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ABSTRACT

Deep Neural Networks (DNNs) generalize well despite their massive size and
capability of memorizing all examples. There is a hypothesis that DNNs start
learning from simple patterns based on the observations that are consistently
well-classified at early epochs (i.e., easy examples) and examples misclassified
(i.e., hard examples). However, despite the importance of understanding the
learning dynamics of DNNs, properties of easy and hard examples are not fully
investigated. In this paper, we study the similarities of easy and hard examples
respectively among different CNNs, assessing those examples contributions to
generalization. Our results show that most easy examples are identical among
different CNNs, as they share similar dataset-dependent patterns (e.g., colors,
structures, and superficial cues in high-frequency). Moreover, while hard examples
tend to contribute more to generalization than easy examples, removing a large
number of easy examples leads to poor generalization, and we find that most
misclassified examples in validation dataset are hard examples. By analyzing
intriguing properties of easy and hard examples, we discover that the reason why
easy and hard examples have such properties can be explained by biases in a dataset
and Stochastic Gradient Descent (SGD).

1 INTRODUCTION

From a traditional perspective of generalization, overly expressive models can memorize all examples
and result in poor generalization. However, deep neural networks (DNNs) achieve an excellent
generalization performance even if models are over-parameterized (Zhang et al., 2017). The reason
for this phenomenon remains unclear. (Arpit et al., 2017) show that brute-force memorization does
not happen in DNNs training, and propose a hypothesis that DNNs start learning from simple patterns.
Their hypothesis is based on observations of examples that are consistently well-classified at early
epochs (i.e., easy examples) and examples misclassified (i.e., hard examples). However, despite their
importance in understanding how DNNs start learning, easy and hard examples are not thoroughly
examined.

In this paper, we study easy and hard examples, and their intriguing properties are shown. First, we
investigate whether easy and hard examples differ on various CNNs architectures. For our experiments,
we introduce easiness as a metric to measure how early examples are classified. According to easiness,
we calculate the matching rates of easy and hard examples between different CNN architectures.
Surprisingly, CNNs start learning from identical easy examples and they are visually similar to each
other. It indicates that different CNNs start learning from similar patterns.

Second, we investigate the patterns that make examples easy. We study CNNs with examples from
which some patterns are intentionally removed. We find that the patterns CNNs start learning from
are dataset dependent (e.g., colors, structures, and high-frequency information).

Lastly, we conduct ablation and corrupted-label experiment to determine how easy and hard examples
contribute differently to generalization. We find that hard examples contribute more to generalization
than easy examples, however, removing a large number of easy examples leads to poor generalization.
This phenomenon can be explained by biases in a dataset. In addition, we discover that misclassified
examples in validation dataset are consistent and mostly hard examples.
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Those properties can not be explained by a hypothesis that CNNs start learning from simple patterns
(Arpit et al., 2017). From observations, we hypothesize that CNNs start learning from frequent
patterns that are not contradicted across classes. There are two reasons why there are easy and hard
examples: biases in a dataset and Stochastic Gradient Descent (SGD).

A dataset naturally contains various biases leading some patterns to appear as a majority or a minority.
The majority and minority patterns are called frequent patterns and rare patterns, respectively. Since
SGD randomly picks samples to train a model, frequent patterns tend to be used more than rare
patterns in a batch. It means that the gradients of frequent patterns dominate the direction of the
update, and some examples that are discriminative by frequent patterns are consistently well classified
at early epochs.

2 APPROACH

In this paper, we perform several experiments to investigate unknown properties of easy and hard
examples. We introduce easiness as a metric of how early examples are classified. Based on easiness,
we reveal several properties of easy and hard examples.

2.1 EASINESS

To measure how early an example is classified, we introduce easiness et as a criteria, where t denotes
the index of an example. We repeat m-epochs training N times and take a record of the number of
correct classifications. Let ct be the number of trials in which the example xt is correctly classified.
easiness et is computed as:

et =
ct

max
1≤j≤K

cj
, (1)

where K is the total number of examples, and et is in the range of 0 ≤ et ≤ 1, with 0 indicating that
xt is the hardest examples and with 1 showing that xt is the easiest examples.

