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ABSTRACT

Many of our core assumptions about how neural networks operate remain empiri-
cally untested. One common assumption is that convolutional neural networks need
to be stable to small translations and deformations to solve image recognition tasks.
For many years, this stability was baked into CNN architectures by incorporating
interleaved pooling layers. Recently, however, interleaved pooling has largely been
abandoned. This raises a number of questions: Are our intuitions about deforma-
tion stability right at all? Is it important? Is pooling necessary for deformation
invariance? If not, how is deformation invariance achieved in its absence? In this
work, we rigorously test these questions, and find that deformation stability in
convolutional networks is more nuanced than it first appears: (1) Deformation
invariance is not a binary property, but rather that different tasks require different
degrees of deformation stability at different layers. (2) Deformation stability is
not a fixed property of a network and is heavily adjusted over the course of train-
ing, largely through the smoothness of the convolutional filters. (3) Interleaved
pooling layers are neither necessary nor sufficient for achieving the optimal form
of deformation stability for natural image classification. (4) Pooling confers too
much deformation stability for image classification at initialization, and during
training, networks have to learn to counteract this inductive bias. Together, these
findings provide new insights into the role of interleaved pooling and deformation
invariance in CNNs, and demonstrate the importance of rigorous empirical testing
of even our most basic assumptions about the working of neural networks.

1 INTRODUCTION

Within deep learning, a variety of intuitions have been assumed to be common knowledge without
empirical verification, leading to recent active debate (Rahimi & Recht, 2017; LeCun, 2017; Sculley
et al., 2015; 2018). Nevertheless, many of these core ideas have informed the structure of broad
classes of models, with little attempt to rigorously test these assumptions.

In this paper, we seek to address this issue by undertaking a careful, empirical study of one of the
foundational intuitions informing convolutional neural networks (CNNs) for visual object recognition:
the need to make these models stable to small translations and deformations in the input images. This
intuition runs as follows: much of the variability in the visual domain comes from slight changes in
view, object position, rotation, size, and non-rigid deformations of (e.g.) organic objects; represen-
tations which are invariant to such transformations would (presumably) lead to better performance.
This idea is arguably one of the core principles initially responsible for the architectural choices of
convolutional filters and interleaved pooling LeCun et al. (1998; 2015), as well as the deployment
of parametric data augmentation strategies during training Simard et al. (2003). Yet, despite the
widespread impact of this idea, the relationship between visual object recognition and deformation
stability has not been thoroughly tested, and we do not actually know how modern CNNs realize
deformation stability, if they even do at all.

Moreover, for many years, the very success of CNNs on visual object recognition tasks was thought
to depend on the interleaved pooling layers that purportedly rendered these models insensitive to
small translations and deformations. However, despite this reasoning, recent models have largely
abandoned interleaved pooling layers, achieving similar or greater success without them Springenberg
et al. (2014); He et al. (2016).
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These observations raise several critical questions. Is deformation stability necessary for visual object
recognition? If so, how is it achieved in the absence of pooling layers? What role does interleaved
pooling play when it is present?

Here, we seek to answer these questions by building a broad class of image deformations, and
comparing CNNs’ responses to original and deformed images. While this class of deformations is
an artificial one, it is rich and parametrically controllable, includes many commonly used image
transformations (including affine transforms: translations, shears, and rotations, and thin-plate spline
transforms, among others) and it provides a useful model for probing how CNNs might respond to
natural image deformations. We use these to study CNNs with and without pooling layers, and how
their representations change with depth and over the course of training. Our contributions are as
follows:

• Networks without pooling are sensitive to deformation at initialization, but ultimately learn
representations that are stable to deformation.
• The inductive bias provided by pooling is too strong at initialization, and deformation

stability in these networks decrease over the course of training.
• The pattern of deformation stability across layers for trained networks with and without

pooling converges to a similar structure.
• Networks both with and without pooling implement and modulate deformation stability

largely through the smoothness of learned filters.

More broadly, this work demonstrates that our intuitions as to why neural networks work can often be
inaccurate, no matter how reasonable they may seem, and require thorough empirical and theoretical
validation.

1.1 PRIOR WORK

Invariances in non-neural models. There is a long history of non-neural computer vision models
architecting invariance to deformation. For example, SIFT features are local features descriptors
constructed such that they are invariant to translation, scaling and rotation Lowe (1999). In addition,
by using blurring, SIFT features become somewhat robust to deformations. Another example is the
deformable parts models which contain a single stage spring-like model of connections between pairs
of object parts giving robustness to translation at a particular scale Felzenszwalb et al. (2008).

