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Abstract
Large language model (LLM) training and fine-
tuning are often severely constrained by limited
GPU memory. While parameter-efficient finetun-
ing techniques like LoRA address this by learning
low-rank weight updates, they frequently under-
perform compared to full-rank training, especially
during pretraining. We propose GRASS (GRA-
dient Stuctured Sparsification), a novel approach
that slashes LLM training memory and compute
requirements without compromising performance.
GRASS leverages sparse projections to transform
gradients into structurally sparse gradients, signifi-
cantly lowering memory usage for both optimizer
states and gradient communication. This com-
pression, in turn, unlocks substantial throughput
improvements. Extensive experiments on pretrain-
ing and finetuning tasks demonstrate that GRASS
achieves competitive performance to existing
projection-based optimizers and full-rank train-
ing. Notably, GRASS enables pretraining a 13B
parameter LLaMA model on a single 40GB A100
GPU—a feat infeasible for previous methods—
and yields up to a 2× throughput improvement on
an 8-GPU system. Code can be found at https:
//github.com/aashiqmuhamed/GRASS.

1. Introduction
Pretraining and finetuning large language models (LLMs)
are often memory bottlenecked: storing model parame-
ters, gradients, and optimizer states in GPU memory is
prohibitively expensive. As an example, pre-training a
LLaMA-13B model from scratch under pure bfloat16
precision with a token batch size of 256 requires at least
102 GB memory (24GB for trainable parameters, 49GB
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for Adam optimizer states, 24GB for weight gradients,
and 2GB for activations), making training infeasible even
on industry-standard GPUs such as Nvidia A100 with
80GB memory (Choquette et al., 2021). Existing memory
efficient system-level techniques like DeepSpeed optimizer
sharding/offloading (Rajbhandari et al., 2020) and gradient
checkpointing (Chen et al., 2016) trade off throughput
for memory advantages which slow down pretraining.
As models scale, the memory and compute demands of
increasingly large LLMs continue to outpace hardware
advancements, highlighting the need for advances in
optimization algorithms beyond system-level techniques.

Various optimization techniques have been proposed to en-
hance the efficiency of LLM training. One prominent ap-
proach is parameter-efficient finetuning (PEFT) techniques,
such as Low-Rank Adaptation (LoRA), that reparameterizes
a weight matrix w ∈ Rm×n as w = w0+BA, where w0 is a
fixed full-rank matrix, and B ∈ Rm×r and A ∈ Rr×n serve
as additive low-rank adaptors. As rank r < min(m,n), A
and B include a reduced number of trainable parameters,
yielding smaller optimizer states and gradients. Variants of
LoRA, such as ReLoRA, are employed in pre-training by
periodically updating w using previously learned low-rank
adaptors. Despite their widespread use, LoRA and its deriva-
tives (Sheng et al., 2023; Zhang et al., 2023; Xia et al., 2024)
often underperform compared to full-rank finetuning (Bider-
man et al., 2024). ReLoRA also requires an initial full-rank
model warm-up for pretraining, which is costly and impracti-
cal. This is because the optimal weight matrices are not nec-
essarily low-rank, and reparameterization alters the gradient
training dynamics, failing to recover the original training be-
havior even when A and B are full-rank (Lialin et al., 2023).

Another class of memory efficient methods directly de-
sign efficient adaptive optimizers (Shazeer & Stern, 2018);
we look at one class of such optimizers called gradient
projection-based adaptive optimizers in this work. As de-
tailed in Algorithm 1, these algorithms compute projection
matrices Pt ∈ Rm×r to project the gradient matrix G into a
low dimensional Gc. The memory cost of the optimization
states which rely on the projected gradient statistics can be
significantly reduced. As using a fixed Pt throughout train-
ing limits the expressiveness of the model, recent research
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Algorithm 1 Memory Efficient Subspace Optimization With Adam
Optimizer. While existing methods consider dense projection
matrix P , we instead consider sparse projection matrices to enjoy
further computation and memory efficiency.

