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ABSTRACT

High utilization is key to achieve high efficiency for deep neural networks. Existing
deep learning frameworks has focused on improving the performance of individual
operators but ignored the parallelization between operators. This leads to low device
utilization especially for complex deep neural networks (DNNs) with many small
operations such as Inception and NASNet. To make complex DNNs more efficient,
we need to execute parallely. However, naive greedy schedule leads to much
resource contention and do not yield best performance. In this work, we propose
Deep Optimal Scheduling (DOS), a general dynamic programming algorithm to
find optimal scheduling to improve utilization via parallel execution. Specifically,
DOS optimizes the execution for given hardware and inference settings. Our
experiments demonstrate that DOS consistently outperform existing deep learning
library by 1.2 to 1.4 × on widely used complex DNNs.

1 INTRODUCTION

Deep neural networks (DNNs) have achieves state-of-the-art predictive performance across many tasks
including computer vision (Krizhevsky et al., 2012; He et al., 2016), machine translation (Sutskever
et al., 2014; Devlin et al., 2018) and game playing (Mnih et al., 2013; Silver et al., 2016). The success
has resulted in the growth of computational requirements in today’s DNN architectures.

To mitigate the increasing computational requirements, it is standard to parallelize computation
in a DNN onto many-core accelerators, such as GPUs and TPUs. Existing deep learning frame-
works (Abadi et al., 2016; Paszke et al., 2017) exploit intra-operator parallelism that parallelize
all arithmetic operations within a single DNN operator (e.g., matrix multiplication) using vendor-
provided libraries such as cuDNN and cuBLAS. Different operators within a DNN architecture are
performed sequentially on the hardware device.

However, as the computational power of many-core devices consistently increases, intra-operator
parallelism cannot provide sufficient parallelization opportunities to fully utilize all computation
resources provided by a hardware device, resulting in suboptimal runtime performance. For example,
for the DNN architecture in Fig. 1(a), the four convolutions [a], [b], [c], and [d] are executed
sequentially in existing frameworks. Due to the limited parallelism in each convolution, the sequential
schedule results in low GPU utilization (i.e., 24.6% on average).

Recent work explores inter-operator parallelism by using different heuristics to execute multiple
DNN operators in parallel. For example, MetaFlow (Jia et al., 2019) fuse multiple operators matching
a specific pattern into a larger operator to increase operator granularity. As another example, Tang
et al. (2018) proposes a greedy strategy that directly execute all available DNN operators on a
hardware device to maximize resource utilization. These approaches apply different heuristics to
optimize local parallelization across a few DNN operators, which does not lead to a globally optimal
schedule for the entire DNN architecture. For example, for the input DNN in Fig. 1(a), Fig. 1(b)
shows the greedy schedule, which performs convolutions [a], [c], and [d] in parallel in a single stage
(S1), and runs convolution [b] in a subsequent stage (S2) upon the completion of (S1). The greedy
schedule is suboptimal as S2 does not include sufficient workload.

Discovering optimized schedules to parallelize a DNN model on a specific hardware device is
challenging, as an optimal schedule depends on both thee DNN model settings and the hardware
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Figure 1: Different schedules for parallelizing a DNN architecture on a V100 GPU. DNN operators
scheduled to run in parallel are placed at the same height. Both sequential and greedy schedules
result in resource under utilization and suboptimal runtime performance. Balanced schedule yields
the best latency and device utilization.

architecture. For example, our evaluation shows that changing the batch sizes of a DNN model or
using different hardware devices can both result in different optimal schedule for a DNN model.

In this work, we propose Deep Optimal Scheduling (DOS), which accelerates DNN computation
by combining intra- and inter-operator parallelism. To discover an efficient schedule to parallelize
an input DNN model on a specific hardware device, DOS employs a cost model to estimate the
runtime performance of different schedules based on profiling of representative executions. DOS
uses a dynamic programming based search algorithm to explore the space of potential schedules, and
discovers a globally optimal schedule under the cost model.

We evaluate DOS on five real-world DNN models, and show that DOS outperforms existing deep
learning frameworks by increasing the end-to-end inference time by 1.2 to 1.4×. We also validate
DOS under different hardware and inference settings and experiments show that DOS can find
specialized schedule for different inference settings and devices. Experiments demonstrate that DOS
consistently outperform existing implementations.