Deformation invariance and pooling. Important early work in neuroscience found that in the visual
cortex of cats, there exist special complex-cells which are somewhat insensitive to the precise location
of edges Hubel & Wiesel (1968). These findings inspired work on the neocognitron, which cascaded
locally-deformation-invariant modules into a hierarchy Fukushima & Miyake (1982). This, in turn,
inspired the use of pooling layers in CNNs LeCun et al. (1990). Here, pooling was directly motivated
as conferring invariance to translations and deformations. For example, LeCun et al. (1990) expressed
this as follows: Each feature extraction in our network is followed by an additional layer which
performs a local averaging and a sub-sampling, reducing the resolution of the feature map. This
layer introduces a certain level of invariance to distortions and translations. In fact, until recently,
pooling was still seen as an essential ingredient in CNNs, allowing for invariance to small shifts and
distortions Simonyan & Zisserman (2014); He et al. (2016); Krizhevsky et al. (2012); Simonyan &
Zisserman (2014); LeCun et al. (2015); Giusti et al. (2013).

Previous theoretical analyses of invariances in CNNs. A significant body of theoretical work
shows formally that scattering networks, which share some architectural components with CNNs, are
stable to deformations Mallat (2012); Sifre & Mallat (2013); Bruna & Mallat (2013); Mallat (2016).
However this work does not apply to widely used CNN architectures for two reasons. First, there are
significant architectural differences, including in connectivity, pooling, and non-linearities. Second,
and perhaps more importantly, this line of work assumes that the filters are fixed wavelets that do not
change during training.

The more recent theoretical study of Bietti & Mairal (2017) uses reproducing kernel Hilbert spaces
to study the inductive biases (including deformation stability) of architectures more similar to the
CNNs used in practice. However, this work assumes the use of interleaved pooling layers between the
convolutional layers, and cannot explain the success of more recent architectures which lack them.
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(a) (b)

Figure 1: (a) Generating deformed images: To randomly deform an image we: (i) Start with a fixed
evenly spaced grid of control points (here 4x4 control points) and then choose a random source for
each control point within a neighborhood of the point; (ii) we then smooth the resulting vector field
using thin plate interpolation; (iii) vector field overlayed on original image: the value in the final
result at the tip of an arrow is computed using bilinear interpolation of values in a neighbourhood
around the tail of the arrow in the original image; (iv) the final result. (b) Examples of deformed
ImageNet images. left: original images, right: deformed images. While the images have changed
significantly, for example under the L2 metric, they would likely be given the same label by a human.

Empirical investigations. Previous empirical investigations of these phenomena in CNNs include
the work of Lenc & Vedaldi (2015), which focused on a more limited set of invariances such as
global affine transformations. More recently, there has been interest in the robustness of networks
to adversarial geometric transformations in the work of Fawzi & Frossard (2015) and Kanbak et al.
(2017). In particular, these studies looked at worst-case sensitivity of the output to such transforma-
tions, and found that CNNs can indeed be quite sensitive to particular geometric transformations (a
phenomenon that can be mitigated by augmenting the training sets). However, this line of work does
not address how deformation sensitivity is generally achieved in the first place, and how it changes
over the course of training. In addition, these investigations have been restricted to a limited class of
deformations, which we seek to remedy here.

2 METHODS

2.1 DEFORMATION SENSITIVITY

In order to study how CNN representations are affected by image deformations we first need a
controllable source of deformation. Here, we choose a flexible class of local deformations of image
coordinates, i.e., maps τ : R2 → R2 such that ‖∇τ‖∞ < C for some C, similar to Mallat (2012).
We choose this class for several reasons. First, it subsumes or approximates many of the canonical
forms of image deformation we would want to be robust to, including:

• Pose: Small shifts in pose or location of subparts

• Affine transformations: translation, scaling, rotation or shear

• Thin-plate spline transforms
• Optical flow: Roth & Black (2007); Rosenbaum et al. (2013)

We show examples of several of these in Section 2 of the supplementary material.

This class also allows us to modulate the strength of image deformations, which we deploy to
investigate how task demands are met by CNNs. Furthermore, this class of deformations approximates
most of the commonly used methods of data augmentation for object recognition Simard et al. (2003);
Wong et al. (2016); Cireşan et al. (2010).