We then redefine easy and hard examples as follows:

Easy examples and Hard examples: {xt| et > τ, t ∈ [1,K]} and {xt| et < τ, t ∈ [1,K]}.
In our experiments, τ is calculated so that 10% of examples with the highest and lowest easiness
belong to easy and hard examples, respectively.

2.2 MATCHING RATE

Based on easiness, we use matching rate to measure how similar easy and hard examples are between
various CNN architectures. Let us consider two different set of examples XA and XB . The matching
rate MAB between XA and XB is calculated as:

MAB =
|XA ∩XB |

max(|XA| , |XB |)
, (2)

where |·| denotes the size of a set.

3 EXPERIMENTS

3.1 PREPARATIONS

We utilize CIFAR-10 (Krizhevsky, 2009) and ImageNet 2012 dataset (Russakovsky et al., 2015) for
our experiments.

CIFAR-10. On CIFAR-10, translation by 4 pixels, horizontal flipping, and global contrast normaliza-
tion are applied onto images with 32× 32 pixels. We use a list of models to CIFAR-10: three layer
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Table 1: The matching rates of easy and hard examples among various CNNs in CIFAR-10 and mini
ImageNet. Since the values in the tables are symmetric and redundant, we put ”−” on unnecessary
table cells for clarity. We use 10% of examples with the highest and lowest easiness to calculate the
matching rate between different CNNs architectures. Random means that we randomly select 10% of
examples from the datasets.

MLPs WRN DenseNet-BC ResNeXt Random

MLPs 0.70 0.20 0.19 0.21 0.1
WRN - 0.86 0.71 0.49 0.1
DenseNet-BC - - 0.91 0.47 0.1
ResNeXt - - - 0.82 0.1

(a) Matching rate of easy examples in CIFAR-10

MLPs WRN DenseNet-BC ResNeXt Random

MLPs 0.96 0.15 0.14 0.14 0.1
WRN - 0.90 0.64 0.50 0.1
DenseNet-BC - - 0.83 0.47 0.1
ResNeXt - - - 0.86 0.1

(b) Matching rate of hard examples in CIFAR-10

MLPs AlexNet VGG VGG-BN ResNet DenseNet Random

MLPs 0.63 0.61 0.67 0.31 0.52 0.48 0.1
AlexNet - 0.87 0.72 0.41 0.50 0.48 0.1
VGG - - 0.90 0.37 0.59 0.59 0.1
VGG-BN - - - 0.87 0.25 0.31 0.1
ResNet - - - - 0.96 0.65 0.1
DenseNet - - - - - 0.75 0.1

(c) Matching rate of easy examples in mini ImageNet

MLPs AlexNet VGG VGG-BN ResNet DenseNet Random

MLPs 0.0 0.07 0.03 0.0 0.01 0.01 0.1
AlexNet - 0.94 0.48 0.09 0.26 0.25 0.1
VGG - - 0.78 0.20 0.45 0.26 0.1
VGG-BN - - - 0.46 0.46 0.42 0.1
ResNet - - - - 0.52 0.44 0.1
DenseNet - - - - - 0.68 0.1

(c) Matching rate of hard examples in mini ImageNet

multilayer perceptrons (MLPs) WRN 16-4 (Zagoruyko & Komodakis, 2016), DenseNet-BC 12-100
(Huang et al., 2017) and ResNeXt 4-64d (Xie et al., 2017)

mini ImageNet. We randomly select 10 classes1 from ImageNet 2012 dataset for an interpretable
analysis and call them mini ImageNet. On mini ImageNet, resizing images with the scale and
aspect ratio augmentation and horizontal flipping are applied onto images. Then, global contrast
normalization is applied to randomly cropped images with 224× 224 pixels. We use a list of models
to mini ImageNet: three layer MLPs, AlexNet (Krizhevsky et al., 2012), VGG11(Simonyan &
Zisserman, 2015), VGG11 with Batch Normalization (Ioffe & Szegedy, 2015), ResNet 18 (He et al.,
2016) and DenseNet 121 (Huang et al., 2017)

As the optimizer, we use AdamW (Loshchilov & Hutter, 2017) and parameters are as follows:
α = 0.001, β1 = 0.9, β2 = 0.99, wnorm = 0.05 and Ti = 300. We train a model for 300 epochs
and use 128 batch size for CIFAR-10 and 64 batch size for mini ImageNet.

