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ABSTRACT

Syntax is a powerful abstraction for language understanding. Many downstream
tasks require segmenting input text into meaningful constituent chunks (e.g., noun
phrases or entities); more generally, models for learning semantic representa-
tions of text benefit from integrating syntax in the form of parse trees (e.g., tree-
LSTMs). Supervised parsers have traditionally been used to obtain these trees, but
lately interest has increased in unsupervised methods that induce syntactic repre-
sentations directly from unlabeled text. To this end, we propose the deep inside-
outside recursive autoencoder (DIORA), a fully-unsupervised method for discov-
ering syntax that simultaneously learns representations for constituents within the
induced tree. Unlike many prior approaches, DIORA does not rely on supervision
from auxiliary downstream tasks and is thus not constrained to particular domains.
Furthermore, competing approaches do not learn explicit phrase representations
along with tree structures, which limits their applicability to phrase-based tasks.
Extensive experiments on unsupervised parsing, segmentation, and phrase clus-
tering demonstrate the efficacy of our method. DIORA achieves the state of the
art in unsupervised parsing (46.9 F1) on the benchmark WSJ dataset.

1 INTRODUCTION

Syntax in the form of parse trees is an essential component of many natural language processing
tasks. Constituent spans taken from a parse tree are useful for tasks such as relation extraction Verga
et al. (2016) and semantic role labeling (Strubell et al., 2018), while the full parse itself can be used to
build higher-quality systems for machine translation (Aharoni and Goldberg, 2017) and text classi-
fication (Tai et al., 2015). Supervised parsers trained on datasets such as the Penn Treebank (Marcus
et al., 1994) are traditionally used to obtain these trees; however, these datasets are generally small
and restricted to the newswire domain. For out-of-domain applications, it is generally infeasible to
create new treebanks, as syntactic annotation is expensive and time-consuming.

Motivated by these limitations, we propose a method that extracts both shallow parses (i.e., noun
phrases or entities) and full syntactic trees from any domain or language automatically without any
training data. In addition to just producing the parse, we want our model to build representations for
internal constituents that obey syntactic and semantic regularities, as we can then easily inject these
representations into downstream tasks. Our model extends existing work on latent tree chart parsers
(Le and Zuidema, 2015; Yogatama et al., 2016; Maillard et al., 2017; Choi et al., 2018), which build
up representations for all internal nodes in the tree (cells in the chart) generated by a soft weighting
over all possible sub-trees (Section 2).

In previous work, the representation at the root node is used as a sentence encoding and trained to
optimize some downstream task, typically natural language inference. Unfortunately, this method
requires sentence level annotations to train the model. Worse still, analysis on the trees learned by
these models show that they are actually quite poor at capturing syntax that in any way resembles
linguistic theory (Williams et al., 2018a). To address these issues, we incorporate the inside-outside
algorithm (Baker, 1979; Lari and Young, 1990) into a latent tree chart parser. The bottom-up inside
step is equivalent to the forward-pass of previous latent tree chart parsers (Maillard et al., 2017).
However, these inside representations are encoded by looking only within the current subtree, com-
pletely ignoring outside context. Thus, we perform an additional top-down outside calculation for
each node in the tree incorporating external context into sub-tree representations. Finally, we train
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This news raised hopes for further interest-rate cuts .

This news raised hopes for further interest-rate cuts .

Figure 1: Example parse trees. Top PRPN-LM prediction, bottom DIORA prediction. DIORA
correctly chunks the span ‘raised hopes for further interest-rate cuts’.

the outside representations of leaves to reconstruct the initial input, which results in a completely
unsupervised autoencoder-like objective.

Recently, Shen et al. (2018) proposed Parsing-Reading-Predict Networks (PRPN), an RNN based
language model with an additional module for inferring syntactic distance. After training, this syntax
module can be decomposed to recover a parse (Htut et al., 2018) via a complex mechanism that
involves modeling a distribution over possible syntactic structures with a stick-breaking process.
Like DIORA, this model can be trained in a completely unsupervised manner. However, it has
no mechanism of explicitly modeling phrases, and span representations can only be generated by
post-hoc heuristics. Additionally, finding the most probable tree in DIORA is much simpler than in
PRPN, as we can just run the CKY algorithm.