Input: Initial parameters w0 ∈ Rm×n with m ≤ n, learning rate
γ, update frequency T , rank r, projection function P (·), decay
rates β1, β2, gradient func∇L(·), scale factor α ∈ R.
Output: Optimized parameters wT

1: Initialize optimizer state:
2: t← 0
3: M0, V0 ← 0r×n, 0r×n ▷ Initialize moments
4: s0 ← initial random seed (optional)
5: Training procedure:
6: while not converged do
7: G← ∇L(wt) ▷ Compute full gradient
8: if t mod T = 0 then
9: st+1 ← new random seed (optional)

10: Pt+1 ← P (G, st+1) ▷ Update projection
11: else
12: st+1 ← st
13: Pt+1 ← Pt

14: end if
15: Gc ← P⊤

t+1G ▷ Compress gradient
16: Mt+1 ← β1Mt + (1− β1)Gc ▷ Update momentum
17: Vt+1 ← β2Vt + (1− β2)G

2
c ▷ Update variance

18: M̂ ←Mt+1/(1− βt+1
1 )

19: V̂ ← Vt+1/(1− βt+1
2 )

20: Gr ← αPt+1M̂/(
√

V̂ + ϵ) ▷ Decompress gradient
21: wt+1 ← wt − γGr ▷ Update parameters
22: t← t+ 1
23: end while

proposes periodically updating Pt every T iterations. Dif-
ferent methods vary in the choice of P : FLORA (Hao et al.,
2024) resamples each entry of Pt from i.i.d. N (0, 1/r),
while GALORE (Zhao et al., 2024) applies singular value
decomposition (SVD) to the full parameter gradient G every
T -th iteration and selects P as the top-r left singular vectors.
The selected Pt in these works, however, are dense matrices
which introduces additional memory and compute overhead
to apply. In our work, we explore structured sparse ma-
trices as an alternative choice for Pt and demonstrate its
advantage in computation, communication, and memory
efficiency. Our main contributions include:

1. We introduce GRASS, a novel method that enables full
parameter training of LLMs with structurally sparse
gradients. By leveraging sparse projection matrices,
GRASS significantly reduces memory consumption
and communication overhead compared to existing
projection-based optimization techniques. We theo-
retically motivate and empirically analyze effective
sampling distributions for constructing GRASS.

2. We conduct extensive experiments on both pre-
training and finetuning tasks, demonstrating that
GRASS achieves comparable performance to existing
projection-based methods at the same iteration com-

plexity. GRASS also exhibits minimal performance
degradation (<0.1 perplexity gap) compared to full-
rank training on the 1B LlaMA model while achieving
a 2.5× reduction in memory footprint.

3. We present an efficient PyTorch implementation of
GRASS optimized for modern hardware, incorporating
implementation tricks to enhance training throughput,
stability, and scalability. For pretraining a 1B LlaMA
model, GRASS achieves a 25% throughput increase
on a single GPU and up to a 2× throughput improve-
ment on 8 GPUs over the Full model and GALORE.
Furthermore, GRASS’s low memory footprint enables
training a 13B LlaMA model with rank 768 on a single
40GB A100 GPU, a feat that existing projection based
optimization methods cannot achieve.

2. Methodology
2.1. GRASS: Subspace Optimization with Structured

Sparse Gradients

In GRASS, we consider the projection matrix Pt ∈ Rm×r

defined in Algorithm 1 to be a column sparse matrix,
where every column pj has at most one non-zero entry:
∥pj∥0 ≤ 1,∀j ∈ [r]. Since Pt can have at most r nonzero
rows, the subspace optimization problem is constrained to a
coordinate-aligned low rank subspace. Therefore, updates
with a sparse Pt matrix can be interpreted as performing
generalized coordinate descent modifying only the selected
rows of the weight matrix w.

Formally, each column pj of the sparse projection matrix
Pt is constructed during the Update Projection step as:
pj = eσ(j)ρj for j ∈ [r]. Here ei ∈ Rm denotes the
one-hot vector whose i-th coordinate is 1. σ : [r] → [m] is
a selection function which maps each of the r selections to
the selected row index in {1, . . . ,m}, and ρj is a real val-
ued constant which scales the j-th column’s one-hot vector.
One way to construct the σ and ρ is through random sam-
pling. Theorem 2.1 below provides a way to construct the
parameterized sampling distribution to minimize variance:

Theorem 2.1 (Optimal Unbiased Projection Sampling Ma-
trix from Multinomial Distribution). Given a general gra-
dient matrix G ∈ Rm×n, let each selection index σ(j)
(∀j ∈ [r]) be sampled with replacement (i.i.d.) from the
multinomial (categorical) distribution with the probability
of sampling index i ∈ [m] given by pi ∈ [0, 1]. If we cor-
respondingly let ρj := 1√

rpσ(j)
, then the induced random

projection matrix P whose column is pj = eσ(j)ρj gives an
unbiased gradient estimate PP⊤G with E[PP⊤G] = G.
In addition, among all the parameterized multinomial dis-
tributions of p, the one that is proportional to the row norm
of G with pi =