1Image IDs are n01751748, n02123394, n02169497, n02883205, n03125729, n03954731, n04332243,
n04355358, n04553703 and n07717556.
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4 EASY EXAMPLES ARE IDENTICAL IN DIFFERENT CNNS

To determine whether easy and hard examples are shared across different CNN architectures, we
calculate matching rates according to easiness.

Easy examples. The matching rates of easy examples between CNNs in Table 1 (a) and (c) are much
higher than the case of random selection. This result shows that CNNs start learning from the
same examples even if CNN architectures are different. In addition, the matching rate between
MLPs and CNNs are low in CIFAR-10, but high in mini ImageNet.

Hard examples. The matching rates of hard examples are shown in Table 1 (b) and (d). Intriguingly,
in mini ImageNet, the matching rates among CNNs with batch normalization (Ioffe & Szegedy,
2015) are high. It shows that batch normalization in CNNs architecture affects hard examples. Since
easy examples are mostly identical, the difference of hard examples relates to the difference of
generalization ability. It requires further analysis.

Why there are easy and hard examples? We hypothesize that CNNs start learning from frequent
patterns that are not contradicted across classes. It can be explained by biases in a dataset and SGD.

As a example, let us consider the classification problem of a ladybird and mantis. If a ladybird and
mantis are always onto a leaf in training examples, the pattern of a leaf is harmful to discriminate
examples. We call such harmfulness as contradiction. SGD force the model not to use contradicted
patterns. If the model uses the pattern of a leaf to discriminate a mantis, ladybird examples stochas-
tically update the model to discriminate a ladybird by the pattern of a leaf, and then the model
start misclassifying mantis. On the one hand, classified and misclassified examples by contradicted
patterns interrupt to use contradicted patterns each other. On the other hand, non-contradicted patterns
across classes are learned without interferences and used to discriminate examples. When examples
are classified by non-contradicted patterns, their loss value and the magnitudes of their gradients
become smaller. Thus, the model stops learning contradicted patterns.

There are biases in a dataset, thus some patterns appear frequently and some patterns appear rarely.
Since SGD updates the model by averaged gradients, the gradients of frequent patterns become global
directions of the gradient to update the model. Easy examples are discriminative by frequent and
non-contradicted patterns, thus those patterns are learned first. As easy examples are learned and
get smaller loss values, rare patterns in hard examples start being learned. That’s why examples are
identical among different CNN architectures since such patterns are dependent on a dataset and not
on CNNs architectures.

5 EASY EXAMPLES ARE VISUALLY SIMILAR TO EACH OTHER

Visualizations2 of easy and hard examples are shown in Figure 1. To calculate easiness, WRN 16-4
and ResNet18 are respectively used for CIFAR-10 and mini ImageNet. As can be seen in Figure 1,
easy examples are visually similar to each other, and hard examples tend to be visually different from
each other. This result implies that different CNNs start learning from similar patterns.

6 WHY CNNS CONSIDER THOSE EXAMPLES AS easy

To further analyze what properties make examples easy for CNNs, we perform three experiments:
color, shuffle and radial masking experiment (Jo & Bengio, 2018). In these experiments, we calculate
easiness based on examples from which some patterns are intentionally removed.

