
Under review as a conference paper at ICLR 2020

SKEW-EXPLORE: LEARN FASTER IN CONTINUOUS
SPACES WITH SPARSE REWARDS

Anonymous authors
Paper under double-blind review

ABSTRACT

In many reinforcement learning settings, rewards which are extrinsically available
to the learning agent are too sparse to train a suitable policy. Beside reward shap-
ing which requires human expertise, utilizing better exploration strategies helps
to circumvent the problem of policy training with sparse rewards. In this work,
we introduce an exploration approach based on maximizing the entropy of the
visited states while learning a goal-conditioned policy. The main contribution of
this work is to introduce a novel reward function which combined with a goal
proposing scheme, increases the entropy of the visited states faster compared to
the prior work. This improves the exploration capability of the agent, and there-
fore enhances the agent’s chance to solve sparse reward problems more efficiently.
Our empirical studies demonstrate the superiority of the proposed method to solve
different sparse reward problems in comparison to the prior work.

1 INTRODUCTION

Figure 1: A sparse-reward task trained
by a YuMi robot in simulation and de-
ployed to the real hardware. The task
consists of (1) opening a door, (2) press-
ing a button, and (3) closing the door.
The reward is given only at the end of a
successful trial.

Reinforcement Learning (RL) is based on performing ex-
ploratory actions in a trial-and-error manner and reinforc-
ing those actions that result in superior reward outcomes.
Exploration plays an important role in solving a given se-
quential decision-making problem. A RL agent cannot
improve its behaviour without receiving rewards exceed-
ing the expectation of the agent, and this happens only as
the consequence of properly exploring the environment.

In this paper, we propose a method to train a policy which
efficiently explores a continuous state space. Our method
is particularly well-suited to solve sequential decision-
making tasks with sparse terminal rewards, i.e., rewards
received at the end of a successful interaction with the
environment. We propose to directly maximize the en-
tropy of the history states by exploiting the mutual infor-
mation between the history states and a number of refer-
ence states. To achieve this, we introduce a novel reward
function which, given the references, shapes the distribu-
tion of the history states. This reward function, combined
with goal proposing learning frameworks, maximizes the
entropy of the history states. We demonstrate that this
way of directly maximizing the state entropy, compared
to indirectly maximizing the mutual information (Warde-
Farley et al., 2018; Pong et al., 2019) improves the ex-
ploration of the state space as well as the convergence speed at solving tasks with sparse terminal
rewards.

Maximizing the mutual information between the visited states and the goal states, I(S;G), re-
sults in a natural exploration of the environment while learning to reach to different goal states
(Warde-Farley et al., 2018; Pong et al., 2019). The mutual information can be written as I(S;G) =
h(G)− h(G|S); therefore maximizing the mutual information is equivalent to maximizing the en-

1

Under review as a conference paper at ICLR 2020

tropy of the goal state while reducing the conditional entropy (conditioned on the goal state). The
first term, encourages the agent to choose its own goal states as diverse as possible, therefore im-
proving the exploration, and the second term forces the agent to reach the different goals it has
specified for itself, i.e., training a goal-conditioned policy, π(.|s, g). Instead of maximizing the mu-
tual information, we propose to maximize the entropy of the visited states directly, i.e., maximizing
h(S) = h(Z) +h(S|Z)−h(Z|S), where Z is a random variable that represents the reference points
of promising areas for exploration. Therefore, in our formulation, we have an extra term, h(S|Z),
which encourages maximizing the entropy of the state conditioned on the reference points. This
extra term, implemented by the proposed reward function, helps the agent to explore better at the
vicinity of the references. We call our method Skew-Explore, since similar to Skew-Fit introduced
by Pong et al. (2019), it skews the distribution of the references toward the less visited states, but
instead of directly reaching the goals, it explores the surrounding areas of them.

We experimentally demonstrate that the new reward function enables an agent to explore the state
space more efficiently in terms of covering larger areas in less time compared to the earlier meth-
ods. Furthermore, we demonstrate that our RL agent is capable of solving long-term sequential
decision-making problems with sparse rewards faster. We apply the method to three simulated
tasks, including a problem to find a trajectory of a YuMi robot end-effector, to open a door of a box,
pressing a button inside the box and closing the door. In this case, the sparse reward is given only
when the button is pressed and the door is closed, i.e., at the end of about one minute of continuous
interaction with the environment. To validate appropriateness of the trajectory found in simulation,
we deployed it on a real YuMi robot, as shown in Figure 1. The main contributions of this paper can
be summarized as (1) introducing a novel reward function which increases the entropy of the history
states much faster compared to the prior work, and (2) experimentally demonstrating the superi-
ority of the proposed algorithm to solve three different sparse reward sequential decision-making
problems.

2 RELATED WORK

Prior works have studied different algorithms for addressing the exploration problem. In this section,
we summarize related works in the domain where rewards from the environment are sparse or absent.