∥Gi∥2∑m
k=1 ∥Gk∥2

minimizes the total variance of

the gradient estimate PP⊤G. Proof in Appendix A.
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Method Memory FLOPs Comm

Weights Opt Grad Projection, opt, w update Update Pt

Full mn 2mn mn mnb+mn+ Cmn 0 mn
LoRA mn+mr + nr 2mr + 2nr mr + nr mbn+ 2rmn+ C(rm+ rn) + rn+ rm 0 mr + nr
ReLoRA mn+mr + nr 2mr + 2nr mr + nr mbn+ 2rmn+ C(rm+ rn) + rn+ rm mnr +mn mr + nr
FLORA mn mr + 2nr mn mbn+ 2rmn+mn+ Crn mr mn
GALORE mn mr + 2nr mn mbn+ 2rmn+mn+ Crn mnmin(n,m) mn
GRASS mn 2r + 2nr nr rbn+ 3rn+ Crn mn+m+ r nr

Table 1: Summary of Memory Requirements, Gradient Communication Volume, and FLOPs Analysis for Various Methods. We report
cost to construct gradients, update optimizer states and update weight w ∈ Rm×n. b is token batch size, C cost of optimizer operations
per parameter, G ∈ Rm×n, Pt ∈ Rm×r . Detailed breakdown in Appendix C.

Theorem 2.1 suggests that the distribution D should be
derived from the row norms of G. As we freeze the
projection matrix for T iterations in GRASS, we are
interested in accurately capturing the low-rank subspace
of G. In particular, we use the squared row norms of G
since their interpretation as approximate leverage scores
ensures that the low-rank subspace of G is preserved upon
projection, with an additive error, with high probability (See
Appendix B for a proof). Based on this additional insight,
we investigate the following distributions in this work:

• Multinomial Distribution: Indices are sampled with or
without replacement based on pk ∝ ∥Gk∥2 where Gk is
the k-th row of G. When sampling without replacement
ρi =

1√
rpσ(i)

, while ρi = 1 otherwise.
• Top-k Distribution: Top-k indices corresponding to the

rows of G with largest row-norms are chosen and ρi = 1.
• Uniform Distribution: Each index has an equal prob-

ability of being chosen, and explored with and without
replacement. When sampling with replacement, the nor-
malization constant is set to ρi =

1√
r

, while ρi = 1 when
sampling without replacement.

The unbiased methods (sampling with replacement) are
scaled so that E[PPT ] = I , while the biased methods (Top-
k, sampling without replacement) are unscaled. We find
that the biased sampling methods perform better than the
unbiased methods. Pt is applied to the project the smaller
dimension of G to achieve the best memory-performance
tradeoff (Zhao et al., 2024).

2.2. Benefits of GRASS

In Table 1, we see that GRASS consumes less memory,
FLOPs and communication than other methods. Addition-
ally, GRASS preserves the sparse structure of the gradients
and can be even more beneficial in such applications.

FLOPs In GRASS, the projection operator P⊤
t ∈ Rr×m

matrix can be composed into the product of a diagonal scal-
ing matrix ρ ∈ Rr×r and a slicing operation S ∈ Rr×m,
which can be efficiently applied to G. The slicing matrix
S ∈ {0, 1}r×m selects r specific rows from G with Sij = 1
to select row j of G as the i-th row of SG. Unlike existing

works (Zhao et al., 2024; Hao et al., 2024), we integrate Pt

during the backward pass instead of within the optimizer,
thereby eliminating the need to construct or compute the full
gradient G ∈ Rm×n for every weight. Here, G can be repre-
sented as G = AB, where A ∈ Rm×b is the gradient of the
layer output, B ∈ Rb×n is the input activations, and b is the
token batch size. The application of the projection matrix as
ρ((SA)B) results in considerably fewer FLOPs compared
to dense matrix multiplication. Additionally, since PyTorch
tensors are stored in row-major order, slicing matrix rows
offers faster memory access. The cost of weight update
is also cheaper than a dense Pt, since only the rows corre-
sponding to the nonzero rows of Pt of the parameter matrix
w needs to be updated. Unlike GALORE, our method does
not require to compute SVD periodically when updating Pt.

