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Abstract

Influence functions estimate the effect of removing a training point on a model
without the need to retrain. They are based on a first-order Taylor approximation
that is guaranteed to be accurate for sufficiently small changes to the model, and
so are commonly used to study the effect of individual points in large datasets.
However, we often want to study the effects of large groups of training points,
e.g., to diagnose batch effects or apportion credit between different data sources.
Removing such large groups can result in significant changes to the model. Are
influence functions still accurate in this setting? In this paper, we find that across
many different types of groups and for a range of real-world datasets, the predicted
effect (using influence functions) of a group correlates surprisingly well with its
actual effect, even if the absolute and relative errors are large. Our theoretical anal-
ysis shows that such strong correlation arises only under certain settings and need
not hold in general, indicating that real-world datasets have particular properties
that allow the influence approximation to be accurate.

1 Introduction

Influence functions (Jaeckel, 1972; Hampel, 1974; Cook, 1977) estimate the effect of removing an
individual training point on a model’s predictions without the computationally-prohibitive cost of
retraining the model. Tracing a model’s output back to its training data can be useful: influence
functions have been recently applied to explain predictions (Koh and Liang, 2017), produce confidence
intervals (Schulam and Saria, 2019), investigate model bias (Brunet et al., 2018; Wang et al., 2019),
improve human trust (Zhou et al., 2019), and even craft data poisoning attacks (Koh et al., 2019).

Influence functions are based on first-order Taylor approximations that are accurate for estimating
small perturbations to the model, which makes them suitable for predicting the effects of removing
individual training points on the model. However, we often want to study the effects of removing
groups of points, which represent large perturbations to the data. For example, we might wish
to analyze the effect of data collected from different experimental batches (Leek et al., 2010) or
demographic groups (Chen et al., 2018); apportion credit between crowdworkers, each of whom
generated part of the data (Arrieta-Ibarra et al., 2018); or, in a multi-party learning setting, ensure
that no individual user has too much influence on the joint model (Hayes and Ohrimenko, 2018). Are
influence functions still accurate when predicting the effects of (removing) these larger groups?

In this paper, we first show empirically that on real datasets and across a broad variety of groups of
data, the predicted and actual effects are strikingly correlated (Spearman ρ of 0.8 to 1.0), such that
the groups with the largest actual effect also tend to have the largest predicted effect. Moreover, the
predicted effect tends to underestimate the actual effect, suggesting that it could be an approximate
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lower bound in practice. Using influence functions to predict the actual effect of removing large, co-
herent groups of data can therefore still be useful, even though the violation of the small-perturbation
assumption can result in high absolute and relative errors between the predicted and actual effects.

What explains these phenomena of correlation and underestimation? Prior theoretical work focused
on establishing the conditions under which this influence approximation is accurate, i.e., the error
between the actual and predicted effects is small (Giordano et al., 2019b; Rad and Maleki, 2018).
However, in our setting of removing large, coherent groups of data, this error can be quite large. As
a first step towards understanding the behavior of the influence approximation in this regime, we
characterize the relationship between the predicted and actual effects of a group via the one-step
Newton approximation (Pregibon et al., 1981), which we find is a surprisingly accurate approximation
in practice. We show that correlation and underestimation arise under certain settings (e.g., removing
multiple copies of a single training point), but need not hold in general, which opens up the intriguing
question of why we observe those phenomena across a wide range of empirical settings.

Finally, we exploit the correlation of predicted and actual group effects in two example case studies: a
chemical-disease relationship (CDR) task, where the groups correspond to different labeling functions
(Hancock et al., 2018), and a natural language inference (NLI) task (Williams et al., 2018), where
the groups come from different crowdworkers. On the CDR task, we find that the influence of
each labeling function correlates with its size (the number of examples it labels) but not its average
accuracy, which suggests that practitioners should focus on the coverage of the labeling functions they
construct. In contrast, on the NLI task, we find that the influence of each crowdworker is uncorrelated
with the number of examples they contibute, which suggests that practitioners should focus on how
to elicit high-quality examples from crowdworkers over increasing quantity.