To summarize, our contributions are:

• We point out the long ignored utilization issues in DNN computing, especially for DNNs
with complex topology.
• We propose a novel schedule algorithm (DOS) to find the best parallel execution for complex

DNNs and show that this technique can generally and consistently boost the inference.
• We apply DOS to different devices and settings and show that the different platforms actually

requires different schedule. Our searched schedule consistently outperforms existing deep
learning libraries.

2 BACKGROUND AND RELATED WORK

2.1 ARCHITECTURES OF DEEP NEURAL NETWORKS

With bloom of deep learning, a series of studies have been made on how to design efficient DNN
architectures. In early studies, sequential structures are more widely used because they are easier
to design and deployment (e.g. AlexNet (Krizhevsky et al., 2012), VGG (Simonyan & Zisserman,
2014)) and ResNet (He et al., 2016)). Moreover, GPU memory is very limited at that time, even it is
observed that DNNs with multi-branch have better performance under same FLOPs (Szegedy et al.,
2015; 2016). These models are less preferred because large memory consumption in training.
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Figure 2: Illustration of two methods of parallel kernel execution

Recently, using machine learning techniques to automatically design neural network architectures
has drawn increasingly interests (Zoph & Le, 2016), In neural architecture search (NAS), again
complex DNNs appear superior performance (Zoph et al., 2018; Real et al., 2019; Xie et al., 2019).
However, in production simple sequential models are more preferred (Tan et al., 2019; Cai et al.,
2019) because complex DNNs suffer from low device utilization and the theoretical improvement
cannot be translated into real speedup. Our work aims to bridge the gap and justify the efficiency of
complex DNNs.

2.2 RELATED WORK

Intra-operator parallelism. Existing deep learning frameworks (Abadi et al., 2016; Paszke et al.,
2017) generally exploit intra-operator parallelism that parallelize all arithmetic operations within a
single DNN operator (e.g., matrix multiplication), and performs different DNN operators sequentially
on the hardware device. Intra-operator parallelism cannot provide sufficient parallelizable computa-
tion for today’s hardware devices with increasing computational power, and therefore results in under
utilized computation resources.

Inter-operator parallelism. Recent work has proposed different approaches to exploit inter-
operator parallelism. For example, (Tang et al., 2018) proposes a greedy strategy that directly
execute all available DNN operators on a hardware device to maximize resource utilization. TensorRT
and TVM supports rule-based graph optimizations that transforms the computation graph of a DNN
architecture, such as merging normalization and activation into linear operators (Abadi et al., 2015;
Paszke et al., 2017; Chen et al., 2018). Though these techniques can be also applied to complex
DNNs, they do not fundamentally solve the low utilization problem.

The work most related to our target is relaxed graph substitution (Jia et al., 2019) which explores
functional preserving substitutions to transform a computational graph to. By merging kernels with
same input and type of operations, it can be used to improve the utilization and redundancy of complex
DNNs. However, such transformations are based on hand craft rules and restricted to specific layers,
thus not general enough.

3 PROBLEM DEFINITION
Computation Graph. Deep neural network is usually represented as a computation graph G =
(S,E), where S is the set of operations and E is the set of edges. A computation graph is a
directed acyclic graph (DAG). Each kernel in the graph represents an operation such as convolution,
normalization, addition and etc. Each edge (u, v) in the graph bridges the output of its source kernel
u and the input of its target kernel v.

Stage. In inter-operator parallel execution, multiple kernels will be launched at the same time. We
name the group of concurrently launched kernels as stage. For example, Fig.2c contains 2 two stages:
one consists of kernel b and c and the other includes kernel d, e and f, with extra input stage (kernel
a) and output stage (kernel b).
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Figure 3: How DOS finds a specific schedule on given DAG. Set S, S′ and S′′ are marked in the
figures and the blue areas are the stages. In (a), S′ contains kernels b, d, f, e and DOS will enumerate
all its non-empty subset as the last stage. When DOS chooses subset f, e as a stage as shown in Fig. 3a,
the problem becomes to find the best schedule for kernel a, b, c, d as shown in Fig. 3b. Repeat the
process then DOS will get the final schedule {a, b}, {c, d}, {e, f} as shown in Fig 3d.