Intrinsic Reward: One way to encourage exploration is to define an intrinsically-motivated reward,
including methods that assimilate the definition of curiosity in psychology (Oudeyer et al., 2007;
Pathak et al., 2017). These methods have found success in domains like video games (Ostrovski
et al., 2017; Burda et al., 2018). In these approaches, the ”novelty”, ”curiosity” or ”surprise” of a
state is computed as an intrinsic reward using mechanisms such as state-visiting count and prediction
error (Schmidhuber, 1991; Stadie et al., 2015; Achiam & Sastry, 2017; Pathak et al., 2017). By
considering this information, the agent is encouraged to search for areas that are less visited or have
complex dynamics. However, as pointed out by Ecoffet et al. (2019), an agent driven by intrinsic
reward may suffer from the problem of detaching from the frontiers of high intrinsic reward area.
Due to catastrophic forgetting, it may not be able to go back to previous areas that have not yet been
fully explored (Kirkpatrick et al., 2017; Ellefsen et al., 2015). Our method is able to keep tracking
the novelty frontier and train policy to explore different areas in the frontier.

Diverse Skill/Option Discovery: Methods that aim to learn a set of behaviours which are distinct
from each other, allow the agent to interact with the environment without rewards for a particular
task. Gregor et al. (2016) introduced an option discovery technique based on maximizing the mutual
information between the options and the final states of the trajectories. Eysenbach et al. (2018);
Florensa et al. (2017a); Savinov et al. (2018) proposed to learn a fixed set of skills by maximizing
the mutual information through an internal objective computed using a discriminator. Achiam et al.
(2018) extended the prior works by considering the whole trajectories and introduced a curriculum
learning approach that gradually increases the number of skills to be learned. In these works, the
exploration is encouraged implicitly through learning diverse skills. However, it is difficult to control
the direction of exploration. In our method, we maintain a proposing module which tracks the global
information of the states we have visited so far, and keep proposing reference points that guide the
agent to the more promising areas for exploration.

Self-Goal Proposing: Self-goal proposing methods are often combined with a goal-conditioned
policy (Kaelbling, 1993; Andrychowicz et al., 2017), where a goal (or task) generation model is

2

Under review as a conference paper at ICLR 2020

trained jointly with a goal reaching policy. The agent receives rewards in terms of completing the
internal tasks which makes it possible to explore the state space without any supervision from the
environment. Sukhbaatar et al. (2017) described a scheme with two agents. The first one proposes
tasks by performing a sequence of actions and the other repeats the actions in reverse order. Held
et al. (2018) introduced a method that automatically label and propose goals at the appropriate level
of difficulty using adversarial training. Similar works are proposed by Colas et al. (2018); Veeriah
et al. (2018); Florensa et al. (2017b), where goals are selected based on the learning progress. Warde-
Farley et al. (2018) trained a goal-conditioned policy by maximizing the mutual information between
the goal states and the achieved states. The goals are selected from the agent’s recent experience
with strategies. Later, Pong et al. (2019) applied a similar idea of using mutual information. They
maximize the entropy of a goal sampling distribution. The focus of these methods is on learning a
policy that can reach diverse goals. Although gradually increasing the scale of the goal proposing
network, the agent may eventually cover the entire state space, exploration itself is not efficient. In
our work, we adopt the same idea of maximizing the entropy of the goal sampling distribution by
Pong et al. (2019). However, instead of using the goal-conditioned policy, we introduce a reference
point-conditioned policy which greatly increases the efficiency of exploration.

3 SKEW-EXPLORE: SEARCHING FOR THE SPARSE REWARD

We discuss the policy learning problem in continuous state and action spaces, which we model
as an infinite-horizon Markov decision process (MDP). The MDP is fully characterized by a tuple
(S,A, pa(s, s′), R′a(s, s′)), where S, the state space, and A, the action space, are subsets of Rn, the
unknown transition probability p : S × A × S → [0, inf) indicates the probability density function
of the next state s′ given the current state s ∈ S and the action a ∈ A. For each transition, the space
associated environment E emits an extrinsic reward according to function R′ : S × A → R. The
objective of the agent is to maximize the discounted return, i.e. return R =

∑∞
ts=0 γ

tsrts , where
γ is a discounted factor and rts is the reward received at each step ts. In this study, we consider
an agent interacting in an environment E with sparse reward. The sparse reward r is modelled as
a truncated Gaussian function with a narrow range. From previous interactions, the agent holds an
interaction set It, in which transaction triples (sj ,aj , sj+1),∀j ∈ {1, · · · , T − 1} are contained.
We also extract the states sj from It to form a history state set St, which contains all visited states
by the agent until iteration t. The objective of our method is to find an arbitrary external goal in
a continuous state space and converge to a policy that maximizes the R as fast as possible. This
involves two processes 1) Find the external reward through efficient exploration. 2) Converge to a
policy that maximizes R once the external reward is found.

We can use the entropy of the history state set as a neutral objective to encourage exploration, since
an agent that maximizes this objective should have visited all valid states uniformly. To describe
it mathematically, we define a random variable S to represent the history states that the agent has
visited. The distribution of S is estimated from the history state set St. Our goal is to encourage
exploration by maximizing the entropy h(S) of the history states. However, using the entropy as
the intrinsic reward directly may suffer from problems similar to other intrinsic motivated methods
(Schmidhuber, 1991; Stadie et al., 2015; Achiam & Sastry, 2017; Pathak et al., 2017). As the reward
of the same state is changing, the agent has the risk of detaching from the frontiers of high intrinsic
reward area.

We introduce a concept called novelty frontier reference point, which can be sampled from a dis-
tribution that represents the novelty frontier (Ecoffet et al., 2019). The novelty frontier defined in
our work represents the areas near the states with lower density in distribution p(s). The frontier
reference points are sampled after the distribution of the novelty frontier is updated. We define a Z
to represent all the history frontier reference points with probability density p(z) estimated from a
set Zt that contains all novelty frontier reference points until iteration t.