2 Background and problem setup

Consider learning a predictive model with parameters θ ∈ Θ that maps from an input space X to an
output space Y . We are given n training points {(x1, y1), . . . , (xn, yn)} and a loss function `(x, y, θ)
that is twice-differentiable and convex in θ. To train the model, we select the model parameters

θ̂(1) = arg minθ∈Θ

[
n∑
i=1

`(xi, yi; θ)

]
+
λ

2
‖θ‖22 (1)

that minimize the L2-regularized empirical risk, where λ > 0 controls regularization strength. The
all-ones vector 1 in θ̂(1) denotes that the initial training points all have uniform sample weights.

Our goal is to measure the effects of different groups of training data on the model: if we removed a
subset of training points W , how much would the model θ̂ change? Concretely, we define a vector
w ∈ {0, 1}n of sample weights with wi = I((xi, yi) ∈W ) and consider the modified parameters

θ̂(1− w) = arg minθ∈Θ

[
n∑
i=1

(1− wi)`(xi, yi; θ)

]
+
λ

2
‖θ‖22 (2)

corresponding to retraining the model after excluding W . We refer to w as the subset (corresponding
to W ); the number of removed points as ‖w‖1; and the fraction of removed points as α = ‖w‖1/n.

The actual effect I∗f : [0, 1]n → R of the subset w is

I∗f (w) = f(θ̂(1− w))− f(θ̂(1)), (3)

where the evaluation function f : Θ→ R measures a quantity of interest. Specifically, we study:

• The change in test prediction, with f(θ) = θ>xtest. Linear models (for regression or binary
classification) make predictions that are functions of θ>xtest, so this measures the effect
that removing a subset will have on the model’s prediction for some test point xtest.

• The change in test loss, with f(θ) = `(xtest, ytest; θ), which is similar to the test prediction.
• The change in self-loss, with f(θ) =

∑n
i=1 wi`(xi, yi; θ), measures the increase in loss on

the removed points w. Its average over all subsets of size ‖w‖1 is the estimated extra loss
that leave-‖w‖1-out cross-validation (CV) measures over the training loss.
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2.1 Influence functions

The issue with computing the actual effect I∗f (w) is that retraining the model to compute θ̂(1− w)
for each subset w can be prohibitively expensive. Influence functions provide a relatively efficient
first-order approximation to I∗f (w) that avoids retraining.

Consider the function qw : [0, 1]→ R with qw(t) = f
(
θ̂(1− tw)

)
, such that the actual effect I∗f (w)

can be written as qw(1)− qw(0). We define the predicted effect of the subset w to be its influence
If (w) = q′w(0) ≈ qw(1)−qw(0); in this paper, we use the term predicted effect interchangeably with
influence. Intuitively, influence measures the effect of removing an infinitesimal weight from each
point in w and then linearly extrapolates to removing all of w.2 By taking a Taylor approximation
(see, e.g., Hampel et al. (1986) for details), the influence can be computed as

If (w)
def
= q′w(0) = ∇θf

(
θ̂(1)

)> [ d
dt
θ̂(1− tw)

∣∣∣
t=0

]
= ∇θf

(
θ̂(1)

)>
H−1
λ,1g1(w), (4)

where g1(w) =
∑n
i=1 wi∇θ`(xi, yi; θ̂(1)), H1 =

∑n
i=1∇2

θ`(xi, yi; θ̂(1)), and Hλ,1 = H1 + λI .
When measuring the change in test prediction or test loss, influence is additive: if w = w1 +w2, then
If (w) = If (w1) + If (w2), i.e., the influence of a subset is the sum of influences of its constituent
points, and we can efficiently compute the influence of any subset by pre-computing the influence of
each individual point (e.g., by taking a single inverse Hessian-vector product, as in Koh and Liang
(2017)). However, when measuring the change in self-loss, influence is not additive and requires a
separate calculation for each subset removed.

2.2 Relation to prior work

Influence functions—introduced in the seminal work of Hampel (1974) and in Jaeckel (1972), where
it was called the infinitesimal jackknife—have a rich history in robust statistics. The use of influence
functions in the ML community is more recent, though growing; in Section 1, we provide references
for several recent applications of influence functions in ML.

Removing a single training point, especially when the total number of points n is large, represents a
small perturbation to the training distribution, so we expect the first-order influence approximation
to be accurate. Indeed, prior work on the accuracy of influence has focused on this regime: e.g.,
Debruyne et al. (2008); Liu et al. (2014); Rad and Maleki (2018); Giordano et al. (2019b) give
evidence that the influence on self-loss can approximate LOOCV, and Koh and Liang (2017) similarly
examined the accuracy of estimating the change in test loss after removing single training points.