Memory savings GRASS achieves significant memory
savings over Full training from the reduced dimensionality
of optimizer states. The savings over GALORE and FLORA
are from the gradient and projection matrices. GRASS does
not require saving or computing the full gradient G and can
operate with the reduced gradient Gc ∈ Rr×n unlike exist-
ing methods which require updating the entire dense w. The
projection matrix P per weight matrix also only requires sav-
ing linear indices and scaling factors which is 2r compared
to mr in GALORE and FLORA. GRASS also eliminates the
need for constructing full gradients like in LoRA during the
non-update steps (Dettmers et al., 2023) and avoids allo-
cating additional memory for intermediate matrix products
during projection and weight updates. During projection
update, no additional memory is consumed for SVD as in
GALORE. The memory savings in GRASS are orthogonal
to the layerwise trick (Lv et al., 2023; Zhao et al., 2024)
which is prohibitively expensive on multi-GPU, and can
slow throughput down by 9% on 1 GPU (Zhao et al., 2024).

Communication As our GRASS implementation does not
require constructing the full gradient, communication vol-
ume is also significantly lower than GALORE and FLORA.

2.3. Specific Implementation Details
Updating the Optimizer State. Updating the projection
matrix P in GRASS can lead to significant shifts in the
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selected rows of the parameter matrix W between iterations.
Since different rows of W may have distinct gradient
moment statistics, we reset the optimizer states to zero
during the update step. To further stabilize training after
such updates, we implement a learning rate warmup phase.
This combined approach effectively mitigates training
instabilities, particularly those observed in smaller models
during pretraining.

Distributed Training. Since GRASS updates the projec-
tion matrix during each worker’s backward pass in dis-
tributed training, synchronizing the selected indices across
workers is necessary. To minimize communication over-
head, we first compute the gradient G and then sketch it
by sampling r columns based on their norms, resulting in
a sketched matrix Gcomm ∈ Rm×r. An all-reduce opera-
tion is performed on Gcomm, ensuring all workers access
a consistent version of the sketch before sampling indices.
Furthermore, we implement custom modifications to pre-
vent PyTorch DDP (Paszke et al., 2019) from allocating
memory for full gradients in our GRASS implementation
(see Appendix D for details).

3. Experiments And Results
3.1. Pretraining Performance

Model size 60M 350M 1B

Full-Rank 36.97 18.71 18.12
GALORE 37.09 19.38 19.23
GRASS 37.24 19.49 19.04

r/dmodel 128 / 512 128 / 1024 256 / 2048
Tokens 1.0B 5.4B 8.8B

Table 2: Train perplexity of LLaMA models on the C4 subset
of Dolma. GRASS is competitive with GALORE, but with lower
memory footprint and higher training throughput.

Figure 1: Pretraining 1B LLaMA on 8.8B tokens of C4 with
GRASS, Full-rank and GALORE. (Left) Train perplexity vs seen
tokens. (Right) Train perplexity vs wall-clock time. GRASS
outperforms GALORE and shows < 0.01 perplexity gap with
Full-rank loss curve in wall-clock time.
We compare GRASS against full-rank training and GALORE
by pretraining LLaMA-based large language models on
the cleaned C4 subset of Dolma (Soldaini et al., 2024),
without data repetition over a sufficiently large amount of
data, across a diverse range of model sizes (60M, 350M,
1B). Like GALORE, we adopt a LLaMA-based architecture

with RMSNorm and SwiGLU activations (Touvron et al.,
2023; Shazeer, 2020; Zhang & Sennrich, 2019). For both
GALORE and GRASS, we fix the frequency T at 200 and
the scale factor α at 0.25, maintain a consistent rank r,
and project attention and feed-forward layers. All experi-
ments are conducted in BF16 with identical batch sizes, and
the learning rate is independently tuned for each method
(see Appendix E). As shown in Table 2, GRASS matches
GALORE in iteration complexity and approaches the full
model’s performance within a perplexity gap of less than
one even when r/dmodel = 8. In Figure 1, for the 1B model
we see that this gap disappears when we look at perplexity
vs. training time (as opposed to tokens seen) on a single
A100 GPU, where due to increased pretraining through-
put GRASS closely follows the Full loss curve with < 0.1
perplexity gap.