The conditional probability p(s|z) defines the behaviour of the agent with respect to each refer-
ence point. In this work, we model this behaviour using a state distribution function Kz(s − z)
parameterized by the displacement between the state and the reference point. The function Kz

needs to be chosen carefully as it should satisfy our expectation of the policy behaviour and also,
provides an informative reward signal to train the policy. Mathematically, we can rewrite p(s) as
p(s) =

∫
f(s|z)p(z)dz =

∫
Kz(s − z)p(z)dz. Generally, Kz(·) can be different for different z.

3

Under review as a conference paper at ICLR 2020

However, to reduce the complexity of learning, we constrain Kz(·) to be consistent for any z, mean-
ingKz(s−z) = K(s−z). The definition ofK(·) satisfies the definition of a kernel function. Using
K(s− z), p(s) can then be further represented as

p(s) =

∫
K(s− z)p(z)dz

= (K ∗ p)(s).
By considering the law of convolution of probability distributions, we obtain S = Z + N, where
N is a random variable characterized by a density function K(·). Now with this setup, we are able
to to analyze our method’s performance using information theory. By considering the entropy’s
relationship with mutual information h(S) = h(S|Z) +I(S;Z), we receive the final decomposition
of our objective under the novelty frontier reference point-conditioned policy framework

h(S) = h(Z) + h(S|Z)− h(Z|S). (1)

Eq. 1 indicates that in order to maximize the h(S), we can individually maximize/minimize each
term while making other terms fixed. In the following section, we will explain the optimization
process in detail.

3.1 MAXIMIZING h(Z): OBTAINING AN EXPANDING SET OF NOVELTY FRONTIER
REFERENCE POINTS

As introduced above, h(Z) is the entropy estimated from the novelty frontier reference points setZt.
To increase h(Z), we need to add a new reference point to Zt such that, the entropy estimated form
Zt+1 is larger than the entropy estimated from Zt. In our method, the frontier reference points are
sampled from the novelty frontier distribution which represents less history areas according to the
current history states. Pong et al. (2019) proposed a method to skew the distribution of the history
states using importance sampling, such that states with lower density can be proposed more often.
In our work, we use a similar way to estimate the novelty frontier distribution. There are three steps
in our process. In the first step, we estimate the p(s) from St using a density estimator e.g. Kernel
Density Estimation (KDE). In the second step, we sample Q states {s0, · · · , sQ} from p(s), and
compute the normalized weight for each state using Eq. 2

wi =
1

Yα
p(si)p(si)

α α ∈ [− inf, 0), Yα =

N∑
n=1

p(s = sQ)p(s = sQ)α, (2)

where Yα is a normalizing constant. The state with lower p(s) has higher weight and vice versa. Fi-
nally, we utilize a generative model training scheme Tg(·, ·) (e.g. weighted KDE), together with sam-
pled states and weights to get a skewed distribution pskewed(s) = Tg({s0, · · · , sn}, {w0, · · · , wn})
to represent the novelty frontier distribution.

Figure 2: This figure shows a comparison between the state distribution p(s) (dashed blue) and a
corresponding novelty frontier distribution skewed from p(s) (red).

If Q is big enough, by choosing a α appropriately, we are able to expand our frontiers after each
iteration. As a consequence, the distribution estimated from Zt will become more and more uniform
and its range will become larger and larger, just like annual ring of the tree. The entropy of a
continuous uniform function U(p, q) is ln(p − q) and if the distribution has a larger range, the
entropy is larger as well. Fig 2 illustrates the estimated frontier distribution skewed from p(s).

3.2 MAXIMIZING h(S|Z)− h(Z|S): INCREASING THE EXPLORATION RANGE AROUND
REFERENCE POINTS

The conditional entropy of h(S|Z) and h(Z|S) are highly correlated, maximizing/minimizing them
individually are difficult. Therefore, in this section, we consider to maximize h(S|Z) - h(Z|S)

4

Under review as a conference paper at ICLR 2020

as a whole. Using the relation S = Z + N, we rewrite the expression as h(S|Z) − h(Z|S) =
h(Z + N|Z)− h(Z|Z + N), which can be further simplified (see Appendix D) as

h(Z|S)− h(S|Z) ≥ h(N)− h(Z).

This implies that there is a lower bound for the expression h(S|Z)− h(Z|S). For a fixed h(Z), we
can maximize the lower bound h(N)− h(Z) by increasing h(N). h(N) is related to the shape and
variance of the exploration distribution near the reference point. In our method, we model N as a
Gaussian distribution with zero mean. In an ideal case, we would like to have as large variance as
possible. However, increasing the variance also results in learning difficulty, as we need a longer
trajectory to evaluate the performance and more samples to update the network. Therefore, we use
the variance to control the trade-off between exploration efficiency and learning efficiency.

Figure 3: Our method, Skew-Explore, aims to obtain uniform state visitation distribution estimated
from the history state set. We start by sampling from our history state set, and weighting the states
such that less-visited states are assigned with higher weights. We then train a skewed distribution
pskewed(s) using the weighted samples as the novelty frontier distribution. Next we sample reference
points on the novelty frontier distribution and run our policy to explore around the points.