However, removing a constant fraction α of the training data represents a large perturbation to the
training distribution. To the best of our knowledge, this setting has not been empirically studied;
perhaps the closest work is Khanna et al. (2019)’s use of Bayesian quadrature to estimate a maximally
influential subset. Instead, older references have alluded to the phenomena of correlation and
underestimation we observe: Pregibon et al. (1981) note that influence tends to be conservative, while
Hampel et al. (1986) say that “bold extrapolations” (i.e., large perturbations) are often still useful.
On the theoretical front, Giordano et al. (2019b) established finite-sample error bounds that apply
to groups, e.g., showing that the leave-k-out approximation is consistent as the fraction of removed
points α→ 0. Our focus is instead on the relationship of the actual effect I∗f (w) and predicted effect
(influence) If (w) in the regime where α is constant and the error |I∗f (w)− If (w)| is large.

3 Empirical accuracy of influence functions on constructed groups

How well do influence functions estimate the effect of (removing) a group of training points? If
n is large and we remove a subset w uniformly at random, the new parameters θ̂(1 − w) should
remain close to θ̂(1) even when if fraction of removed points α is non-negligible, so the influence
error |I∗f (w)− If (w)| should be small. However, we are usually interested in removing coherent,
non-random groups, e.g., all points from a data source or share some feature. In such settings, the

2In the statistics literature, influence typically refers to the effect of adding weight, so the sign is flipped.
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Dataset Classes n d λ/n Test acc. Source
Diabetes 2 20, 000 127 2.2× 10−4 68.2% Strack et al. (2014)
Enron 2 4, 137 3, 289 1.0× 10−3 96.1% Metsis et al. (2006)
Dogfish 2 1, 800 2, 048 2.2× 10−2 98.5% Koh and Liang (2017)
MNIST 10 55, 000 784 1.0× 10−3 92.1% LeCun et al. (1998)
CDR 2 24, 177 328 1.0× 10−4 67.4% Hancock et al. (2018)
MultiNLI 3 392, 702 600 1.0× 10−4 50.4% Williams et al. (2018)

Table 1: Dataset characteristics and the test accuracies that logistic regression achieves (with regular-
ization λ selected by cross-validation). n is the training set size and d is the number of features.

parameters θ̂(1 − w) and θ̂(1) might differ substantially, and the error |I∗f (w) − If (w)| could be
large. Put another way, there could be a cluster of points such that removing one of those points
would not change the model by much—so influence could be low—but removing all of them would.

Surprisingly (to us), we found that even when removing large and coherent groups of points, the
influence If (w) behaved consistently relative to the actual effect I∗f (w) on test predictions, test
losses, and self-loss, with two broad phenomena emerging:

1. Correlation: If (w) and I∗f (w) rank subsets of points w similarly (e.g., high Spearman ρ).

2. Underestimation: If (w) and I∗f (w) tend to have the same sign with |If (w)| < |I∗f (w)|.3

Here, we report results on 5 datasets chosen to span a range of applications, training set size n, and
number of features d (Table 1).4 In an attempt to make the influence approximation as inaccurate
as possible, we constructed a variety of subsets, from small (α = 0.25%) to large (α = 25%), to be
coherent and have considerable influence on the model. On each dataset, we trained an L2-regularized
logistic regression model (or softmax for the multiclass tasks) and compared the influences and actual
effects of these subsets.

Group construction. Our aim is to construct coherent groups that when removed will substantially
change the model. To do so, we need to choose points that are similar in some way. Specifically, for
each dataset, we grouped points in 7 ways: 1) points that share feature values; 2) points that cluster
on their features or 3) on their gradients ∇θ`(x, y, θ̂(1))); 4) random points within the same class; 5)
random points from any class. We also grouped 6) points with large positive and 7) negative influence
on the test loss `(xtest, ytest, θ̂(1)), since intuitively, training points that all have high influence on
a test point should act together to change the model substantially. Overall, for each dataset, we
constructed 1,700 subsets ranging in size from 0.25% to 25% of the training points. See Appendix A
for more details.