To probe different properties of our model, we run experiments on unsupervised parsing, segmen-
tation, and phrase representations. DIORA sets the state-of-the-art for unsupervised parsing on the
WSJ dataset, has a greater recall on a more constituent types than PRPN, and demonstrates strong
clustering of phrase representations.

2 DIORA: DEEP INSIDE-OUTSIDE RECURSIVE AUTO-ENCODER

Our goal is to build an unsupervised model which can automatically discover syntactic structure
from raw text. The hypothesis that our model follows is that the most efficient compression of a sen-
tence will be derived from following the true syntactic structure of the underlying input. Our model
is an extension of latent tree chart parsers augmented with the inside-outside algorithm (Baker, 1979;
Lari and Young, 1990) and trained as an auto-encoder. Based on our hypothesis, the auto-encoder
will best reconstruct the input by discovering and exploiting syntactic regularities of the text.

The inside phase of our method recursively compresses the input sequence into a single vector rep-
resenting the sentence (Section 2.1.1). This is analogous to the compression step of an autoencoder
and equivalent to existing latent tree chart parsers forward pass. Following this, we initiate the out-
side phase of our algorithm there a generic sentence (root) representation which is trained as a part of
the model parameter. As an outside step of the inside-outside algorithm (Section 2.1.2), we expand
outward until finally producing reconstructed representations of the leaf nodes. These reconstructed
leaves are then optimized to reconstruct the input sentence as done in an auto-encoder based deep
neural network (Section 2.2).

2.1 FILLING THE CHART WITH INSIDE-OUTSIDE

Each inside representation of a given sub-tree is built considering only the children constituents of
that sub-tree, independent of any outside context. After the inside representations are calculated,
we do a top-down outside pass to compute outside representations. The outside representations are
encoded by looking at the context of a given sub-tree. In the end, each cell in the chart will contain
an inside vector, inside compatibility score, outside vector, and outside compatibility score.

Once the chart is filled, each constituent k (cell in the chart) is associated with an inside vector αvec
k ,

an outside vector βvec
k , inside score αscore

k and outside score βscore
k .
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Figure 2: The inside and outside pass of DIORA for the input ‘the cat drank milk’. a) The inside
pass: The inside vector for the phrase ‘the cat drank’ is a weighted average of the compositions for
the two possible segmentations - ((the cat), drank) and (the, (cat drank)). The weights come from the
learned compatibility scores αscore

k . b) The outside Pass: The outside vector for the phrase ‘drank
milk’ is a function of the outside vector of its parent and the inside vector of its sibling.

Assuming that the input to our model is a sentence X made up of T tokens, x0, x1, ..., xT , we
describe inside and outside phases of our algorithm in the following Sections 2.1.1 and 2.1.2. Also,
each token xi has a corresponding pre-trained d dimensional embedding vector vi.

2.1.1 INSIDE PHASE

For each pair of neighboring constituents i and j, we compute a compatibility score αscore
k and a

composition vector αvec
k . The score and vector that represents a particular span k are computed

using a soft weighting over all possible pairs of constituents that together covers the span entirely
(we refer to this set of constituent pairs as {k}):
Vectors for spans of length 1 are initialized using a linear transformation of the embedded input vi.
Scores associated with these spans are set to 0.

αvec
k =Winv

T
k (1)

αscore
k = 0 (2)

For higher levels of the chart we use:

αvec
k =

∑
i,j∈{k}

ecompat(i,j)compose(i, j) (3)

αscore
k =

∑
i,j∈{k}

ecompat(i,j)compat(i, j) (4)

The compatibility function compat is a bilinear function of the vectors from neighboring spans,
adding their scores:

compat(i, j) = αvec
i Sin>αvec>

j + αscore
i + αscore

j (5)

And the composition function compose is a TreeLSTM (Tai et al., 2015) which produces a hidden
state vector h and cell state vector c.:

compose(i, j) = TreeLSTM in(αvec
i , αvec

j ) =

[
h
c

]
(6)

Where the TreeLSTM is defined as follows:
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c = ci � σ(fi) + cj � σ(fj) + tanh(u)� σ(i) (8)
h = σ(o) + tanh(c) (9)

The constant ω is set to 1 for the inside phase and 0 for the outside phase. The parameters U and b
are not shared between the inside phase and outside phase.