3.3 DESIGNING THE REWARD FUNCTION

Our algorithm requires the policy to move around a given reference point, and the distribution of
the states in the trajectory should follow a Gaussian distribution centered at the reference point.
In this section, we introduce an intrinsic reward function to train such policy by minimizing the
the Kullback-Leibler (KL) divergence between the trajectory distribution and the desired Gaussian
distribution. For each given reference point zi, we collect a trajectory τi by running the policy with
the given reference point, indicated as π(zi), for M steps. Then, we estimate the probability density
of each state s in τi, referred to as pτi(s), using a density estimator. Finally, we check the probability
density of s in the Gaussian distribution centered at zi, referred to as pzi(s). The KL-divergence
between the trajectory distribution pτi and the desired distribution pzi

is formulated as follows

DKL(pτi(·) | pzi(·)) = Ezi∼(Zt),τi∼π(zi),s∼τipτi(s) log
pτi(s)

pzi(s)
. (3)

To minimize the KL-divergence, the intrinsic reward of s with respect to zi is computed as
rint(s, zi) = log(pzi(s))− log(pτi(s))). (4)

The intrinsic reward function measures the difference between the desired density of s in the trajec-
tory and the actual density achieved. The reward is positive when the actual density is smaller than
the desired one, when states in the trajectory are too far from the reference point, and the reward is
negative when the actual density is larger than the desired one, when the agent stays too long at the
reference point. An extrinsic reward rext(s) is provided by the environment and the total reward of
a time step is defined as the weighted sum of the intrinsic and the extrinsic reward. The extrinsic
reward should be much greater than the intrinsic reward. The reward of each time step r(s, zi) is
defined as

r(s, zi) = wint · rint(s, zi) + wext · rext(s), (5)
where, wint and wext are respective weights for internal and external rewards. The performance
of the policy is closely related to the set Zt, as it records the reference points we used to train
the policy until iteration t. As described in section 3.1, while we increase the entropy h(Z) by
proposing new reference points form the novelty frontier to train the policy, the policy gradually
gain skills to explore different areas. When a state with a large extrinsic reward is discovered,
the policy eventually ignores all given reference points and converge to reach the state with the
extrinsic reward. Algorithm 1 shows the whole Skew-Explore algorithm using pseudo code and our
implementation of the algorithm is available online 1.

1https://anonymous.4open.science/r/b4596073-4cbc-4ac6-b85b-e9a786909058/

5

https://anonymous.4open.science/r/b4596073-4cbc-4ac6-b85b-e9a786909058/

Under review as a conference paper at ICLR 2020

Algorithm 1 Skew-Explore
1: procedure SKEW-EXPLORE
2: History state set S0 = {}
3: History novelty frontier reference points set Z0 = {}
4: Randomly sample L novelty frontier points zi
5: Z0 = Z0 ∪ {z1, ..., zL}.
6: for t = 1, 2, 3... do
7: Collect a set of states sq by running policy giving different frontier reference point zi.
8: Compute reward for each state using Eq. 5.
9: Update history state set St = St−1 ∪ {s1, ..., sQ} and estimate p(s) from St

10: Estimate the novelty frontier distribution pskewed(s) by skewing p(s).
11: Sample L new novelty frontier points zl ∼ pskewed(s).
12: Update history novelty frontier reference points set Zt = Zt−1 ∪ {z1, ..., zL}.
13: Update policy according to the rewards

3.4 SCALING TO HIGHER DIMENSIONAL STATES

4 EXPERIMENT

Figure 4: The PointMaze environment and
the DoorOpen environment.

In this section, we evaluate our algorithm from three
perspectives. 1) How efficient is our algorithm in
terms of exploring the entire state space, and how
different choice of variance affects the efficiency? 2)
Is our algorithm able to converge to a stable solution
for tasks with sparse reward? 3) Is our algorithm
able to solve a complicated sparse reward task with
long horizon? The implementation details of the ex-
periments can be found in Appendix E. Two metrics
are considered to evaluate the performance. They
are the state distribution entropy h(S) and the cov-
erage, which are estimated from history state set St.
We describe how we estimate the two metrics and
their difference in Appendix A and B. A short video
regarding the experiments can be found online 2.

4.1 POWER OF EXPLORATION

In the first experiment, we evaluate our algorithm in term of the efficiency of exploring the state
space. We test our algorithm in two simulated environments, the PointMaze and the DoorOpen
environments (Fig. 4). In the PointMaze environment, a point agent is controlled to move inside
a maze with narrow passages. In the DoorOpen environment, a YuMi robot can open a door by
grabbing the door handle. The PointMaze environment was previously used by Florensa et al.
(2017a); Eysenbach et al. (2018); Pong et al. (2019), whilst environments similar to the DoorOpen
environment were used by Kalakrishnan et al. (2011); Chebotar et al. (2017); Pong et al. (2019).
The objective of the tasks is to explore the entire state space in a minimum amount of time. In order
to evaluate the performance, we measure the efficiency as the overall coverage and the entropy of the
density estimated from all history states. We compare our algorithm with two baseline algorithms:
the random network distillation (RND) proposed by Burda et al. (2018) which is an approach using
prediction error as the intrinsic reward, and Skew-Fit proposed by Pong et al. (2019) which combines
a goal proposing network with a goal-conditioned policy.