3.2. Finetuning Performance

We apply GRASS and other efficient methods to finetune the
pre-trained RoBERTA-Base model (Liu et al., 2019) on the
GLUE NLU benchmark (Wang et al., 2018). Each method
is implemented on the same transformer layers with a rank
of r = 8 and trained over 3 epochs with a sequence length
of 128. We tuned the learning rate and scale factor across
all methods, detailed in Appendix E. We see in Table 3, that
GRASS performs competitively with GALORE and LoRA,
even though GRASS exhibits a reduced memory footprint
and improved training throughput compared to these meth-
ods as we show in the next section. Among the GRASS
sampling strategies, TopK and Multinomial with no replace-
ment (Multi-NR) perform comparably to LoRA, whereas
Uniform sampling falls short.

3.3. Efficiency analysis

Throughput In Figure 3, we compare the pretraining
throughput (tokens/s) of GRASS and GALORE relative to
the Full model, across a range of model sizes, focusing on
both regular and projection update steps. We consistently
use a rank of r = 64 for both the attention and feedforward
layers, with a uniform local batch size across all methods,
sequence length 256, and a total batch size of 1024. Bench-
marking was conducted using a single 80GB A100 GPU
and an AMD EPYC 7763 64-Core Processor. Detailed hy-
perparameter settings are provided in Appendix E. We did
not employ activation checkpointing, memory offloading,
or optimizer state partitioning in our experiments.

Our analysis reveals that at a model size of 60M, the
throughput of GRASS and GALORE is lower than that
of the Full model, likely due to the overhead from the
custom backward pass implementation. However, at larger
model sizes (1B and 7B), throughput significantly surpasses
the Full model, with improvements of 26% and 33.8%
respectively, and comparative gains over GALORE of 27%
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Model COLA MNLI MRPC QNLI QQP RTE SST2 STSB WNLI Average

Full-rank 59.62 87.36 91.51 92.60 90.43 79.03 94.49 90.38 56.34 82.42

LoRA 58.36 86.80 90.09 92.49 89.43 75.09 94.49 90.22 56.34 81.48
GALORE 57.64 87.40 88.97 92.86 88.94 76.17 94.49 89.76 56.34 81.40
FLORA 59.65 86.65 89.82 92.09 88.61 76.34 94.27 90.06 56.34 81.53
GRASS (Topk) 59.16 86.92 89.60 92.42 88.65 76.37 94.15 90.13 56.34 81.53
GRASS (Multi-NR) 58.87 86.08 89.94 91.69 83.36 76.17 94.73 90.00 56.34 81.35
GRASS (Uni-NR) 49.66 85.70 78.01 90.94 87.56 57.76 93.35 84.86 56.34 76.02

Table 3: Evaluating Full-rank and memory-efficient optimization methods on the GLUE benchmark using RoBERTa-Base. GRASS
is competitive with LoRA and FLORA but with a lower memory footprint. Values in blue represent the top three results in each column.

Figure 2: Pretraining memory footprint for GRASS, GALORE, and Full across model sizes for a regular (non projection update step)
and r = 128. GRASS has a lower memory footprint across all model sizes and the reduction is greater at larger model sizes.

Figure 3: Normalized pretraining throughput at r = 64 for
GRASS, Full-rank, and GALORE relative to Full-rank. GRASS
throughput exceeds Full and GALORE throughput by > 25%.

and 26.7%. Importantly, the overhead from the projection
update step is minimal for GRASS, in contrast to GALORE,
which experiences considerable slowdowns due to SVD
costs. This throughput advantage for GALORE should only
increase if we increase the batch size over other methods,
since it has a lower memory footprint.

Further throughput comparisons by rank are detailed
in Appendix Figure 9, showing that GRASS achieves
maximum relative throughput gains at the lower rank of
r = 64, with diminishing returns both as rank increases or
model size decreases.

Memory In Figure 2, we benchmark the memory foot-
print of GRASS against Full and GALORE using a token
batch size of 256 and rank 128 across model sizes for a
regular (non projection update) step. We see that GRASS is

Figure 4: Communication Efficiency: Weak Scaling Throughput
Comparison for 3B LLaMA pretraining using GRASS, Full-rank,
and GALORE. GRASS shows 2× higher throughput over Full and
GALORE at 8 GPUs.

more memory efficient than both the Full model and GA-
LORE for pretraining due to the reduced cost of gradient
and optimizer (projection matrix) memory and that this im-
provement increases with model size. At 13B parameters,
GRASS uses 70% less memory than Full-rank and 45% less
than GALORE. Importantly, we find that the update step in
GRASS is also much more memory efficient than GALORE
which needs to convert the full gradient into float32 to per-
form SVD, as a result, GALORE cannot train a 13B model
on an 80GB A100 like GRASS. Appendix Figure 7 shows a
similar advantage for finetuning over LoRA at rank 64.