2.1.2 OUTSIDE PHASE

The outside computation is similar to the inside,

The root node of the outside chart is learned as a bias. Descendant cells are predicted using a
disambiguation over the possible outside contexts. Each component of the context consists of a
sibling cell from the inside chart and a parent cell from the outside chart.

βvec
k =

∑
i,j∈{k}

edisamb(i,j)predict(i, j) (10)

βscore
k =

∑
i,j∈{k}

edisamb(i,j)disamb(i, j) (11)

disamb(i, j) = βvec
i Sout>αvec>

j + βscore
i + αscore

j (12)

predict(i, j) = TreeLSTMout(αvec
i , βvec

j ) (13)

2.2 TRAINING OBJECTIVE

To train our model we use an auto-encoder-like language modeling objective. In a standard auto-
encoder, the input X is compressed into a single lower dimensional representation Y . Y is then
decompressed and trained to predict X . In our model, we never condition the reconstruction of X
on a single Y because the root’s outside representation is initialized with a bias rather than the root’s
own inside vector. Instead, we reconstruct X conditioned on the many sub-tree roots, none of which
is a single compression of the entire X , but rather a subset.

Each generated outside vector βvec
i for constituents of length 1 are trained to predict their original

input vi. We approximate a reconstruction loss with a max-margin across N negative samples.

For each xi, we sample N negative xni uniformly at random from the vocabulary. The training
objective of our model over a batch B = {Xi

T i, i = 1, ..., B} is computed identically for all tokens
(which are also all spans with length 1) within the batch and averaged to get the overall loss for the
entire batch. Precisely, the loss function for each token (span k) is described in Equation 14.

L(B) =

n=N∑
n=1

max(0, 1− βvec
k ∗ αvec

k + βvec
k ∗ αvec

kn
) (14)

In equation 14, αvec
kn

are representations for negative samples from vocabulary. Similar to input
transformation, αvec

kn
are also computed after applying a linear transformation over the input em-

beddings. As mentioned before, αvec
k and βvec

k are inside and outside representations, for span k,
respectively.
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Algorithm 1 Parsing with DIORA

1: procedure CKY(chart)
2: for each k ∈ chart | size(k) = 1 do . Initialize terminal values.
3: xk ← 0

4: for each k ∈ chart do
5: xk ← max

i,j∈{k}
[xi + xj + compat(i, j)] . Calculate a maximum score for each span.

6: bk ← argmax
i,j∈{k}

[xi + xj + compat(i, j)] . Record a backpointer.

7: procedure FOLLOW-BACKPOINTERS(k)
8: if size(k) = 1 then
9: return k

10: i← FOLLOW-BACKPOINTERS(bi
k)

11: j ← FOLLOW-BACKPOINTERS(bjk)
12: return (i, j)
13: return FOLLOW-BACKPOINTERS(k = root) . Backtrack to get the maximal tree.

2.3 DIORA CKY PARSING

To obtain a parse with DIORA, we populate an inside and outside chart using the input sentence.
Then, we can extract the most likely parse based on our single grammar rule using the CKY proce-
dure (Kasami, 1966; Younger, 1967).

It’s true that using CKY produces the most likely parse given a set of grammar rules, although in
the case of DIORA, the single grammar rule is only a weak abstraction for a PCFG. For this reason,
including context during CKY might inform our parser to make different decision. We include
context by adding the scalar value of the outside cell to each inside cell.

3 EXPERIMENTS

To evaluate the effectiveness of DIORA, we run experiments on unsupervised parsing, unsupervised
segmentation, and phrase similarities. The model has been implemented in PyTorch (Team, 2018)
and the code is published online1. For implementation details, see the Appendix A.1

Our main baseline is the current state-of-the-art unsupervised parser PRPN(Shen et al., 2018). We
compare our model against two size variants of this model which were used in Htut et al. (2018).
Comparison of the number of parameters and maximum training sentence length are shown in 1.