While it is in principle possible to explore finer-grained distributions of deformation (e.g., choosing
adversarial deformations to maximally shift the representation), we think our approach offers good
coverage over the space, and a reasonable first order approximations to the class of natural deforma-
tions. We leave the study of richer transformations—such as those requiring a renderer to produce or
those chosen adversarially Fawzi & Frossard (2015); Kanbak et al. (2017)—as future work.
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Throughout this work we will measure the stability of CNNs to deformations by: i) sampling random
deformations as described below; ii) applying these deformations to input images; iii) measuring the
effect of this image deformation on the representations throughout the various layers of the CNN.

Generating deformed images. We use the following method to sample image deformations from
this class. For ImageNet we use a grid of 5x5 evenly spaced control points on the image and then
choose a destination for each control point uniformly at random with a maximum distance of C = 10
pixels in each direction. For CIFAR-10 images, we used 3x3 evenly spaced control points and a
maximum distance of C = 2 pixels in each direction. The resulting deformation map was then
smoothed using thin plate spline interpolation and finally the deformation was applied with bilinear
interpolation Duchon (1977). The entire process for generating deformed images is illustrated in
Figure 1a.

Measuring sensitivity to deformation. For a representation r mapping from an input image (e.g.,
224x224x3) to some layer of a CNN (e.g., a tensor of size 7x7x512), we measure sensitivity of the
representation r to a deformation τ using the Normalized Cosine Distance:

dcos(r(x), r(τ(x)))

median(dcos(r(x), r(y)))

where dcos is the cosine distance. That is, we normalize distances by the median distance in
representation space between randomly selected images from the original dataset. For our results, we
average this quantity over 128 images and compute the median using all pairwise distances between
the representations of the 128 images. We also found that using Euclidean distance instead of cosine
distance yielded qualitatively similar results.

2.2 NETWORKS

All networks trained for our experiments are based on a modified version of the VGG network
Simonyan & Zisserman (2014). A detailed description of the networks can be found in Section 1 of
the supplementary material.

We compared networks with the following downsampling layers in our CIFAR-10 experiments:
Subsample: Keep top left corner of each 2x2 block. Max-pool: Standard max-pooling layer.
Average-pool: Standard average-pooling layer. Strided: we replace the max pooling layer with a
convolutional layer with kernels of size 2x2 and stride 2x2. Strided-ReLU: we replace the max
pooling layer with a convolutional layer with kernels of size 2x2 and stride 2x2. The convolutional
layer is followed by batch-norm and ReLU nonlinearity. For our ImageNet experiments, we compared
only Max-pool and Strided-ReLU due to computational considerations.

To rule out variability due to random factors in the experiment (random initialization and data order),
we repeated all experiments with 5 different random seeds for each setting. The error bands in the
plots correspond to 2 standard deviations estimated across these 5 experiments.

3 LEARNED DEFORMATION STABILITY IS SIMILAR WITH AND WITHOUT
POOLING

It is a commonly held belief that pooling leads to invariance to small translations and deformations.
In this section we investigate two questions: (1) Is pooling sufficient for achieving the correct amount
of stability to deformation? (2) Is pooling necessary for achieving stability?

Pooling influences deformation stability. To test whether pooling on its own is sufficient for
achieving any significant change in deformation stability, we measured the sensitivity to deformation
of networks with pooling at initialization. As can be seen in Figure 2a, we find that indeed pooling
leads to representations that are more stable to deformation at initialization than representations in
networks without pooling. This result also provides us with a basic sanity check that our experimental
setup is reasonable.

Pooling does not determine the final pattern of stability across layers. To what extent does
pooling determine the final pattern of deformation stability? Also, if pooling leads to a suboptimal

4



Under review as a conference paper at ICLR 2019

Figure 2: Pooling confers stability to deformation at initialization but the stability changes sig-
nificantly over the course of training and converges to a similar stability regardless of whether
pooling is used. (a) At initialization, networks with max-pooling are less sensitive to deformation.
(b) After training, networks with and without max-pooling have very similar patterns of sensitivity
to deformation throughout the layers. Similar patterns emerge for CIFAR-10: (c) At initialization,
pooling has significant impact on sensitivity to deformation but (d) after training, the choice of
downsampling layers has little effect on deformation stability throughout the layers. Layer number
0 corresponds to the input image; The layers include the downsampling layers; The final layer
corresponds to the final downsampling layer. For CIFAR-10 we therefore have 1 input layer, 8
convolutional layers and 4 pooling layers for a total of 13 layers.

pattern of deformation stability for the task, then to what extent can learning correct for this? To
test this, we measured the pattern of sensitivity to deformation of networks before and after training.
Surprisingly, we found that the sensitivity to deformation of networks with pooling actually increases
significantly over the course of training (Figure 2b). This result suggests that the inductive bias for
deformation stability conferred by pooling is actually too strong, and that while deformation stability
might be helpful in some cases, it is not always helpful.