Results. Figure 1 shows that the influences and actual effects of all of these subsets on test prediction
(Top), test loss (Mid), and self-loss (Bot) are highly correlated (Spearman ρ of 0.89 to 0.99 across all
plots), even though the absolute and relative errors of the influence approximation can be quite large.
Moreover, the influence of a group tends to underestimate its actual effect in all settings except for
groups with negative influence on test loss (the left side of each plot in Figure 1-Mid). These trends
held across a wide range of regularizations λ, though correlation increased with λ (Appendix C.2).

In Section 5, we will use the CDR dataset (Hancock et al., 2018) and the MultiNLI (Williams et al.,
2018) dataset to show that correlation and underestimation also apply to groups of data that arise
naturally, and that influence functions can therefore be used to derive insights about real datasets and
applications. Before that, we first attempt to develop some theoretical insight into the results above.

3 This holds with one exception: when measuring the change in test loss, f(θ) = `(xtest, ytest; θ), underes-
timation only holds when actual effect I∗

f (w) is positive (Figure 1-Mid).
4 The first 4 datasets involve hospital readmission prediction, spam classification, and object recognition, and

were used in Koh and Liang (2017) to study the influence of individual points. The fifth dataset is a chemical-
disease relationship (CDR) dataset Hancock et al. (2018). In Section 5, we will also study the MultiNLI language
inference dataset (Williams et al., 2018), which was omitted from the experiments here because its large size
makes repeated retraining to compute the actual effect too expensive. See Appendix B for dataset details.
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Figure 1: Influences vs. actual effects of coherent groups of points ranging from 0.25% to 25%
in size. Each point correponds to a group, and its color reflects how that group was constructed.
In Top and Mid, we show results for the test point with highest loss; other test points are similar
(Appendix C.1), though with more curvature for test loss (Appendix C.3). The grey reference line
has slope 1, and the red borders represent points that are not plotted because they are outside the x- or
y-axis range. We omit the top row for MNIST, as θ>xtest is not meaningful in the multi-class setting.

4 Theoretical analysis

The experimental results above show that there is consistent underestimation and high correlation
between the predicted effects, based on influence functions, and the actual effects of groups across a
variety of datasets, despite the influence approximation incurring large absolute and relative error. As
we discussed in Section 2.2, this is outside the regime of existing theory.

As an initial step towards understanding the high-error regime, we establish conditions under which
the actual effect I∗f (w) lies approximately between If (w) and CmaxIf (w) for some Cmax > 0.
This cone constraint—so called because it implies that all points on the graph of influence vs. actual
effect lie within a cone—implies underestimation and, if Cmax is small, some degree of correlation.
We first show that this constraint holds in restricted settings—when measuring self-loss, or when
removing multiple copies of the same point—and that Cmax varies inversely with the regularization
term λ, which is expected since stronger regularization reduces the change in the model. However,
the cone constraint is stronger than necessary because it bounds the degree of underestimation, and
we construct counterexamples to show that it need not hold in more general settings.

Our analysis centers on the one-step Newton approximation, which estimates the change in parameters

θ̂(1− w)− θ̂(1) ≈ ∆θNt(w)
def
=
(
Hλ,1(1− w)

)−1
g1(w),

where Hλ,1(1− w) = (
∑n
i=1(1− wi)∇2

θ`(xi, yi; θ̂(1))) + λI is the regularized empirical Hessian
at θ̂(1) but reweighted after removing the subset w. This change in parameters gives the Newton
approximation of the effect INt

f (w) = f
(
θ̂(1) + ∆θNt(w)

)
− f(θ̂(1))) and the corresponding

Newton error ErrNt-act(w) = I∗f (w) − INt
f (w), which measures its gap from the actual effect.

Specifically, we decompose the error between the actual effect I∗f (w) and influence If (w) as

I∗f (w)− If (w) = I∗f (w)− INt
f (w)︸ ︷︷ ︸

ErrNt-act(w)

+ INt
f (w)− If (w).︸ ︷︷ ︸

ErrNt-inf (w)

(5)
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Figure 2: The Newton approximation accurately captures the actual effect for our datasets (though
there is more error on the Diabetes dataset), with the same test point as in Figure 1-Top. We omit
MNIST and MultiNLI for computational reasons. See Figure C.4 for plots of test loss and self-loss.