Model Word Dim # Parameters Max Length
DIORA 300 1,502,400 20
PRPN-UP 200 3,624,202 35
PRPN-LM 800 35,593,202 35

Table 1: Model Dimensions.

3.1 UNSUPERVISED PARSING

We first evaluate how well our model is able to predict a full unlabeled syntactic parse. We look at
two data sets which have been used in prior work (Htut et al., 2018), The Wall Street Journal(WSJ)
section of Penn Tree Bank (Marcus et al., 1994), and the automatic parses from MultiNLI (Williams
et al., 2018b). WSJ has gold human annotated parses and MultiNLI contains automatic parses
derived from the Stanford CoreNLP parser (Manning et al., 2014).

1https://github.com/anonymous/submission
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We compare our model to left/right branching and balanced trees which are deterministically con-
structed. RL-SPINN (Yogatama et al., 2016) and ST-Gumbel (Choi et al., 2018) are chart parsing
models trained to predict the downstream task of NLI.

3.1.1 RESULTS AND DISCUSSION

Latent tree models have been shown to perform particularly poorly on attachments at the beginning
and end of the sequence (Williams et al., 2018a). To address this, we incorporate a post-processing
heuristic (+PP in Table 2). We see that PRPN-UP and DIORA benefit much more than PRPN-LM
from this heuristic. This is consistent with qualitative analysis showing that DIORA and PRPN-UP
incorrectly attach trailing punctuation much more than PRPN-LM. This heuristic simply attaches
trailing punctuation to the root of the tree, regardless of its predicted attachment. We find this to
be extremely effective, increasing our state-of-the-art WSJ parsing results by by over 3 absolute F1
points.

On the MultiNLI dataset, PRPN-LM is the top performing model without using the PP heuristic
and DIORA outperforms PRPN-UP. Afterwards, PRPN-UP surpasses DIORA. However, it is worth
noting that this is not actually a gold standard evaluation and instead evaluates the ability to replicate
the output of a trained parser Manning et al. (2014).

MultiNLI WSJ
Model F1 Depth F1 Depth

Left Branching - - 13.1 12.4
Right Branching - - 16.5 12.4
Random 27.0 4.4 21.4 5.3
Balanced 21.3 3.9 21.3 4.6
RL-SPINN† 18.8 8.6 13.2 -
- w/o Leaf GRU 18.1 8.6 13.2 -

ST-Gumbel† 23.7 4.1 20.1 -
- w/o Leaf GRU 27.5 4.6 25.0 -

PRPN-UP 48.4 4.9 40.6 5.9
PRPN-LM 50.2 5.0 43.5 6.2
DIORA 49.0 6.2 43.8 8.1
PRPN-UP +PP 54.6 4.9 46.1 5.9
PRPN-LM +PP 50.1 5.0 43.0 6.2
DIORA +PP 53.7 6.1 46.9 7.9

Table 2: Unsupervised Parsing. † indicates trained to optimize NLI task.We use the max unlabeled
binary F1 across runs for PRPN-UP 2, PRPN-LM, and DIORA. F1 was calculated using the parse
trees provided by Htut et al. (2018) and all results in the upper portion of the table were copied from
Htut et al. (2018). +PP refers to post-processing heuristic to remove trailing punctuation explained
in Section 3.1.

3.2 UNSUPERVISED PHRASE SEGMENTATION

In many scenarios, rather than a full parse, one is only concerned with extracting particular con-
stituent phrases, such as entities, to be used for downstream analysis. In order to get an idea of how
well our model can perform on phrase segmentation, we consider the maximum recall of spans in
our predicted parse tree. We leave methods for cutting the tree to future work and instead consider
the maximum recall of our model which serves as an upper bound on its performance. We calculate
recall as the percentage of labeled constituents that appear in our predicted tree relative the total
number of constituents in the gold tree. We separate these scores by type which are presented in
Table 3.
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3.2.1 RESULTS AND DISCUSSION

In Table 2 we see the breakdown of constituent recall across the 10 most common types. We see that
PRPN-UP has the highest recall for the most common type noun-phrase, but drops in every other
category. DIORA achieves the highest recall across the most types and is the only model to perform
effectively on verb-phrases. However, DIORA performs poorly relative to PRPN at prepositional
phrases.