Networks with and without pooling converge to similar patterns of deformation stability across
layers If learning substantially changes the layerwise pattern of deformation stability in the presence
of pooling, to what extent does pooling actually influence the final pattern of deformation stability?
To test this, we measured the layerwise pattern of sensitivity to deformation for networks trained on
ImageNet with and without interleaved pooling. Surprisingly, the layerwise pattern of sensitivity to
deformation for networks with and without pooling was highly similar, suggesting that the presence
of pooling has little influence on the learned pattern of deformation stability (Figure 2a-b).

To rule out the dependence of this result on the particular dataset and the choice of downsampling
layer, we repeated the experiments on CIFAR-10 and with a variety of different downsampling
layers, finding qualitatively similar results (Figure 2c-d). While the downsampling layer exerted a
significant effect on deformation sensitivity at initialization, these differences had largely vanished by
the conclusion of training, and all networks converged to a similar pattern.

These results help to explain the recent observation that CNNs without pooling can achieve the
same or higher accuracy than networks with pooling on image classification tasks Springenberg et al.
(2014). While pooling does grant some deformation stability at initialization, this inductive bias is
too strong and must be removed over training, and nearly identical patterns of deformation stability
can be easily learned by networks without any pooling at all.

4 FILTER SMOOTHNESS CONTRIBUTES TO DEFORMATION STABILITY

If pooling is not the major determinant of deformation stability, then what is? One possibility is that
filter smoothness might lead to deformation stability. Informally, a smooth filter can be decomposed
into a coarser filter (of similar norm) followed by a smoothing operation similar to average pooling or
smoothing with a Gaussian kernel Bietti & Mairal (2017). A smooth filter might therefore function
similarly to the combination of a pooling layer followed by a convolutional layer. If this is in fact the
case, then CNNs with smooth filters may exhibit similar behavior to those with interleaved pooling
Bietti & Mairal (2017).
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(a) Deformed templates classes for synthetic tasks (b) Smoothness of learned filters

Figure 3: Tasks requiring more deformation invariance lead to smoother filters. (a) We generate
synthetic tasks where each class is based on a single MNIST image and within each class examples
are generated by applying a random deformation of strength C to this class image. The image on
the left is generated using deformations of strength 3. The columns for the image on the right are
generated using deformations of strengths 1, 2, 3, 4 respectively. (b) After training, filters from
networks trained on tasks where stronger deformations are used are smoother. Dotted black line
indicates average value at initialization.

In this section, we demonstrate empirically that filter smoothness is critical for determining deforma-
tion stability. To do this, we first define a measure of filter smoothness. We then show that forcing
filter smoothness at initialization leads to deformation stability. Next, we show that in a series of
synthetic tasks requiring increasing stability to deformations, CNNs learn progressively smoother
filters. Finally, we demonstrate on ImageNet and CIFAR-10 that filter smoothness increases as a
result of training, even for networks with pooling.

Measuring filter smoothness. For a 4D (height × width × input filters × output filters) tensor
W representing convolutional weights we define the normalized total variation: TV(W )

‖W‖1 where
TV(W ) =

∑
i,j ‖Wi,j,·,· −Wi+1,j,·,·‖1 + ‖Wi,j,·,· −Wi,j+1,·,·‖1 where i and j are the indices for

the spatial dimensions of the filter. This provides a measure of filter smoothness.

For filters that are constant over the spatial dimension—by definition the smoothest possible filters—
the normalized total variation would be zero. At initialization for a given layer, the expected
smoothness is identical across network architectures1. Given that this value has an approximately
fixed mean and small standard deviation across layers and architectures, we plot this as a single dotted
black line in Figure 4 and Figure 3 for simplicity.