We consider two configurations. The first one is the proximal policy optimization (PPO) Schulman
et al. (2017) together with a Long Short-Term Memory network (LSTM) Hochreiter & Schmidhuber
(1997). The second configuration is soft actor-critic (SAC) Haarnoja et al. (2018) and hindsight
experience replay (HER) Andrychowicz et al. (2017). We note here that RND is only tested with
PPO and LSTM as it was not designed for off-policy methods. For each configuration, we run

2https://www.dropbox.com/s/xxw7ug3lnud3h0j/video_submission.mp4

6

https://www.dropbox.com/s/xxw7ug3lnud3h0j/video_submission.mp4

Under review as a conference paper at ICLR 2020

Figure 5: Results of how coverage and entropy changes over iterations in PointMaze (left) and the
DoorOpen (right) environments.

12 times and compare the mean and variance. Fig. 5 shows the results for all 5 configurations.
We can see that our method, SAC+HER+Skew-Explore, makes both coverage and entropy increase
faster than the other methods. It also increases with relatively small variances. Fig 6 illustrates

Figure 6: Results of how coverage changes over iterations in the PointMaze environment.

how coverage changes for both our method Skew-Explore and Skew-Fit. In this figure, we see
how our method is able to cover the state space (area in this case) faster than Skew-Fit. To further
analyze how different choices of the variance of N affects the exploration efficiency, several values
of variances 02, 12, 22, 32, 42 and 62 are tested in the PointMaze environment. After 80 iterations,
estimated entropy 40.2±1.2, 49.3±0.7, 51.4±0.8, 51.4±0.7, 51.4±0.7 and 48.9±3.3 are received.
We observe that while the variance increases, the performance first increases and then decreases.

4.2 POWER OF SOLVING A SINGLE SPARSE REWARD TASK

Table 1: This shows the number of trajectories needed
for the algorithm to converge to five uniformly sampled
target states in each environment. A successful con-
vergence is measured as 90% of the states receive the
extrinsic reward with a standard deviation of less then
3%. The two other methods Skew-Fit and RND cannot
solve the problem below upper limit 3000 trajectories.

The power of exploration is an important
aspect, but we also want our algorithm to
converge to a stable policy that maximizes
the extrinsic reward for different sparse re-
ward tasks. To this end, we use the same
environments (Fig. 4) as in the previous
experiment. In each environment, we se-
lect five uniformly distributed target points
from the area of interest and assign extrin-
sic rewards when the agent reaches these
points. For each target point, we train an
individual policy to reach it. Hypotheti-
cally, influenced by the extrinsic reward,
the agent eventually ignores the internal
goals generated by the goal proposing module and reaches the target points consistently. In or-
der to evaluate the performance of our algorithm, we measure how reliably the agent is able to reach
each target point. To this end, we collect the final 10 states from the 10 most recent trajectories and
define criteria for convergence as the percentage of receiving the extrinsic rewards. If more than
90% of the states receive the extrinsic reward with a standard deviation of less then 3%, we say the
agent solved the task successfully. In this experiment, we use the configuration SAC+HER+Skew-
Explore which achieves the best performance in the previous experiment. Table 1 shows how many
trajectories the algorithm needs to reach the criteria of convergence. This experiment thus shows
that our algorithm is able to solve a sparse reward task, by obtaining a policy with a limited number
of trajectories. Additional results can be found in Appendix F.

7

Under review as a conference paper at ICLR 2020

4.3 TASK WITH A LONG HORIZON AND REAL WORLD DEMONSTRATION

In the third experiment, we evaluate the ability of our algorithm in terms of solving a sparse reward
task with a long horizon and test the performance of the converged policy using a real world YuMi
robot. We increase the complexity of the environment by adding a box and a button to the DoorOpen
environment used in the previous two experiments. We design a task called OpenPressClose which
needs a long sequence of procedures to be solved. The sequence includes 1) open the box, 2)
press the button inside the box and 3) close the box. The extrinsic sparse reward is only given to
the agent after all procedures in the sequence are done. This task is exceptionally challenging as
each intermediate procedure requires a set of continuous actions in correct order to be achieved and
no intermediate reward is provided to guide the search. Therefore this task requires the power of
efficient exploration to discover the state that provides an extrinsic reward. If the algorithm fails to
explore efficiently, the rewarding state would never be found and no policy will be learned. The
results show that the algorithm is able to discover the extrinsic reward and converge to a stable
solution. Fig 7a shows the change of average extrinsic reward per step over iterations and Fig 7b
shows the converged policy in sequential order. The resulting policy is deployed to a real world
YuMi robot as shown in Fig 1. A demonstration of the real robot solving the task can be found in
the video.

Figure 7: (a) Relation between average extrinsic reward per iterations. (b) From up to down, left to
right, this figure shows a sequence of the converged policy for the OpenPressClose task, which is a
long horizon task with a sparse reward given only at the end.