Label Count DIORA PRPN-UP PRPN-LM

NP 297,687 0.620 0.687 0.597
VP 168,603 0.569 0.397 0.316
PP 116,338 0.338 0.499 0.602
S 87,714 0.711 0.629 0.625
SBAR 24,743 0.490 0.412 0.554
ADJP 12,261 0.495 0.343 0.360
QP 11,441 0.624 0.336 0.545
ADVP 5,812 0.437 0.392 0.499
PRN 2,971 0.185 0.108 0.138
SINV 2,563 0.923 0.889 0.905

Table 3: Segment recall from WSJ seperated by phrase type. The 10 most frequent phrase types are
shown. Highest value in each row is bolded.

3.3 PHRASE SIMILARITY

One of the goals of DIORA is to learn meaningful representations for spans of text. Most lan-
guage modeling methods focus only on explicitly modeling token representations and rely on ad-hoc
post-processing to generate representations for longer spans, typically relying on simple arithmetic
functions of the individual tokens.

To evaluate our model’s learned phrase representations, we look at the similarity between spans of
the same type within labeled phrase datasets. We look at two datasets, CoNLL 2000 is a shallow
parsing dataset containing spans of noun phrases, verb phrases, etc. CoNLL 2012 is a named entity
dataset containing 19 different entity types.

For each of the labeled spans (greater than length 1) in the datasets, we generate a phrase repre-
sentation and similarities are based on cosine distance. We report three numerical evaluations for
both datasets precision@K, mean average precision (MAP), and dendogram purity (DP). We run
a hierarchical clustering algorithm over the representations and computeDP (Kobren et al., 2017).
Given any two points with the same gold label, the clustering tree is cut to form the minimal cluster
containing both points. DP then calculates how pure that cluster is.

The first baseline we compare against produces phrase representations from averaging Glove vectors
of the individual tokens within the span. The second uses ELMo (Peters et al., 2018a), a method for
obtaining powerful, context dependent word embeddings that has led to many recent state-of-the-art
results in NLP. We obtain phrases following the procedure described in (Peters et al., 2018b) and
represent phrases as a function of its first and last hidden state. We look at two variants of ELMo3.
ELMo-L1 produces token hidden states by only taking the bottom LSTM layer outputs, ELMo-Avg
takes a flat average over all of the LSTM hidden state layers4.

3.3.1 RESULTS

On the CoNLL 2000 dataset, we find that our model outperforms Glove and is competitive with
ELMo. For CoNLL 2012, an named entity dataset, we find Glove to actually be the top performer

3we use the publically available code and pretrained mdoel from https://allennlp.org/elmo
4Note that we do not run this evaluation for PRPN because the authors released model parameters and

complete parses but not a complete version of the code in order to run on new data.
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under some metrics while our model is far behind. These results indicate that DIORA is capturing
syntax quite well, but is currently missing semantics.

CoNLL 2000 CoNLL 2012
Model Dim DP P@10 P@100 MAP DP P@10 P@100 MAP

Random 300 0.425 0.41 0.40 0.34 0.16 0.15 0.14 0.13
Glove 300 0.521 0.89 0.74 0.53 0.392 0.82 0.65 0.47
ELMo-L1 4096 0.632 0.96 0.83 0.55 0.352 0.85 0.68 0.39

- L2 4096 0.545 0.94 0.79 0.57 0.301 0.83 0.67 0.39
- Concat 8192 0.576 0.95 0.78 0.58 0.308 0.84 0.68 0.40
- Avg 4096 0.618 0.97 0.84 0.67 0.369 0.87 0.73 0.46

DIORA-In 200 0.620 0.89 0.77 0.61 0.303 0.77 0.54 0.36
- Out 200 0.581 0.69 0.65 0.47 0.200 0.35 0.24 0.18
- In/Out 400 0.615 0.89 0.79 0.62 0.308 0.76 0.54 0.35
- In/Out Ext. 400 0.633 0.89 0.79 0.62 0.311 0.77 0.54 0.35

Table 4: Dendogram purity, P@10, P@100, and MAP for labeled chunks from CoNLL-2000 and
CoNLL 2012 datasets. For both metrics, higher is better. The top value in each column is bolded, or
italicized if it is better than our model.