Initialization with smooth filters leads to deformation stability. To test whether smooth filters
lead to deformation stability, we initialized networks with different amounts of filter smoothness and
asked whether this yielded greater deformation stability. To initialize filters with different amounts of
smoothness, we used our usual random initialization2, but then convolved them with Gaussian filters
of varying smoothness. Indeed we found that networks initialized with smoother random filters are
more stable to deformation (Figure 5a), suggesting that filter smoothness is sufficient for deformation
stability.

Requiring increased stability to deformation in synthetic tasks leads to smoother filters. The
above result demonstrates that randomly-initialized smooth filters lead to greater deformation stability.
The distribution of learned filters may nevertheless differ significantly from that of random filters. We
therefore asked whether smoother filters are actually learned in tasks requiring stability to stronger
deformation. To test this, we constructed a set of synthetic classification tasks in which each class
consists of deformed versions of a single image. Each task varied the strength of deformation, C, used

1We estimated this average smoothness empirically by resampling filters 10,000 times and found an average
smoothness of approximately 1.87 (this differed between layers only in the fourth decimal place) with a standard
deviation that depended on the size of the layer, ranging from 0.035 in the first layer to 0.012 for the larger
layers.

2Truncated normal with standard deviation 1/
√
nin, where nin is the number of inputs.
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Figure 4: Training leads to smoother filters. (a) and (b) After training, the filters are significantly
smoother and different architectures converge to similar levels of filter smoothness. (c) When training
on random labels the smoothness of filters depends largely on the chosen downsampling layer.
Interestingly, the smoothness of filters when training on ImageNet (a) increases from layer to layer,
whereas for CIFAR-10 (b) the smoothness decreases from layer to layer. Dotted black lines indicate
average value at initialization.

to generate the examples within each class (Figure 3a). We then measured the effect of increasing
the intra-class deformation (i.e., increasing C) on the smoothness of the filters learned in each task.
Consistent with our previous result, we observed that stronger deformations led to smoother filters
after training (Figure 3). This result demonstrates that in synthetic tasks requiring deformation
stability, the amount of learned filter smoothness directly correlates with the amount of deformation.

Filter smoothness increases as a result of training on real datasets. Finally, we asked whether
filter smoothness increases over the course of training in more realistic datasets. To test this we
examined the filter smoothness across layers for a variety of network architectures trained on both
ImageNet (Figure 4a) and CIFAR-10 (Figure 4b). For both datasets and all architectures, filters
become smoother over training.

Taken together, these results demonstrate that filter smoothness is sufficient to confer deformation
stability, that the amount of filter smoothness tracks the amount of deformation stability required, and
that on standard image classification tasks, filter smoothness is learned over the course of training.

5 FILTER SMOOTHNESS DEPENDS ON THE SUPERVISED TASK

In the previous section we demonstrated that smooth filters are sufficient to confer deformation
stability of CNN representations, but it remains unclear which aspects of training encourage filter
smoothness and deformation stability. One possibility is that smooth filters emerge as a consequence
of the distribution P (X) of the input images X . Alternatively, the nature of the supervised task itself
may be critical (i.e. the conditional distribution P (Y |X) of the labels Y given the inputs X).

To test what role P (X) and P (Y |X) play in the smoothness of the learned filters, we followed
the method of Zhang et al. (2016), and trained networks on a modified versions of the CIFAR-10
dataset in which we replace the labels with uniform random labels (which are consistent over training
epochs). The representations learned under such tasks have been studied before, but not in the context
of deformation stability or filter smoothness Morcos et al. (2018); Achille & Soatto (2017). Therefore,
we analyzed the patterns of deformation stability and filter smoothness of networks trained on random
images (modifying P (X)) and random labels (modifying P (Y |X) but holding P (Y |X) fixed).

In contrast to networks trained on the original datasets, we found that networks with different
architectures trained on random labels converged to highly different patterns of deformation stability
across layers (Figure 5b). These patterns were nevertheless consistent across random seeds.

This result suggests that both the architecture and the task bias the learned pattern of deformation
stability, but with different strengths. In the presence of a structured task (as in Section 3), the
inductive bias of the architecture is overridden over the course of learning; all networks thus converge
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(a) (b)

Figure 5: (a) Initialization with smoother random filters lead to deformation stability. We
smooth filters by convolving with a Gaussian filter with standard-deviation σ and then measure
the sensitivity to deformation. As we increase the smoothness of the filters by increasing σ, the
representations became less sensitive to deformation. Darker lines are for smoother random filters.
(b) Deformation stability is architecture dependent when training with random labels.

to similar layerwise patterns of deformation stability. However, in the absence of a structured task
(as is the case in the random labels experiments), the inductive biases of the architecture strongly
influences the final pattern of deformation stability.

