of Laplacian eigenvectors, also called graph Fourier modes, and ∆ = diag(λ0, . . . , λN−1)
is a diagonal matrix with the corresponding eigenvalues, specifying the frequency of the modes.
This eigendecomposition can be interpreted as a generalization of the standard Fourier basis onto a
non-Euclidean domain. Thus, the graph Fourier transform is defined as x̂ = L{x} = UTx and its
inverse as x = Ux̂, where x is the graph signal.

Merging the spectral graph theory with deep learning techniques, (3) first proposed a new architecture
of graph convolutional neural networks (GCN), which generates a linear combination of the graph
modes across the full spectrum of graph Laplacian. Kipf and colleagues (7) introduced a simplified
version of GCN:

x ∗ gθ = θ(I +D−1/2WD−1/2)x, (2)
where θ is a single parameter to be learned. Thus, the output of a graph convolution layer is defined
as:

X l+1 = σ(W̃X lΘl), W̃ = I +D−1/2WD−1/2 (3)

where X l ∈ RN×F denotes the matrix of graph signals on layer l, with N brain regions and F graph
filters. Θl ∈ RFin×Fout is the parameters to be learned on layer l with Fin income channels/filters
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Figure 1: Pipeline of functional brain decoding using graph convolutions

and Fout outcome filters. These parameters are shared among all nodes on layer l. σ(.) denotes
an activation function, such as the ReLU(x) = max(0, x). It’s worth noted that this type of graph
convolution only takes into account the direct neighbours in the graph. By stacking multiple GCN
layers, we could propagate information of brain activity among kth-order neighbourhood, with k
being the number of GCN layers. Specifically, in the first GCN layer, we treat the short series of fMRI
volumes as multiple channels, with X1 ∈ RN×F being a 2D matrix of N brain regions and F time
windows. During model training, the first GCN layer learns various versions of the spatio-temporal
convolution kernels (spatially only consider the direct neighbours, and temporally use the same size
as the time window), as a replacement of the canonical hemodynamic response function (HRF). The
derived activation maps are then inputted to the following convolutional layers to generate high-level
graph representations.

A brain state annotation model was proposed, consisting of 6 GCN layers with 32 graph filters at
each layer, followed by a global average pooling layer and 2 fully connected layers. The model takes
short series of fMRI data as input, propagates information among inter-connected brain regions and
networks, generates a high order graph-level representations and finally predicts the corresponding
cognitive labels as a multi-class classification problem. The overview of the fMRI decoding model
was illustrated in Figure 1.

The implementation of the GCN model was based on Tensorflow 1.12.0. The network was trained for
100 epochs with the batch size set to 128. We used Adam as the optimizer with the initial learning
rate as 0.001. Additional l2 regularization of 0.0005 on weights was used to control model overfitting
and the noise effect of fMRI signals. The entire dataset was split into training (70%), validation
(10%), test (20%) sets using a subject-specific split scheme, which ensures that all fMRI data from
the same subject was assigned to one set. The best model with the highest prediction score on the
validation set was saved and then evaluated separately on the test set.

4 Results

4.1 Cognitive states can be decoded with high accuracy from 10s of fMRI data

The GCN state annotation model was evaluated using the cognitive battery of HCP task-fMRI
dataset. Here we mainly focused on the 21 task conditions spanning over 6 cognitive domains,
namely: emotion, language, motor, relational, social, and working memory. Using a 10 second
window of fMRI time series, the 21 conditions can be identified with an average test accuracy of
89.83%, significantly different from the chance level of 4.8%. After summarizing the confusion
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matrix according to the 6 cognitive domains, each cognitive domain could be identified with a recall
accuracy >91%. Among the cognitive domains, the language tasks (story vs math) and motor tasks
(left/right hand, left/right foot and tongue) were the most recognizable conditions, which showed
the highest precision and recall scores (average f1-score = 95% and 94% respectively for language
and motor conditions). Meanwhile, the relational processing and working memory task conditions
were identified with the lowest performance (average f1-score = 81.6% and 84.2% respectively), with
some misclassifications between emotion/relational processing and working memory tasks.

4.2 Classification errors due to high similarity in task stimuli

Misclassifications of cognitive states were found both between and within cognitive domains. For
instance, the emotion and relational processing conditions were misidentified as working memory
task, probably due to the high similarity in task stimuli. Specifically, the emotion task involves the
matching of faces, overlapping with face encoding and retrieval in working memory tasks. The
relational processing requires matching of shapes and textures of drawn objects, somewhat similar
to encoding and retrieval of bodies and tools in working memory task. Also, some trials were
misclassified within the same cognitive domain. For instance, most misclassifications within working
memory task were found between 0-back and 2-back conditions, which were still observed even
when the decoding model was trained for the single cognitive domain. By contrast, for face and place
working memory stimuli, brain decoding reached high accuracy, regardless of using a multi-domain
or single-domain classifier (misclassification less than 0.2%).

4.3 Performance of GCN annotation was associated with in-scanner behaviors

We found a strong association between prediction accuracy of GCN annotation and the median
reaction time within scanner (Figure 2). For instance, during relational processing task which consists
of two conditions, i.e. relational processing and feature matching, participants reacted faster to the
matching condition than relational processing. Similarly, GCN also achieved higher prediction for
matching (f1=0.96) than relational processing (f1=0.91). Moreover, within each task condition, GCN
achieved higher accuracy on trials when participants were more engaged and responded faster. The
analysis was performed on 200 subjects from the test set.