Communication In Figure 4, we benchmark the through-
put (tokens/sec) for weak scaling of 3B LlaMA in a multi-
GPU L40 node with peak all-reduce bandwidth 8.64 GB/s.
We use a token batch size of 4096 per worker (local batch
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size 16, sequence length 256) and find that communicat-
ing the projected gradients results in significantly higher
throughput in a multi-GPU setting over Full and GALORE.

3.4. Ablations

Sampling methods In Table 4, we compare various sam-
pling strategies for indices during the pretraining of a 60M
LlaMA model on 500M tokens from the RealNews sub-
set of C4 (Raffel et al., 2020). The Frozen Multinomial
method samples indices at iteration 0 and does not resample
in subsequent iterations. Sampling with and without replace-
ment are denoted as R and NR, respectively. Our findings
reveal that the NR versions of these strategies outperform
the R versions, and biased sampling strategies prove to be
more effective. Both Multinomial-NR and Top-k strategies
are competitive with the GALORE method. Notably, the
Uniform-NR strategy performs significantly better in pre-
training than finetuning, likely because the norm distribution
is closer to uniform at the start of pretraining.

Sampling Method Eval perp

Frozen Top-k 34.78
Uniform 32.46
Uniform-NR 31.06
Multinomial-R 31.85
Multinomial-NR 30.91
Top-k 30.88

GALORE 30.67
Full-rank 30.27

Table 4: Comparison of GRASS sampling methods on eval perplex-
ity for 60M LlaMA on the RealNews subset of C4. Best sampling
strategy bolded.

Coverage of indices In Figure 5, we plot the coverage
defined as the union of indices sampled over k iterations
divided by the total indices per layer. We plot the cover-
age for the 60M LlaMA model pretrained on the RealNews
subset of C4, at k = 15 iterations. Here the rank r = 128
and matrix dimension is 512 indicating that 97.66% is the
theoretical coverage for uniform sampling with replacement
(see Appendix J ). We find that all sampling methods exhibit
good coverage with the Multinomial-NR being close to uni-
form. Top-K and Multinomial oversample indices in certain
layers, suggesting potential areas for further investigation
into their utility in pruning strategies.

4. Conclusion And Future Work
In this work, we introduce GRASS, a novel optimization
technique to reduce the memory bottleneck associated with
training LLMs while providing additional computation ef-
ficiency gains. Specifically, GRASS utilizes sparse matri-
ces to project gradients into a low-dimensional subspace
to reduce the size of the optimizer states. As part of the

Figure 5: Per layer indices coverage (Distinct/Total) for the sam-
pling strategies across 100 pretraining iterations.

projection step, GRASS also avoids computing the full pa-
rameter’s gradient matrix, which as a result improves over
existing methods both in terms of computational efficiency
and gradient memory. Experimentally, these design choices
have directly translated to a significantly smaller memory
footprint, decreased communication volume, and enhanced
throughput during LLM training.

GRASS opens up exciting avenues for future research. Ex-
tending GRASS to explore various structured sparsity pat-
terns, beyond simple column sparsity, could further enhance
compression and throughput. Additionally, a more detailed
investigation of the relationship between GRASS’s rank pa-
rameter, training time, and performance could reveal op-
portunities to not only match but potentially surpass the
performance of full-gradient training in certain scenarios.
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A. Proof of Theorem 2.1
We introduce a gradient approximation method that utilizes a multinomial sampling strategy to construct an unbiased
gradient estimator. A general gradient G can be expressed through an atomic decomposition:

G =

n∑
i=1

λiai,

where each ai is a unit-norm atom, and λi are the corresponding coefficients. This decomposition can take forms such as
element-wise decomposition and singular value decomposition (SVD) for matrices.

Let P be a sampling matrix for the rows, where each row Pi has a single non-zero entry. The matrix P is formed such that
the sampling index for each row Pi is chosen based on multinomial sampling using the probability vector p. Thus, PPT is a
diagonal matrix.