Parallel Strategy. There are two possible parallel strategies: concurrent execution (Fig.2c) and
operation merging (Fig.2d). Concurrent execution will run all operations in the stage simultaneously.
Operation merging combines the operations of the same type into a bigger one during scheduling and
executes it during inference.

There are tremendous feasible schedules for a given computation graph and it is too costly to manually
explore. Among all the possible schedules, the most intuitive one is to greedily assign all currently
available kernels into a stage. However, as shown in Fig. 1, schedule without global information
leads to low utilization and thus sub-optimal. Moreover, there are various hardware platforms and
inference settings, all these, would affect the scheduling for a computation graph. This brings extra
challenge to find a good schedule.

Schedule. We define the schedule of a computation graph G = (S,E) as following

L = (S1, S2, . . . , Sk, g1, g2, . . . , gk)

∀u ∈ Si, v ∈ Sj , (u, v) ∈ E (i < j).

where S1, S2, . . . , Sk are stages of the schedule and gi is the parallel strategy for Si. The computation
graph G under schedule L would be executed stage by stage. Let c be a cost function defined on
computation graph G and schedule L. We aim to find a schedule L∗ to minimize the cost function for
given computation graph G, i.e c(G,L∗) = minL c(G,L). In this work, the cost function c(G,L) is
define as the latency of execution.

4 METHODS

In this section, we present our method to find schedule for given computation graph. In Sec. 4.1,
we introduce the cost model. In Sec. 4.2, we propose a dynamic programming method to find the
optimal schedule under our cost model.

4.1 COST MODEL

We introduce the cost model c to evaluate the runtime performance. For given stage Si and corre-
sponding parallel strategy, we take the measured latency as the cost model. We here make a mild
assumption the latency of a stage is not affected by the previous. This assumption holds for most
DSPs. Therefore, we can add up all the stage latency predicted by cost model as an approximation of
the graph latency under schedule L, for a given computation graph G and schedule L.

4.2 DEEP OPTIMAL SCHEDULER
To address the problem, we propose DOS to schedule an optimal schedule under given cost model,
hardware and inference settings.

DOS starts with state S, which is the set of operators in computation G. For a given state S, let S′ be
the set of kernels in S such that none of the successors of nodes in S′ are in S. For all the schedules
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Algorithm 1 Deep Optimal Scheduling
Input: Computation Graph: G (let S be the node set of G);
Output: A schedule for G.

1: cost[S′] =∞, choice[S′] = ∅ where S′ ⊂ S and S′ 6= ∅ . Initialize the cost to be large.
2: cost[∅] = 0, choice[∅] = ∅
3: procedure DOS(S)
4: if cost[S] 6=∞ then
5: return cost[S] . We have already got the result for set S
6: end if
7: for S′′ ⊂ S′ where S′ = {s | ∀s′ ∈ successors(s) s′ 6∈ S} do
8: T = DOS(S − S′′) +min(latencymerge(S

′′), latencyconcurrent(S
′′))

9: if T < cost[S] then . A better schedule is found
10: cost[S] = T . Update best latency.
11: choice[S] = S′′ . Record the choice.
12: end if
13: end for
14: return cost[S]
15: end procedure

of S, the nodes of the last stage must be a subset of S′. Then we enumerate all the non-empty subsets
S′′ of S′. Once we choose S′′ to be the last stage of S, the problem to find the optimal schedule of S
will be reduced to find the optimal schedule of S − S′′, which is a sub-problem of the original one.
By enumerating all the subset S′′ of S′, we can find the optimal schedule for S. For each stage Si,
the parallel strategy with lower latency will be chosen.

DOS uses cost[S] to record the sum of latency of all the stages in the optimal schedule for
S. and uses choice[S] to record the last stage in the optimal schedule. latencymerge and
latencyconcurrent are the cost model used by DOS to get the latency. We can get the final schedule
for the computation graph from the choice array.