3.4 QUALITATIVE RESULTS

We show example trees from PRPN-LM and DIORA in 3.

4 RELATED WORK

Latent Tree Learning A brief survey of neural latent tree learning models was covered in Williams
et al. (2018a). The first positive result for latent tree was shown in Htut et al. (2018), which used a
language modeling objective. The model in Liue et al. (2018) uses an inside chart and an outside
procedure to calculate marginal probabilities use to align spans between sentences in entailment.

Neural Inside-Outside Parsers The Inside-Outside Recursive Neural Network (IORNN) in Le and
Zuidema (2014) is closest to ours and is a graph-based dependency parser that produces a k-best
list of parses, in contrast, DIORA produces the most likely parse given the learned the potential
functions of the constituents. The Neural CRF Parser (Durrett and Klein, 2015), similar to DIORA,
performs exact inference on the structure of a sentence, although requires a set of grammar rules and
labeled parse trees during training. DIORA, like Liue et al. (2018), has a single grammar rule that
applies to any pair of constituents and does not use structural supervision.

Unsupervised Parsing and Segmentation Unsupervised segmentation (also called chunking) from
raw text dates back to Ponvert et al. (2011). Another paper by the same authors (Ponvert et al.,
2010) only looked at parsing certain low-level constituents. Earlier grammar induction models were
evaluated against a subset of the WSJ treebank filtered to sentences of length 10 after removing
punctuation (Klein and Manning, 2002; 2004) while DIORA is evaluated against two much larger
datasets for unsupervised parsing, including the full WSJ treebank. Unsupervised segmentation with
across parallel corpora was performed in Das and Petrov (2011). The source language had segment
labels, the target language did not, but there are mapped translations between the two languages.
Cohen et al. (2011) achieved unsupervised segmentation for parallel corpora without using mapped
translations.

5 CONCLUSION

In this work we presented DIORA, a completely unsupervised method for inducing syntactic trees
and segmentations over text. We showed that an auto encoder language modeling objective on top
of inside-outside representations of latent tree chart parsers allows us to effectively learn syntactic
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Third-quarter shipments slipped 7 % from the year-ago period and 17 % from this year ’s second quarter

Third-quarter shipments slipped 7 % from the year-ago period and 17 % from this year ’s second quarter

Mr. Hoelzer did n’t return phone calls seeking comment on the judge ’s decision

Mr. Hoelzer did n’t return phone calls seeking comment on the judge ’s decision

The earthquake caused many streets to buckle and crack making them impassible

The earthquake caused many streets to buckle and crack making them impassible

Figure 3: Pairs of example parses for the same sentence from two different models. For each pair,
the top is the output of PRPN-LM and bottom was produced by DIORA. Bolden token pairs or
spans indicate a parse error by PRPN that was correctly attached by DIORA. Some punctuation was
removed for clarity of printed trees.

structure of language. In experiments on unsupervised parsing, chunking, and phrase representations
we show our model is comparable to or outperforms current baselines, achieving the state-of-the-art
performance on unsupervised parsing for the WSJ dataset. .

Future work can improve the current method by training larger models over much larger corpora
including other domains and languages. While the current model seems to focus primarily on syntax,
extra unsupervised objectives or light supervision could be injected into the learning procedure to
encourage a more thorough capturing of semantics.
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A APPENDIX

A.1 TRAINING DETAILS

All DIORA experiments are trained with these settings unless otherwise specified: we use the
ALLNLI corpus including only sentences with length less than 20, stochastic gradient descent with
a batch size of 256, and the model dimension set to 200. The input sentences are embedded using
the 300D 480B GloVe embeddings (Pennington et al., 2014) and are not updated during training.
Sentences are grouped into batches with uniform sentence length. Each cell in the chart has its L2-
norm set to 1. Early stopping is done using the reconstruction objective evaluated on a held-out set.
When depending on Noise Contrastive Estimation (as is the case in the reconstruction objective), we
sample 3 negative examples per positive example.
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