5 CONCLUSION

In this work, we propose an algorithm named Skew-Explore, a general framework for continuous
state exploration. Inspired by Skew-Fit Pong et al. (2019), the main idea of Skew-Explore is to
encourage exploration around the novelty frontier reference points proposed by a latent variable
proposing network. The algorithm is able to track the global information of entropy of density dis-
tribution estimated by the states stored in a history state set, which helps to maximize a corresponded
metrics, namely entropy and coverage. Two experiments are conducted to test the power of Skew-
Explore on the exploration problem and the single sparse reward problem. In the first experiment,
we found that our algorithm Skew-Explore, using SAC and HER together, has the fastest exploration
rate. In the second experiment, we found that our algorithm is also able to converge to a stable policy
when a single sparse reward is given. As a demonstrator, we used an environment where a robotic
manipulator needs to 1) open a door, 2) press a button inside and 3) close the door in a sequence
but only with a sparse reward given at the end. We implemented the fully converged policy on a
real YuMi robot using policy transfer. Future work will include investigating if we can improve the
efficiency of policy convergence by adjusting the proposing network’s distribution. Additionally, we
will examine whether clustering can increase the efficiency for exploration. Moreover, we will look
for a better reward function than KL divergence between Gaussian-based goal distribution and the
trajectory distribution.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Joshua Achiam and Shankar Sastry. Surprise-based intrinsic motivation for deep reinforcement
learning. arXiv preprint arXiv:1703.01732, 2017.

Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational option discovery
algorithms. arXiv preprint arXiv:1807.10299, 2018.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. In Advances in Neural Information Processing Systems, pp. 5048–5058, 2017.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018.

Yevgen Chebotar, Mrinal Kalakrishnan, Ali Yahya, Adrian Li, Stefan Schaal, and Sergey Levine.
Path integral guided policy search. In 2017 IEEE international conference on robotics and au-
tomation (ICRA), pp. 3381–3388. IEEE, 2017.

Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. Curious: Intrinsically motivated multi-task,
multi-goal reinforcement learning. arXiv preprint arXiv:1810.06284, 2018.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a
new approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Kai Olav Ellefsen, Jean-Baptiste Mouret, and Jeff Clune. Neural modularity helps organisms evolve
to learn new skills without forgetting old skills. PLoS computational biology, 11(4):e1004128,
2015.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic neural networks for hierarchical rein-
forcement learning. arXiv preprint arXiv:1704.03012, 2017a.

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. arXiv preprint arXiv:1705.06366, 2017b.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. arXiv
preprint arXiv:1611.07507, 2016.

Charles Miller Grinstead and James Laurie Snell. Introduction to probability. American Mathemat-
ical Soc., 2012.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

Thomas C Hales. A proof of the kepler conjecture. Annals of mathematics, pp. 1065–1185, 2005.

David Held, Xinyang Geng, Carlos Florensa, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Leslie Pack Kaelbling. Learning to achieve goals. In IJCAI, pp. 1094–1099. Citeseer, 1993.

Mrinal Kalakrishnan, Ludovic Righetti, Peter Pastor, and Stefan Schaal. Learning force control
policies for compliant manipulation. In 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 4639–4644. IEEE, 2011.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

9

Under review as a conference paper at ICLR 2020

Georg Ostrovski, Marc G Bellemare, Aäron van den Oord, and Rémi Munos. Count-based ex-
ploration with neural density models. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 2721–2730. JMLR. org, 2017.

Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic motivation systems for au-
tonomous mental development. IEEE transactions on evolutionary computation, 11(2):265–286,
2007.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pp. 16–17, 2017.

Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew-
fit: State-covering self-supervised reinforcement learning. arXiv preprint arXiv:1903.03698,
2019.

Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun. Semi-parametric topological memory
for navigation. arXiv preprint arXiv:1803.00653, 2018.

Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neu-
ral controllers. In Proc. of the international conference on simulation of adaptive behavior: From
animals to animats, pp. 222–227, 1991.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam, and Rob
Fergus. Intrinsic motivation and automatic curricula via asymmetric self-play. arXiv preprint
arXiv:1703.05407, 2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Vivek Veeriah, Junhyuk Oh, and Satinder Singh. Many-goals reinforcement learning. arXiv preprint
arXiv:1806.09605, 2018.

David Warde-Farley, Tom Van de Wiele, Tejas Kulkarni, Catalin Ionescu, Steven Hansen, and
Volodymyr Mnih. Unsupervised control through non-parametric discriminative rewards. arXiv
preprint arXiv:1811.11359, 2018.

10

Under review as a conference paper at ICLR 2020

Appendices
A DIFFERENCE BETWEEN COVERAGE AND h(S)

Since the reward is given to an arbitrary state in the whole space, two metrics could be considered
to evaluate the performance of the agent, namely the state distribution entropy h(S) and the cov-
erage fc(St). The distribution of S can be estimated using any density estimator trained using St.

Figure 8: The change of coverage (left) and estimation of probability density (right) when adding a
new point, in one-dimensional state space. In the left image, the overall state coverage constructed
by two black points is represented as the area of dark grey. When a third point (red dot) is added,
the overall state coverage increases and the amount of increase is the area of light grey. In the right
image, the red curve shows the density distribution constructed by two black points. When a new
point (red dot) is added, the density distribution changes to the dashed curve. The state entropy
decreases as the new point is in a region with high density.

The coverage of St is defined as a mapping fc : Sn → R, K(St) :=
∫
S maxi(φ(si)) ds, where

φ : [0, inf) → R is a radial basis function with a Gaussian kernel centred at si ∈ St, and n equals
|St|. Intuitively, these two measures describe similar characteristics of the data distribution. How-
ever, they also have significant differences. One major difference is that when a new data point is
presented in the state space, the coverage can only increase whilst the entropy can decrease if the
new data point is given in an often visited area. Figure 8 illustrates the difference between coverage
and density estimation when two and three points are given. Coverage gives a better intuition about
where the agent should search for the sparse reward.