In Section 4.1, we first show that the Newton-actual error ErrNt-act(w) decays at a rate of
O
(
1/(σmin + λ)3

)
, where λ is regularization strength and σmin is the smallest eigenvalue of the

empirical Hessian H1. Empirically, this error is small on our datasets, so we focus on characterizing
the Newton-influence error ErrNt-inf(w) in Section 4.2. We use this characterization to study the
behavior of influence relative to the actual effect on self-loss (Section 4.3) and test prediction (Sec-
tion 4.4). For margin-based models, the test loss is a monotone function of the test prediction, so the
analysis is similar (Appendix D.3).

4.1 Bounding the error of the one-step Newton approximation

The Newton approximation is computationally expensive because it computes (Hλ,1(1− w))−1 for
each w (instead of the fixed H−1

λ,1 in the influence calculation). However, it provides more accurate
estimates (e.g., Pregibon et al. (1981), Rad and Maleki (2018)), and we show that its error can be
bounded as follows (all proofs in Appendix E):

Proposition 1. Let the Newton error be ErrNt-act(w)
def
= I∗f (w) − INt

f (w). Assume that the
evaluation function f(θ) is Cf -Lipschitz and that the Hessian∇2

θ`(x, y, θ) is CH -Lipschitz. Then

|ErrNt-act(w)| ≤ n‖w‖21CfCHC2
`

(σmin + λ)3
,

where we define C`
def
= max1≤i≤n ‖∇θ`(xi, yi, θ̂(1))‖2 to be the largest norm of a training point’s

gradient at θ̂(1), and σmin to be the smallest eigenvalue ofH1. ErrNt-act(w) only involves third-order
or higher derivatives of the loss, so it is 0 for quadratic losses.

Proposition 1 tells us that the Newton approximation is accurate when λ is large or the third derivative
of `(x, y; ·) (controlled by CH ) is small. Empirically, the Newton error ErrNt-act(w) is strikingly
small in most of our settings (Figure 2), even though the overall error of the influence approximation
I∗f (w)− If (w) is still large. In the remainder of this section, we therefore focus on characterizing
the Newton-influence error ErrNt-inf(w), under the assumption that the Newton approximation is
similar to the actual effect (within a factor of O(1/λ3)).

4.2 Characterizing the difference between the Newton approximation and influence

We next characterize the Newton-influence error ErrNt-inf(w) = INt
f (w)− If (w):

Proposition 2. Under the assumptions of Proposition 1 and the additional assumption that the third
derivative of f(θ) exists and is bounded in norm by Cf,3, the Newton-influence error ErrNt-inf(w) is

ErrNt-inf(w) = ∇θf(θ̂(1))>H
− 1

2

λ,1D(w)H
− 1

2

λ,1 g1(w) +
1

2
∆θNt(w)>∇2

θf(θ̂(1))∆θNt(w) + Errf,3(w),︸ ︷︷ ︸
Error from curvature of f(·)

with D(w)
def
=
(
I −H−

1
2

λ,1H1(w)H
− 1

2

λ,1

)−1 − I and H1(w)
def
=
∑n
i=1 wi∇2

θ`(xi, yi; θ̂(1)). The error
matrix D(w) has eigenvalues between 0 and σmax

λ , where σmax is the largest eigenvalue of H1. The
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residual term Errf,3(w) captures the error due to third-order derivatives of f(·) and is bounded by
|Errf,3(w)| ≤ ‖w‖31Cf,3C3

` /6(σmin + λ)3.

We can interpret Proposition 2 as a formalization of Hampel et al. (1986)’s observation that influence
approximations are accurate when the model is robust and the curvature of the loss is low. In
general, the error decreases as λ increases and f(·) becomes less curved; in Figure C.2, we show that
increasing λ reduces error and increases correlation in our experiments.

4.3 The relationship between influence and actual effect on self-loss

Let us now apply Proposition 2 to analyze the behavior of influence under different choices of
evaluation function f(·). We start with the self-loss f(θ) =

∑n
i=1 wi`(xi, yi; θ), as its influences

and actual effects are always non-negative, and it is the cleanest to characterize:

Proposition 3. Under the assumptions of Proposition 2, the influence on the self-loss obeys

If (w) + Errf,3(w) ≤ INt
f (w) ≤

(
1 +

3σmax

2λ
+
σ2

max

2λ2

)
If (w) + Errf,3(w).