4.4 GCN achieved much better performance than SVC

We also wanted to establish if the performance of deep GCN represented a substantial improvement
over more traditional machine learning tools. We thus also evaluated the same brain decoding tasks
using a multi-class support vector machines classification (SVC) with a linear kernel, as our baseline
model. The results showed that, using 10s of fMRI data, SVC-linear achieved much lower prediction
accuracy in classifying the 21 states (89% vs 63% respectively for GCN and SVC-linear) and took
a longer time for training (560s vs 9518s). Even when only focusing on a single cognitive domain,
SVC-linear still showed much lower performance (96% vs 87% for motor task; 86% vs 70% for
working memory conditions).

4.5 Saliency map demonstrate biologically meaningful features learned by GCN

We investigated whether a set of biologically meaningful features were learned by the GCN. For this
purpose, we generated saliency maps on the model trained on the corresponding cognitive domain,
by propagating the non-negative gradients backwards till the input layer (10). An input feature is
salient or important only if its little variation causes big changes in the decoding output. Thus, high
values in the saliency map indicate large contributions during prediction of cognitive states.

The two language conditions, story and mathematics, shared a number of salient features (Figure 3
A), likely related to shared cognitive processes. Both conditions involved the processing of auditory
statements, which may explain high salience in the primary auditory cortex and perisylvian language-
related brain regions, consisting of inferior frontal gyrus (IFG), supramarginal gyrus/angular gyrus,
and superior temporal gyrus (STG). There were also some salient features found only for either
mathematics or story. For instance, the story condition involved salient features in more anterior part
of left IFG, including pars triangularis and orbitalis. By contrast, mathematical statements involved
more posterior part, including pars opercularis of IFG and precentral sulcus. Additional inferior
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Figure 2: Association between GCN performance and in-scanner reaction time for relational process-
ing task

temporal regions were salient for mathematics only, which have been shown to be more involved in
mathematical than non-mathematical judgment tasks (1).

As expected, no salient features in the perisylvian language-related brain regions were found for the
motor task (Figure 3 B). Different types of movements were associated with high salience in the
primary motor and somatosensory cortex, which has been shown as the main territories engaged
during movements of the human body (9). No clear somatotopic organization among different types
of movements were identified here, which was somewhat expected because the primary motor and
somatosensory cortex were parcellated into single strips in the Glasser’s atlas (4). Some category-
specific salient features were still identified, for instance in medial primary motor cortex for foot
movement and in lateral orbitofrontal cortex for tongue movement.

Moreover, salient features in the ventral visual stream were identified for image recognition in
working memory task (Figure 3 C). Specifically, the place stimuli activated more medial areas in
the temporal cortex including parahippocampal gyrus; while the face stimuli activated more lateral
temporal regions including fusiform gyrus. This observation is consistent with the known, strong
spatial segregation of the neural representation for face vs place image, in fusiform face area (FFA)
and parahippocampal place area (PPA) respectively (6).

In summary, the regions highlighted by the saliency maps are consistent with prior knowledge from
the literature, and suggest that the GCN model has learned biologically meaningful features, rather
than confounding effects for example motion artifacts.

5 Conclusion

We propose a new graph convolution based model to annotate human cognitive states using a short
series of fMRI signals. This model annotates human brain activity with fine temporal resolution and
fine cognitive granularity. Using a 10s window of fMRI signals, our model identified 21 different
task conditions with a test accuracy of 89%. Besides, the GCN performance was associated with
participants’ in-scanner behaviors. The saliency maps of GCN also demonstrated that biologically
meaningful and domain-specific features have been learned during model training. Together, our
project provides an automated tool to annotate the dynamics of human cognition in real time.
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Figure 3: Saliency maps of language,motor and working memory tasks

[3] Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on
graphs. arXiv preprint arXiv:1312.6203 (2013)

[4] Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J., Yacoub, E., Ugurbil, K., Andersson,
J., Beckmann, C.F., Jenkinson, M., et al.: A multi-modal parcellation of human cerebral cortex. Nature
536(7615), 171 (2016)

[5] Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, J., Jbabdi,
S., Webster, M., Polimeni, J.R., et al.: The minimal preprocessing pipelines for the human connectome
project. Neuroimage 80, 105–124 (2013)

[6] Golarai, G., Ghahremani, D.G., Whitfield-Gabrieli, S., Reiss, A., Eberhardt, J.L., Gabrieli, J.D., Grill-
Spector, K.: Differential development of high-level visual cortex correlates with category-specific recogni-
tion memory. Nature neuroscience 10(4), 512 (2007)

[7] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint
arXiv:1609.02907 (2016)

[8] Norman, K.A., Polyn, S.M., Detre, G.J., Haxby, J.V.: Beyond mind-reading: multi-voxel pattern analysis
of fmri data. Trends in cognitive sciences 10(9), 424–430 (2006)

[9] Penfield, W., Boldrey, E.: Somatic motor and sensory representation in the cerebral cortex of man as
studied by electrical stimulation. Brain 60(4), 389–443 (1937)

[10] Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: The all convolutional
net. arXiv preprint arXiv:1412.6806 (2014)

6


	Introduction
	Datasets and Preprocessing
	Graph Signal Processing and Graph Convolution Network
	Results
	Cognitive states can be decoded with high accuracy from 10s of fMRI data
	Classification errors due to high similarity in task stimuli
	Performance of GCN annotation was associated with in-scanner behaviors 
	GCN achieved much better performance than SVC
	Saliency map demonstrate biologically meaningful features learned by GCN

	Conclusion