To find the sparse reward, we maximize the history states entropy to increase the coverage. A proof
for one-dimensional state space is given in Appendix C. Proof of high dimensional cases is related
to Kepler theorem Hales (2005) and is beyond the scope of this paper. We aim to maximize the
entropy of the state density in the St, which isH(S).

B ESTIMATING STATE ENTROPY AND COVERAGE

In practice, we uniformly discretize the entire state space along each dimension and use the center
of the discretized grids to estimate the entropy and the coverage. We do not check the validity of
each grid. Therefore, there are grids that are not reachable from the initial state, and the maximum
possible coverage is less than 1. The PointMaze environment is discretized to 50 · 50 grids. The
DoorOpen environment is discretized to 10 · 10 · 10 · 2 · 10 grids. The entropy and coverage are
summed over the discretized states.

C PROOF OF RELATION BETWEEN COVERAGE AND h(S)

In this section, we prove Lemma C.1.
Lemma C.1. Given N movable points P = {p1, p2, · · · , pN} distributed in R with boundary
Bl ≤ pi ≤ Bh. Maximizing the coverage estimated from these points using a Gaussian kernel will
make the points to be uniformly distributed within the boundary, thus maximizing the entropy of the
points’ distribution.

Proof. According to the definition of coverage, the area under all Gaussian kernels could be written
as :

fc(P) =

∫
R

max
i

(φ(pi)) dx (6)

11

Under review as a conference paper at ICLR 2020

We rewrite the equation as subtraction of all the areas and the overlapping areas. Fig 9 illustrates
these concepts. The area from negative infinity to x under Gaussian distribution is defined as.

Φ(x) =

∫ x

−∞
φ(x)dx =

1

2

(
1 + erf

(
x√
2

))
, (7)

fc(P) = NΦ(∞)−
N−1∑
i=1

2Φ(
−ti
2

) (8)

= 1−
N−1∑
i=1

erf

(
−ti
2
√

2

)
(9)

(10)

As maximizing 1−
∑N−1
i=1 erf

(
−ti
2
√
2

)
is equivalent to minimizing

∑N−1
i=1 erf

(
−ti
2
√
2

)
. We formulate

an optimization problem as follows:

minimize
t1,t2,··· ,ti

N−1∑
i=1

erf

(
−ti
2
√

2

)
subject to ti ≥ 0,∀ti

N−1∑
i=1

ti ≤ Bh −Bl,

Solving this problem using the KKT conditions will give us that when ti = Bh−Bl

N−1 ,∀ti, the ex-
pression is minimized. This result shows that when the coverage estimated from these points is
maximized, the points need to be distributed evenly within the boundary. As a consequence, the
entropy of the distribution of these points is also maximized.

Figure 9: This figure demonstrates the relationship between overall coverage and overlapping area.

D PROOF OF h(S|Z)− h(Z|S) ≥ h(N)− h(Z)

In this section, we show our analysis and proof of the expression

h(S|Z)− h(Z|S) ≥ h(N)− h(Z).

Let Z and S be jointly distributed continuous random variables, where S is related to Z through a
conditional PDF f(s|z) defined for all z. The conditional PDF f(s|z) follows a Gaussian distribution
centred at different z with standard deviation σ > 0.

Lemma D.1. S can be represented as the sum of Z and N, where N is a r.v. with Gaussian PDF of
0 mean and standard deviation σ, independent from Z.

S = Z + N (11)

Proof

12

Under review as a conference paper at ICLR 2020

Using the law of total probability, the density of f(s) can be written as:

f(s) =

∫
f(s|z)f(z)dz

=

∫
1

σ
√

2π
e−(s−z)

2/2σ2

f(z)dz

=

∫
K(s− z)f(z)dz

= (K ∗ f)(s), (12)

where K is the density function of N. According to Theorem 7.1 in Grinstead & Snell (2012),
when the density function f(s) is the convolution of the density function of G and N, S = G + N
holds.

Q.E.D.
Lemma D.2. When S = Z + N holds, the following expression

h(S|Z)− h(Z|S) ≥ h(N)− h(Z) (13)

holds.

Proof.
Remark. Here we note that we will use following equations in later proof,

h(Z) = h(Z|N) = h(Z + N|N) (14)
h(N) = h(N|Z) = h(Z + N|Z). (15)

In Eq. 14 and Eq. 15, h(Z) = h(Z|N) and h(N) = h(N|Z) are true because Z and N are indepen-
dent. Moreover, h(Z|N) = h(Z + N|N) and h(N|Z) = h(Z + N|Z) are true because there is no
gain of information by adding what is given already.