The constraint in Proposition 3 implies that up to O(1/λ3) terms, influence underestimates the
Newton approximation and therefore the actual effect. This explains the previously-unexplained
downward bias observed when using influence to approximate LOOCV (Debruyne et al., 2008;
Giordano et al., 2019b). Equivalently, all points on the graph of influences vs. actual effects lie within
the cone bounded by the lines with slope 1 and slope λ

λ+3σmax/2
lines, up to O(1/λ3) terms. As λ

grows, these lines will converge, and the error terms Errf,3(w) and ErrNt-act(w) will decay at a rate
of O(1/λ3), forcing the influences and actual effects to be equal.

However, λ/σmax is quite small in our experiments in Section 3, so the actual correlation of influence
is better than predicted by this theory: in Figure 1-Bot, the sizes of the theoretically-permissible
cones can be quite large, but the points in the graphs nevertheless trace a tight curve through the cone.

4.4 The relationship between influence and actual effect on a test point

We now turn to measuring the test prediction f(θ) = θ>xtest. Here, we show that correlation and
underestimation need not hold, and that we cannot obtain a cone constraint similar to Proposition 3
except in a restricted setting. Define vtest = H

− 1
2

λ,1 xtest and vw = H
− 1

2

λ,1 g1(w). Proposition 2 gives:

Corollary 1. Suppose f(θ) = θ>xtest. Then INt
f (w) = If (w) + vtest

>D(w)vw, where D(w) =(
I −H−

1
2

λ,1H1(w)H
− 1

2

λ,1

)−1 − I is the error matrix from Proposition 2.

Unfortunately, Corollary 1 implies that no cone constraint applies: in general, we can find xtest such
that the influence If (w) = vtest

>vw = 0 but the Newton approximation INt
f (w) = vtest

>D(w)vw
is large. As a counterexample, Figure 3-Left shows that on synthetic data, If (w) and INt

f (w) can
even have opposite signs on some subsets w.

We can recover a cone constraint similar to Proposition 3 if we restrict our attention to the special
case where we use a margin-based model and remove (possibly multiple copies) of a single point:
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Proposition 4. Consider a binary classification setting with y ∈ {−1,+1} and a margin-based
model with loss `(x, y; θ) = φ(yθ>x) for some φ : R→ R+. Suppose f(θ) = θ>xtest and that the
subset w comprises ‖w‖1 identical copies of the training point (xw, yw). Then under the assumptions
of Proposition 1, the Newton approximation INt

f (w) is related to the influence If (w) according to

INt
f (w) =

If (w)

1− ‖w‖1 · φ′′(ywθ̂(1)>xw) · x>wH−1
λ,1xw

.

This implies the Newton approximation INt
f (w) is bounded between If (w) and

(
1 + σmax

λ

)
If (w).

Similar to Proposition 3, Proposition 4 shows that up to O(1/λ3) terms, the influence underestimates
the actual effect when removing copies of a single point. Moreover, all points on the graph of
influences vs. actual effects lie within the cone bounded by the lines with slope 1 and slope
λ/(λ+ σmax), up to O(1/λ3) terms. As λ/σmax grows, the cone shrinks, and correlation increases.

However, if λ/σmax is small (as in our experiments in Section 3), the cone is wide, and the scaling
factor d(w) = 1/(1− ‖w‖1 · φ′′kx>k H

−1
λ,1xk) in Proposition 4 can be quite large for some subsets w

but not for others. In particular, d(w) is large when there are few remaining points in the direction
of the removed points. In Figure 3-Right, we exploit this fact to show that the influence If (w) and
Newton approximation INt

f (w) can exhibit low correlation (e.g., low If (w) need not mean low
INt
f (w)), even in the simplified setting of removing copies of single points. We comment on the

analogue of d(w) in the general multiple-point setting in Appendix D.2, and on the influence on test
loss (instead of test prediction) in Appendix D.3.

5 Applications of influence functions on natural groups of data

The analysis in Section 4 shows that the cone constraint between predicted and actual group effects
need not always hold. Nonetheless, our experiments in Section 3 demonstrate that on real datasets,
the correlation is much stronger than the theory predicts. We now turn to using influence functions to
predict group effects in two case studies where groups arise naturally.