To approximate G under strict memory constraints, we use multinomial sampling to select exactly k rows. The approximate
gradient Gr is then defined as:

Gr = PPTG =

k∑
i=1

PiP
T
i G =

n∑
i=1

λiti
αi

ai,

where ai is an atom with only a single non-zero row of G and normalized to have ∥ai∥ = 1 with a suitable λi, ti is drawn
from the multinomial distribution Multinomial(p, k), where p is a probability vector of length n and k is the number of
draws. The normalization factor αi = kpi ensures that E[Gr] = G. We can show that the expected value of Gr equals the
original gradient G. Since E[ti] = kpi, the expectation of Gr becomes:

E[Gr] = E

[
n∑

i=1

λiti
αi

ai

]
=

n∑
i=1

λiai = G.

Similarly

E[∥Gr∥2] =
n∑

i=1

λ2
i

(
1− pi
kpi

+ 1

)
− 1

k

n∑
i=1

n∑
j ̸=i

λiλja
T
i aj .

Optimization Problem: The objective is to minimize the variance of Gr while ensuring that exactly k components are
selected. This leads to the following optimization problem:

min
p

n∑
i=1

λ2
i

pi
subject to

n∑
i=1

pi = 1, 0 < pi ≤ 1 for all i.

The Lagrangian L for this constrained optimization is:

L(p, µ, γ) =

n∑
i=1

λ2
i

pi
+ µ

(
n∑

i=1

pi − 1

)
−

n∑
i=1

γipi,

where µ is the Lagrange multiplier for the equality constraint, and γi are the multipliers for the inequality constraints
ensuring pi ≥ 0.

The Karush-Kuhn-Tucker (KKT) conditions for this problem are:

1. Stationarity: ∂L
∂pi

= −λ2
i

p2
i
+ µ− γi = 0

2. Primal Feasibility:
∑n

i=1 pi = 1, 0 < pi ≤ 1
3. Dual Feasibility: γi ≥ 0
4. Complementary Slackness: γipi = 0

Assuming pi > 0 and γi = 0 due to complementary slackness, the stationarity condition simplifies to µ =
λ2
i

p2
i

. Therefore,

pi =
√

λ2
i

µ .
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Applying the primal feasibility condition:

n∑
i=1

√
λ2
i

µ
= 1 ⇒ µ =

(
n∑

i=1

|λi|

)2

Thus, the optimal probabilities pi are:

pi =
|λi|∑n
j=1 |λj |

Thus pi is proportional to the magnitude of λi, normalized by the sum of the magnitudes of all λ values, which satisfies∑n
i=1 pi = 1 and minimizes the objective function.

B. Row Norms and Subspace Embedding Property
The following proof is from Magdon-Ismail (2010) which can be roughly stated as sampling with row-norms preserves
subspaces up to additive error with high probability.

Theorem B.1 (Subspace Preservation). Let A ∈ Rm×d1 with rows at. Define a sampling matrix Q ∈ Rm×m using
row-sampling probabilities:

pt ≥
∥at∥2

∥A∥2F
.

If r ≥ 4pA ln
2d1
δ

β2 , then with probability at least 1− δ, it follows that:

∥A⊤A− Ã⊤Ã∥ ≤ ϵ∥A∥2.

Proof. Considering the singular value decompositions (SVDs) of A and B, we have:

∥A⊤B−A⊤Q⊤QB∥ = ∥VASAU
⊤
AUBSBV

⊤
B −VASAU

⊤
AQ

⊤QUBSBV
⊤
B∥.

We may now directly apply Lemma B.2, with respect to the appropriate sampling probabilities. One can verify that the
sampling probabilities are proportional to the sum of the rescaled squared norms of the rows of A and B.

Lemma B.2 (Sampling in Orthogonal Spaces). Let W ∈ Rm×d1 and V ∈ Rm×d2 be orthogonal matrices, and let S1 and
S2 be positive diagonal matrices in Rd1×d1 and Rd2×d2 , respectively. Consider row sampling probabilities:

pt ≥
1

∥S1∥2F
W⊤S2

1Wt +
1

∥S2∥2F
V⊤S2

2Vt.

If r ≥
(
8(p1 + p2)/β

2
)
ln 2(d1+d2)

δ , then with probability at least 1− δ, it holds that:

∥S1W
⊤VS2 − S1W

⊤Q⊤QVS2∥ ≤ ϵ∥S1∥∥S2∥.

C. Memory, FLOPs and Communication Volume
In this section we report the Memory, FLOPs and Communication Volume for the various methods corresponding to a single
m× n weight w and its gradient G.