We expand the Eq. 13 by replacing the S with Z + N and get

h(S|Z)− h(Z|S) = h(Z + N|Z)− h(Z|Z + N)

= h(N)− h(Z|Z + N) (16)

Now we proceed to prove that h(Z|Z + N) = h(N|Z + N),

h(Z|Z + N) = h(G + N|Z) + h(Z)− h(Z + N)

= h(N) + h(Z)− h(Z + N)

= h(N) + h(Z + N|N)− h(Z + N)

= h(N,Z + N)− h(Z + N)

= h(N|Z + N). (17)

We replace h(Z|Z + N) with h(N|Z + N) in Eq. 16 to have

h(S|Z)− h(Z|S) = h(N)− h(N|Z + N)

= I(Z + N;N)

= I(S;N). (18)

According to the property of mutual information, I(S;N) ≥ 0, with equality if and only if S and
N are independent. As S = Z + N, I(S;N) = 0 is true only when the PDF of N is a Dirac delta
function. In our case, PDF of N is a Gaussian function and σ > 0, as a consequence, the expression
h(S|Z)− h(Z|S) > 0 holds. Additionally, since h(Z|Z + N) is the same as h(N|Z + N), by law
of conditioning reduces entropy, we has an inequality as follows

h(S|Z)− h(Z|S) = h(N)− h(N|Z + N)

h(S|Z)− h(Z|S) = h(N)− h(Z|Z + N)

h(S|Z)− h(Z|S) ≥ h(N)− h(Z). (19)

13

Under review as a conference paper at ICLR 2020

Q.E.D

If we link it back to the paper, Z is the novelty frontier reference points proposing distribu-
tion and S represents the achieved state distribution by executing goals sampled form Z. N defines
the behaviour of the policy according to a given reference point. When N has a Dirac delta distri-
bution, the policy is a goal-conditioned policy (as in Skew-Fit). When N is a Gaussian distribution,
the policy moves around the reference point following a Gaussian distribution. Compared to the
goal conditioned policy, the reference point-conditioned policy achieves higher state entropy. The
extra amount of entropy equals to the mutual information I(Z + N;N).

E IMPLEMENTATION DETAILS

E.1 ENVIRONMENT DETAILS

The three environments used in the experiments are implemented using Mujoco Todorov et al.
(2012).

PointMaze: In this environment, an agent travels in a maze contains narrow passages. The observa-
tion is the x, y position of the agent and the action is the velocity along the x, y axis. The maximum
velocity for each dimension is 0.12. In the sparse reward experiment, the agent receives an extrinsic
reward when the distance to the goal is less than 0.15.

DoorOpen: In this environment, we use a single arm Yumi robot with 7 degrees of freedoms (DOFs).
The robot is controlled in Cartesian space and the orientation of the end-effector is fixed. The robot
can grab a door handle and open the door on a table. The maximum opening of the door is 90
degrees. The observation space is 5 dimensional, including the x, y, z position of the end-effector,
the open/close status of the gripper and the opening angle of the door. The action is the velocity
along x, y, z axis. The valid action space of the robot is 10cm×11cm×10cm. In the sparse reward
experiment, the agent receives an extrinsic reward when the angle difference to the goal is less than
2 degrees.

OpenPressClose: This environment contains a single arm Yumi robot, a box with a door and a button
inside the box. The robot configuration is the same as the DoorOpen environment. The maximum
opening of the door is 143 degrees. The observation space of the robot is 6 dimensional, including
the x, y, z position of the end-effector, the open/close status of the gripper, the opening angle of the
door and the status of the button. The action is the velocity along x, y, z axis. The valid action space
of the robot is 2cm× 28.5cm× 16cm. In the sparse reward experiment, the agent needs to press the
button down for more than 1cm and close the door completely.

E.2 HYPERPARAMETER

Figure 10: Five uniformly distributed points in PointMaze
environment and the DoorOpen environment.

We use the same network structure
for all experiments. The policy net-
work contains 5 fully-connected lay-
ers with the number of units in all lay-
ers 32, 64, 128, 64, 32. We use ReLU
as the activation function and there is
no activation for the output layer and
for all experiments, the length of the
trajectory is 200.

The RND contains 3 fully-connected
layers with the number of units
32, 64, 64 in the random target net-
work and contains 4 fully-connected
layers with the number of units
32, 64, 64, 128 in the prediction network.

14

Under review as a conference paper at ICLR 2020

For PPO, we use the batch of 5, 000 and 15 epochs per iteration. We update the state distribution
and the goal distribution at every 5, 000 step.

F ADDITIONAL RESULTS

The second experiment test whether the algorithm is able to converge to a given sparse reward after
exploration. As mentioned in the section 4.2, five points are selected to test the convergence of the
algorithm given a sparse reward. Fig 10 shows the exact points in the PointMaze and DoorOpen
environments. The points are selected uniformly from the area of interests. For each point, twelve
experiments have been executed to receive information about mean and the variance of the algo-
rithm’s performance. Fig 11 and Fig 12 show the relationship between the convergence criteria and
the number of iteration for PointMazz environment and DoorOpen environment respectively.

Figure 11: This figure show the relationship between convergence criteria and the number of itera-
tions in PointMazz environment.

Figure 12: This figure shows the relationship between convergence criteria and the number of itera-
tions in DoorOpen environment.

15

	Introduction
	Related Work
	Skew-Explore: Searching for the sparse reward
	Maximizing h(Z): Obtaining an expanding set of novelty frontier reference points
	Maximizing h(S|Z) - h(Z|S): Increasing the exploration range around reference points
	Designing the reward function
	Scaling to higher dimensional states

	Experiment
	Power of exploration
	Power of solving a single sparse reward task
	Task with a long horizon and real world demonstration

	Conclusion
	Appendices
	Difference between coverage and h(S)
	Estimating state entropy and coverage
	Proof of Relation between coverage and h(S)
	Proof of h(S|Z) - h(Z|S) h(N) - h(Z)
	Implementation Details
	Environment Details
	Hyperparameter

	Additional Results