Color experiment. To investigate whether CNNs look at colors at early epochs, we use easy examples
that are interpolated to grey. Let us consider that R, G, B, and Grey ∈ RH×W are red, green, blue
and grey channels respectively with height H and width W . The interpolations are calculated as
follows:

Rα = αR+ (1.0− α)Grey,
Gα = αG+ (1.0− α)Grey,
Bα = αB + (1.0− α)Grey,

(3)

2The rest of easy and hard examples are provided in the supplementary material.
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(a) Easiest examples
of dog

(b) Hardest examples
of dog

(c) Easiest examples
of airplane

(d) Hardest examples
of airplane

(e) Easiest examples
of sea snake

(f) Hardest examples
of sea snake

(g) Easiest examples
of bow tie

(h) Hardest examples
of bow tie

Figure 1: Easy and hard examples of CIFAR-10 dataset and mini ImageNet. a)-d) are examples
from CIFAR-10. e)-h) are examples from mini ImageNet.

where α is in the range of 0 ≤ α ≤ 1, with 0 indicating that the example is the grey picture and
with 1 showing that the example is colored. Grey channel is obtained by averaging RGB channels:
R+G+B

3 . The interpolated examples are shown in Figure 3 (a).

Shuffle experiment. The work of (Noroozi & Favaro, 2016) inspires the idea of shuffle experiment.
This experiment lets us understand whether CNNs look at structures at early epochs. Then, we cut
images into pieces with fixed tile size and reconstruct images with randomly shuffled tiled images.
The number of correct classification for the example ct is calculated by using shuffled tiled images.
Examples of the shuffled images are depicted in Figure 3 (b). Tile Size means the relative size when
compared to the full image size (e.g., if Tile Size is 0.33, the size of a tiled image is the 33% size of
the full image.).

Radial masking experiment. (Jo & Bengio, 2018) show that DNNs misclassify examples without
high-frequency information that a human can recognize, and claims that DNNs solve problems by
looking at superficial cues on examples. The goal of this experiment is to check whether CNNs
look at such superficial cues to classify easy examples at early epochs. The work of radial masking
experiment is conducted by (Jo & Bengio, 2018). Radial mask Mr ∈ RH×W , where H and W are
height and width, is computed as follows:

Mr[i, j] =

{
1 if

∥∥(i, j)− (W2 ,
H
2 )
∥∥
L2
≤ r,

0 otherwise,

where i and j are indices of Mr. Mr is a radial mask in the Fourier domain that removes higher-
frequency in examples. The bigger r is, the higher frequency of an example is kept. Radial masked
examples are shown in Figure 3 (c).

Result and analysis. To verify what patterns CNNs start looking at, we calculate the matching rate
between regular examples and examples from which some patterns are intentionally removed. First,
we train a model for m-epochs with regular data augmentation. Then, easiness is calculated by using
examples from which some patterns are intentionally removed.
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The result are shown in Figure 2. The result of color experiment is the opposite tendency to the result
of shuffle and random masking experiment. In CIFAR-10, CNNs start looking at the structure and
high-frequency information. In mini ImageNet, CNNs start looking at the colors. It indicates that
initially learned patterns are dataset dependent.

In mini ImageNet, we observe that the accuracy does not drop when r is 1.1 small in radial masking
experiment. As radial masked examples are depicted in Figure 3 (c), such blurred examples are not
recognizable. It implies that CNNs may learn some pseudo patterns if they make sense in training
examples. In addition, the trained model with regular data augmentation (after 300 epochs training)
consistently well classify some unrecognizable blurred examples (10 out of 10 trained ResNet 18).
Such learned pseudo patterns remain into the model to the end.

(a) Color experiment (b) Shuffle experiment (c) Random masking experiment

Figure 2: The result of easy examples in (a) color, (b) shuffle and (c) radial masking experiments in
CIFAR-10 and mini ImageNet. The vertical axis is the matching rate between the case with regular
examples and examples from which some patterns are intentionally removed. The model is trained
for m-epochs with regular data augmentation.

(a) α-interpolated colored examples (b) Shuffled examples

(c) Radial masked examples

Figure 3: Colored, shuffled and radial masked examples.

7 EASY AND HARD EXAMPLES CONTRIBUTE DIFFERENTLY TO
GENERALIZATION

Ablation experiment. We perform ablation experiment on easy and hard examples to determine
if they equally contribute to the generalization ability. Before training, we sort training examples
according to easiness and decide which to discard by beta distribution Beta(α, β). When we mainly
remove easy examples, Beta(α = 3, β = 1) is used. In the same manner, Beta(α = 1, β = 3) is
used for ablations of hard examples and Beta(α = 1, β = 1) is used for the random case.