Chemical-disease relation (CDR). The CDR dataset tackles the following task: given text about
the relationship between a chemical and a disease, predict if the chemical causes the disease. It was
collected via data programming, where users provide labeling functions (LFs)—instead of labels—
that take in an unlabeled point and either abstain or output a heuristic label (Ratner et al., 2016).
Specifically, Hancock et al. (2018) collected natural language explanations of provided classifications;
parsed those explanations into LFs; and used those LFs to label a large pool of data (Appendix B.1).

We used influence functions to study two important properties of LFs: coverage, the fraction of
unlabeled points for which an LF outputs a non-abstaining label; and precision, the proportion of
correct labels output. We associated each LF with the group of points that it labeled, and computed
its influence; as expected, these correlated with actual effects on overall test loss (Spearman ρ = 1;
Figure C.5). LFs with higher coverage had more influence (Figure 4-Left; see also Figure C.6),
but surprisingly, LFs with higher precision did not (Figure 4-Mid). The association with coverage
stems at least partially from class balance: each LF outputs either all positive or all negative labels,
so removing an LF with high coverage changes the class balance and consequently improves test
performance on one class at the expense of the other (Figure 4-Left). While these findings are not
causal claims, they suggest that the coverage of an LF, rather than its precision, might have a stronger
effect on its overall contribution to test performance.

MultiNLI. The MultiNLI dataset deals with natural language inference: determining if a pair of
sentences agree, contradict, or are neutral. Williams et al. (2018) presented crowdworkers with initial
sentences from five genres and asked them to generate follow-on sentences that were neutral or in
agreement/contradiction (Appendix B.2). We studied the effect that each crowdworker had on the
model’s test set performance by computing the influence of the examples they created on overall test
loss (Spearman ρ of 0.77 to 0.86 with actual effects across different genres; see Figure C.8).

Studying the influence of each crowdworker reveals that the number of examples a crowdworker
created was not predictive of influence on test performance: e.g., the most prolific crowdworker
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contributed 35,000 examples but had negative influence, and we verified that removing all of those
examples and retraining the model indeed made overall test performance worse (Figure 4-Right).
Curiously, this effect was genre-specific: crowdworkers who improved performance on some gen-
res would lower performance on others (Figure C.10), even though the number of examples they
contributed to a genre did not correlate with their influence on it (Figure C.11). We note that these
results are obtained on a baseline logistic regression model built on top of a continuous bag-of-words
representation. Identifying precisely what makes a crowdworker’s contributions useful, especially on
higher-performing models, could help us improve dataset collection and credit attribution as well as
better understand the biases due to annotator effects (Geva et al., 2019).

6 Discussion

In this paper, we showed empirically that the influences of groups of points are highly correlated
with, and consistently underestimate, their actual effects across a range of datasets, types of groups,
and sizes. These phenomena allows us to use influence functions to better understand the “different
stories that different parts of the data tell,” in the words of Hampel et al. (1986). We showed that we
can gain insight into the effects of a labeling function in data programming, or a crowdworker in a
crowdsourced dataset, by computing the influence of their corresponding group effects.

While these applications involved predefined groups, influence functions could potentially also
discover coherent, semantically-relevant groups in the data. They can also be used to approximate
Shapley values, which are a different but related way of measuring the effect of data points; see, e.g.,
Jia et al. (2019) and Ghorbani and Zou (2019). Separately, influence functions can also estimate the
effects of adding training points. In this context, underestimation turns into overestimation, i.e., the
influence of adding a group of training points tends to overestimate the actual effect of adding that
group. This raises the possibility of using influence functions to evaluate the vulnerability of a given
dataset and model to data poisoning attacks (Steinhardt et al., 2017).

Our theoretical analysis showed that while correlation and underestimation hold in some restricted
settings, they need not hold in general, realistic settings. This gap between theory and experiments
opens up important directions for future work: Why do we observe such striking correlation between
predicted and actual effects on real data? To what extent is this due to the specific model, datasets, or
subsets used? Do these trends hold for non-convex models like neural networks? Our work suggests
that there could be distributional assumptions that hold for real data and give rise to the broad
phenomena of correlation and underestimation. One promising lead is the surprising observation
that the Newton approximation is much more accurate than influence at predicting group effects,
which holds out the hope that we can understand group effects using just low-order terms of (since
the Newton approximation only uses the first and second derivatives of the loss) without needing to
account for the whole loss function through higher order terms (as in Giordano et al. (2019a)).
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