When the graph has a large number of nodes, we can split the graph into multiple connected sub-graphs
to apply DOS algorithm separately. Most networks such as Inception V3 and RandWire naturally
split the graph into blocks so we can use the blocks as the subgraphs to apply DOS algorithm.

5 EXPERIMENT

DOS is frame-agnostic algorithm for arbitrary computation graphs. In our experiment, the runtime is
built upon existing deep learning libraries cuDNN (Chetlur et al., 2014). DOS accepts user defined
cost function to minimize. We adpat the measured latency as the optimization target.

5.1 INFERENCE SPEEDUP

In this section, we show that our proposed method can effectively speed up the inference of existing
models, even for the ones with highly complicated topology. We benchmarked our methods on four
representative convolution neural networks, Inception V3 (Szegedy et al., 2016), Randwire (Xie et al.,
2019), NasNet-A (Zoph et al., 2018) and SqueezeNet (Iandola et al., 2016). For each network, we
measure the latency of sequential schedule, greedy schedule, optimized schedule, and the latency
on existing frameworks including TVM∗ (Chen et al., 2018), Tensorflow (Abadi et al., 2016) and
TensorRT (TensorRT). We measured the inference time on a single NVIDIA Tesla V100 GPU.
The results are shown in Figure 4. DOS outperforms the sequential schedule and greedy schedule
baselines by up to 1.4x, even surpassing TensorRT and TVM implementation on all of the four
networks. DOS enjoys great stability, it is the optimization method that consistently outperforms the
sequential baseline.

∗The backend of TVM is cuDNN.
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Figure 4: End-to-end inference comparison among sequential schedule, Tensorflow, TVM, TensorRT,
Greedy schedule and DOS optimization. Sequential schedule, greedy schedule and DOS share the
same runtime and the only difference among them is the schedule.

5.2 SPECIALIZE FOR DIFFERENT HARDWARE ACCELERATORS

We explore DOS optimization on different devices. Different devices have different hardware
configurations (e.g., cache size, frequency, number of compute cores, etc). Therefore, we may need
different scheduling schemes to make full use of the hardware resources. We use DOS to optimize
the schedule of Inception V3 on three devices: NVIDIA Titan XP, Tesla V100 and GeForce RTX
2080Ti. We applied DOS on each device respectively to generate a specific scheduling. The results
are shown in Table 1. For each of the devices, the scheduling searched on the current device achieves
the highest inference speed and hardware utilization. For example, on NVIDIA RTX 2080Ti GPU,
the specialized scheduling can achieve 6% and 8% faster speed compared to the ones transferred
from Titan XP and Tesla V100.

We provide the details of DOS’s optimized schedules for NVIDIA Titan XP and GeForce RTX 2080Ti
in Fig. 5. The operations on the same height belong to a stage. The two schedules show different
patterns: on Titan XP, DOS prefers to place similar operators within the same stage, e.g., convolutions
with similar kernel sizes are scheduled in the same stage, while average pool is placed in a separate
stage. While on 2080Ti with larger computation capacity, DOS learns to move convolutions from late
stages into earlier ones to increase the hardware utilization.

Devices TitanXP V100 2080Ti
TitanXP 6.01 ms 6.27 ms 6.27 ms

V100 4.86 ms 4.65 ms 5.08 ms
2080Ti 4.33 ms 4.43 ms 4.09 ms

Table 1: Specialized Schedules for Devices

Batchsize 1 8 16
1 4.66 ms 4.73 ms 5.09 ms
8 10.98 ms 10.55 ms 10.96 ms

16 17.43 ms 16.94 ms 16.56 ms

Table 2: Specialized Schedules for Batch Sizes

Table 3: Specialized schedules for different devices and batch sizes. Each row represents the real
setting to execute the network and each column represents the setting DOS optimized for.

5.3 SPECIALIZE FOR DIFFERENT BATCH SIZE
Apart from different hardware, in real-life cases, we also need to handle different batch sizes during
inference. For example, for real-time recognition in autonomous driving, we usually use a batch
size of 1 to reduce latency; while on cloud computing, a larger batch size is preferred to increase the
throughput and hardware utilization.