The result is shown in Figure 4 (a) and (b). As can be seen, removing hard examples consistently
degrades the classification performance. Intriguingly, if we remove many easy examples, the accuracy
starts degrading sharply around the drop rate is 0.6. Randomly removing examples consistently
produces the best performance.

Frequent patterns in easy examples are redundant, so the accuracy does not degrade when some easy
examples are dropped. However, rare patterns in hard examples are unique and removing them result
in the drop of the accuracy. Interesting properties is that the accuracy starts degrading sharply when
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we remove many easy examples. This phenomenon can be explained by biases in a dataset. Since we
randomly split a dataset into training and validation, biases and tendency of easy examples are shared.
Thus, if the model cannot classify easy examples in training dataset, the accuracy is dropped sharply.
Easy examples are the majority and they strongly affect the accuracy.

Corrupted labels experiment. We conduct the experiment of corrupted labels (Zhang et al., 2017)
on easy and hard examples. Before training, we sort training examples according to easiness and
determine which to put random labels by beta distribution Beta(α, β). Beta(α = 3, β = 1),
Beta(α = 1, β = 1) and Beta(α = 1, β = 3) are used for the case of easy examples, the case of
hard examples and the random case, respectively.

The result is shown in Figure 4 (c) and (d). The accuracy of the case of easy examples starts degrading
around random label rate 0.3 and a model can not learn in heavy noise case (e.g., the situation in 90%
of examples are wrongly labeled.). However, the accuracy of the case of hard examples degrades
consistently and a model can learn in heavy noise case.

This phenomenon can be also explained by biases in a dataset. Putting wrong labels onto many easy
examples results in an interruption of learning frequent patterns. If many examples are wrongly
labeled and a model does not learn frequent patterns, the classification performance is dropped since
frequent patterns appear frequently in validation examples. That’s why the accuracy starts degrading
sharply when many easy examples are wrongly labeled, and the case of hard examples maintain the
accuracy in heavy noise case because some easy examples are kept in training examples.

7.1 DO MISCLASSIFIED EXAMPLES IN VALIDATION DATASET ARE HARD EXAMPLES?

The answer is yes. To calculate easiness of examples in validation dataset, we merge training
examples with examples in validation and calculate train CNNs for m epochs. Then, we calculate
easiness by using validation examples.

The result is shown in Figure 5. Surprisingly, mostly misclassified examples are hard examples. We
believe that some rare patterns are necessary to classify such misclassified examples and those rare
patterns are none or a few in training examples.

8 RELATED WORK

A dataset naturally contains various biases. For instance, (Ponce et al., 2006) shows some averaged
images of Caltech-101 (Li et al., 2004) are not homogeneous and recognizable. They claim that
Caltech-101 may have inter-class variability but lacks intra-class variability. (Torralba & Efros, 2011)
mentions several biases in a dataset: Selection bias means that examples in a dataset tend to have
particular kinds of images (example: there are many examples of a sports car in the car category).
Capture bias represents the manner in which pictures are usually taken (example: a picture of a dog
is usually taken from the front with the dog looking at the photographer and occupying most of the
picture). In this paper, we find that easy and hard examples are highly associated with such biases.

There are three types of training schemes that start learning from easy examples (i.e., curriculum
learning)(Kumar et al., 2010), uncertain examples (Settles, 2010; Chang et al., 2017) or hard examples
(i.e., hard negative mining) (Lin et al., 2017; Simo-Serra et al., 2015; Shrivastava et al., 2016;
Loshchilov & Hutter, 2016; Wang & Gupta, 2015). Those methods rely on the loss value for each
training example, thus properties of easy and hard examples are implicitly used. For examples, when
hard examples are emphasized, rare patterns are emphasized and frequent patterns are de-emphasized,
thus imbalanced problems in intra-class and inter-class are mitigated.