6 DISCUSSION

In this work, we have rigorously tested a variety of properties associated with deformation stability.
We demonstrated that while pooling confers deformation stability at initialization, it does not deter-
mine the pattern of deformation stability across layers. This final pattern is consistent across network
architectures, both with and without pooling. Moreover, the inductive bias conferred by pooling is
in fact too strong for ImageNet and CIFAR-10 classification; this therefore has to be counteracted
during training. We also found that filter smoothness contributes significantly to achieving defor-
mation stability in CNNs. Finally, these patterns remain a function of the task being learned: the
joint distribution of inputs and outputs is important in determining the level of learned deformation
stability.

Together, these results provide new insights into the necessity and origins of deformation stability.
They also provide an instructive example of how simple properties of learned weights can be
investigated to shed light on the inner workings of deep neural networks.

One limitation of this work is that we only focused on deformations sampled from a particular
distribution. We also only measured average sensitivity over these deformations. In future work, it
would be informative to explore similar questions but with the worst case deformations found via
maximization of the deformation sensitivity Fawzi & Frossard (2015); Kanbak et al. (2017).

Finally, our work compares only two points in time: the beginning and the end of training. There
remain open questions about how these characteristics change over the course of training. For
example, when do filters become smooth? Is this a statistical regularity that a network learns early
in training, or does filter smoothness continue to change even as network performance begins to
asymptote? Does this differ across layers and architectures? Is the trajectory toward smooth filters
and deformation stability monotone, or are there periods of training where filters become smoother
and then periods when the filter smoothness decreases? Future work will be required to answer all of
these questions.
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7 MODEL ARCHITECTURES AND TRAINING

All networks we trained for our experiments are based on a modified version of the VGG network
Simonyan & Zisserman (2014). The networks consist of multiple blocks as follows:

• Conv block: A block consists of multiple layers of convolutional filters followed by batch-
norm and then a ReLU non-linearity, we will denote the structure of a block by the number
of filters in each conv layer and the number of layers, for example, 2x64 will mean a block
with 2 layers with 64 filters in the convolutional layers. All filters have a spatial dimension
of 3x3.
• Downsampling: Each block is followed by a downsampling layer where the spatial resolu-

tion is decreased by a factor of 2 in both height and width dimensions.
• Global average pooling: we replace the fully connected layers of VGG with global average

pooling and a single linear layer as is now commonly done (He et al. (2016) following
Springenberg et al. (2014)).
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For the ImageNet experiments, we used networks with block structure 2x64, 2x128, 3x256, 3x512,
3x512. For the CIFAR10 experiments, we used networks with block structure 2x32, 2x64, 2x128,
2x256.

We compared networks with the following downsampling layers in our CIFAR10 experiments:
Subsample: Keep top left corner of each 2x2 block. Max-pool: Standard max-pooling layer.
Average-pool: Standard average-pooling layer. Strided: we replace the max pooling layer with a
convolutional layer with kernels of size 2x2 and stride 2x2. Strided-ReLU: we replace the max
pooling layer with a convolutional layer with kernels of size 2x2 and stride 2x2. The convolutional
layer is followed by batch-norm and ReLU nonlinearity. For our ImageNet experiments, we compared
only Max-pool and Strided-ReLU due to computational considerations.

To rule out variability due to random factors in the experiment (initial random weights, order in which
data is presented), we repeated all experiments 5 times for each setting. The error bands in the plots
correspond to 2 standard deviations estimated across these 5 experiments.

8 CLASS OF DEFORMATIONS

Figure 6: Changes in pose can be well approximated using the deformations we consider.

Figure 7: Translation can be well approximated using the deformations we consider.

Figure 8: Rotation can be well approximated using the deformations we consider.
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In this section we give a few example deformations that approximate other geometric transformations
that are often of interest such as pose, translation and rotation. Examples of approximating pose,
translation and rotation are visulaized in Figures 6, 7, and 8 respectively. Note that while translation
and rotation are often studied as global image transformations, the class of deformations we use can
approximate applying these transformations locally (e.g., the pose example shows a local translation
that could not be captured by a global affine transform).
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