DOS can also optimize the computation graph when batch size is greater than 1. We optimize the
Inception V3 with batch size 1, 2, 4, 8 on V100. Fig. 6 shows the result. DOS outperforms the other
five baselines consistently and can still have 1.2 speed up comparing to sequential schedule when
batch size equals to 8. The speedup ratio generally decreases as the batch size increases, as sequential
schedule has a larger parallelism with increased batch size.

The computational requirements changes proportional to the batch size. So the same computation
graph with different batch sizes need different specialized schedules. We optimize Inception V3 with
batch size 1, 8, 16, and find that DOS can also find the specialized schedule for each batch size. The
result is reported in Table 2. The schedule optimized for specific batch size outperforms the schedule
optimized for other batch sizes when the computation graph is executed on that specific batch size.
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Figure 5: Specialized schedules of a InceptionV3 Block for TitanXP and 2080Ti. From the schedule
on TitanXP, we can find that DOS prefers to place similar operators in a stage: put avgpool in
a separate stage and convolutions with similar kernel size are scheduled in one stage. When the
computation capability increases, DOS prefers to move convolutions in late stages into early stages
to increase device utilization.
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Figure 6: Speedup of Inception V3 with different batch sizes

5.4 SEARCH TIME COMPARISION

We report the optimization time for different networks. The optimized graph of SqueezeNet is the
same as Metaflow. And when we only do the operator merging in DOS, we can also get the same
graph as Metaflow in about 5 seconds. All the graphs can be optimized within 8 minutes.

Models SqueezeNet InceptionV3 NasNet RandWire
Metaflow(α = 1.01) 4 secs 24 secs 40mins > 1 day
Metaflow(α =∞) 5 secs 60 secs 4 hours > 1 day

DOS 4 secs 10 secs 3 mins 8 mins

Table 4: Search Time Comparison between DOS and Metaflow. DOS can have reasonable search
time even for DNNs with complex topological structure.

5.5 BLOCK PERFORMANCE

We also compare the performance of each block in InceptionV3 under sequential schedule and DOS
optimized schedule in Fig. 8. The figure shows that the optimized schedule is consistently faster than
sequential schedule, which leads to an end-to-end 1.4x speedup.
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5.6 PERFORMANCE COMPARISON BETWEEN DOS AND TENSORRT

Table 5 compares the different metrics between TensorRT and DOS. For InceptionV3 and SqueezeNet,
DOS merged kernels, which reduce the memory access and number of kernel launches. Although
DOS’s optmized schedule for SqueezeNet merge operations and increase the FLOPs, the over all
latency reduced.

Models Latency (ms) Memory (MB) Kernels FLOPs Utilization
TRT DOS TRT DOS TRT DOS TRT DOS TRT DOS

IncetptionV3 5.11 4.61 82 68 119 103 5.50 5.50 1.08 1.19
Randwire 8.91 7.15 576 576 406 406 7.67 7.67 0.86 1.07
NasNet 23.58 18.99 1187 1187 965 965 22.00 22.00 0.93 1.16

SqueezeNet 0.84 0.74 57 48 50 38 1.16 1.25 1.38 1.69

Table 5: The comparison of latency (ms), memory access (MB), number of kernel launches, flops
(GFLOPs) and the device utilization (TFLOPs / sec) between TensorRT (TRT in the table) and DOS.
Here the device utilization is calculated as the effective FLOPs per second.

5.7 ASSUMPTION VALIDATION

In Sec. 4.1, we assume that, for given schedule, the latency of the whole computation graph equals to
the sum of latency of each stage. We sample many random schedules and evaluate real latency of the
whole computation graph and predict the latency by adding up latency of all stages. The result of the
real latency and predicted latency is shown in Fig. 7. The point-wise relative order accuracy is 0.937,
thus the assumption is reasonable.

6 CONCLUSION

With the increasing of computational power, sequential execution of DNNs can not provide sufficient
parallelzation opportunities to fully utilize all the computation resources of hardware device. And
recent work that explores inter-operators parallelism use heuristics to execute operators parallely,
which do not utilize the global information of the networks and can be fall into sub-optimal optimiza-
tion. In this work, we propose DOS, which combines intra- and inter-operator parallelism and utilize
the global information of the networks. Experiments show that DOS can accelerate the performance
of widely used DNN architectures from 1.2 to 1.4x.
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