(Stabinger & Rodriguez-Sanchez, 2017) suggest an active learning method based on RDE (quite
similar to our easiness). They actively take samples from hard examples. The result of Figure 4
also shows that actively taking a sample from hard examples is an efficient way to increase the
classification performance. We believe active sampling on rare patterns is a promising way.
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(a) Ablations: CIFAR-10 (b) Ablations: mini ImageNet

(c) Corrupted labels: CIFAR-10 (d) Corrupted labels: mini ImageNet

Figure 4: The result of ablation and corrupted label experiment. The vertical axis is the accuracy.
The horizontal axis is the drop rate or random label rate. If the drop rate is 0.3, it means that 30%
of examples are discarded. If random label rate is 0.3, it means that 30% of examples are randomly
labeled. WRN 16-4 and ResNet 18 are used respectively for CIFAR-10 and mini ImageNet. ”easy”
on figures means that examples with high easiness are mainly removed or randomly labeled. In
the same manner, ”hard” denotes examples with low easiness are mainly processed and ”random”
represents processed examples are randomly selected. Error bars represent standard deviation over 5
trials.

(a) CIFAR-10 (b) mini ImageNet

Figure 5: The relation between easiness and classification probability of validation examples. The
horizontal axis is easiness of validation examples. The vertical axis is the average of classification
probability of validation examples, with 0 indicating that the example is misclassified every time
and with 1 showing that the example is classified correctly every time. a) Result in CIFAR-10. To
calculate classification probability, we take an average of the outputs of 15 trained WRN 16-4 and 15
trained ResNeXt29 4-64d. b) Result in mini ImageNet. To calculate classification probability, we
take an average from the output of 10 trained ResNet 18 and 10 trained DenseNet 121.
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9 CONCLUSION AND FUTURE WORK

In this paper, unknown properties of easy and hard examples are revealed. Our experiments demon-
strate that different CNNs start learning from identical examples, and easy and hard examples
contribute differently to generalization. However, discovered properties can not be explained by
a hypothesis that CNNs start learning from simple patterns (Arpit et al., 2017). Consequently, to
explain why easy and hard examples have such properties, we hypothesize that CNNs start learning
from frequent patterns that are not contradicted across classes.

As future work, by using easiness, dataset compression and mislabel mining can be considered for a
large-scale dataset. Besides, we would like to analyze the phenomenon of easy and hard examples on
natural language and sound domain. Our work utilize datasets with 10 classes, thus it is necessary to
conduct further research on large-scale and more complexed datasets.
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10 VISUALIZATION OF EASY AND HARD EXAMPLES

Easy and hard examples of CIFAR-10 and mini ImageNet are shown in Figure 6, 7.
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(a) Easiest examples of airplane (b) Hardest examples of airplane

(c) Easiest examples of car (d) Hardest examples of car

(e) Easiest examples of car (f) Hardest examples of car
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(g) Easiest examples of cat (h) Hardest examples of cat

(i) Easiest examples of deer (j) Hardest examples of deer

(k) Easiest examples of dog (l) Hardest examples of dog

12



Under review as a conference paper at ICLR 2019

(m) Easiest examples of frog (n) Hardest examples of frog

(o) Easiest examples of horse (p) Hardest examples of horse

(q) Easiest examples of ship (r) Hardest examples of ship
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(s) Easiest examples of track (t) Hardest examples of track

Figure 6: Easy and hard examples of CIFAR-10. WRN 16-4 is used.
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(a) Easiest examples of sea snake (b) Hardest examples of sea snake

(c) Easiest examples of persian cat (d) Hardest examples of persian cat

(e) Easiest examples of leaf beetle (f) Hardest examples of leaf beetle
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(g) Easiest examples of bow tie (h) Hardest examples of bow tie

(i) Easiest examples of cradle (j) Hardest examples of cradle

(k) Easiest examples of woodworking plane (l) Hardest examples of woodworking plane
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(m) Easiest examples of strainer (n) Hardest examples of strainer

(o) Easiest examples of sundial (p) Hardest examples of sundial

(q) Easiest examples of washbasin (r) Hardest examples of washbasin
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(s) Easiest examples of butternut squash (t) Hardest examples of butternut squash

Figure 7: Easy and hard examples of mini ImageNet. ResNet 18 is used.
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