Notes:

• Let G = ABT , where A is an m× b matrix, B is an n× b matrix, where m ≤ n and b is the token batch size usually
much larger than m,n.

• Let P be an m× r projection matrix.
• Here we assume A and B are constructed ahead of time and we are interested in the memory, floating-point operations,

and communication volume to construct the gradients G, update the optimizer state, and updating weights w = PPTG.
• C is the number of optimizer operations per gradient element.

10



GRASS: Compute Efficient Low-Memory LLM Training with Structured Sparse Gradients

• All numbers are computed based on the original papers.
• For GRASS, PT = RS where R is a r × r diagonal scaling matrix, S is a sparse r ×m row selection matrix. Both
R,S can be applied efficiently.

We compare various optimization strategies: Full, GALORE, LoRA, ReLoRA, FLORA, and GRASS (our approach). These
strategies are analyzed based on memory requirements, communication volume, and floating-point operations (FLOPs).

FLOPs per Worker

Method Regular Step Cost Projection Update Cost

Full Compute AB (mnb), optimizer state update (Cmn),
reprojection update (mn).

0

GALORE Compute AB (mbn), compute PTAB (rmn), optimizer
state update (C · rn), reprojection update (rmn), parameter
update (mn).

SVD cost (mnmin(n,m))

LoRA Compute AB (mbn), compute gradient for LoRA weights
(2rmn), optimizer update (C(rm+ rn)), weight update
(rn+ rm).

0

ReLoRA Compute AB (mbn), compute gradient for LoRA weights
(2rmn), optimizer update (C(rm+ rn)), weight update
(rn+ rm).

Merging weights
(mnr +mn)

FLORA Compute AB (mbn), compute PAB (rmn), optimizer
state update (C · rn), reprojection update (rmn), parameter
update (mn).

Sampling Gaussians (mr)

GRASS (Ours) Compute (PTA)B (rbn+ rn), optimizer state update
(C · rn), reprojection and weight update (2rn).

Computing row norms and
sampling matrix∗

(mn+m+ r)

Table 5: Detailed FLOPs Analysis for Various Methods. ∗This is the complexity of Alias Method for multinomial sampling. Top-k
complexity would be m log r using a heap.

Memory Requirements

Method Weights Optimizer State Gradient Memory

Full mn 2mn mn
GALORE mn mr + 2nr mn
LoRA mn+mr + nr 2mr + 2nr mr + nr
ReLoRA mn+mr + nr 2mr + 2nr mr + nr
FLORA mn mr + 2nr mn
GRASS mn 2r + 2nr nr

Table 6: Memory Requirements for Various Methods. Note that memory cost for the update step is intermittent.

Communication Volume

Method Comm Volume

Full mn
GALORE mn∗

LoRA mr + nr
ReLoRA mr + nr
FLORA mn∗

GRASS nr

Table 7: Gradient Communication Volume for Various Optimizers. ∗ Note that GALORE and FLORA communication volume can be
reduced to nr using a communication hook.
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D. Distributed Data Parallel Implementation

Algorithm 2 Distributed GRASS Training with PyTorch DDP

Input: Initial weights W0 ∈ Rm×n, total iterations T , subspace rank r, world size p, learning rate scale α, update frequency K

Output: Optimized weights W (T )

1: Initialize distributed environment (e.g., NCCL)
2: W ←W0 ▷ Set weights as non-trainable
3: Introduce virtual trainable parameter vparams ∈ R1×1, linked to each weight matrix
4: vparams.wgrad← ∅ ▷ Initialize storage for compressed gradients
5: Initialize a DDP model with custom gradient hooks
6: for t = 0 to T − 1 do
7: Compute local loss L for the current mini-batch
8: output← Forward pass using W
9: if t ≡ 0 (mod K) then

10: Compute backward pass to obtain full gradient G
11: // Sketch gradient using column norms and select top-r
12: Gsketch ← ToprColumns(G, r) ▷ Using Algorithm 3
13: // All-reduce and update the sketched matrix
14: Gsketch ← AllReduceMean(Gsketch)
15: Update projection matrix P using Gsketch, compute and store compressed gradient GC in vparams.grad
16: else
17: Compute backward pass, capturing compressed gradients GC in vparams.grad
18: Perform all-reduce on vparams.grad across all workers
19: end if
20: Update W using vparams.grad
21: end for
22: return W
23:

Algorithm 3 ToprColumns Function

1: Input: Gradient matrix grad, subspace rank r
2: Output: Sketched gradient matrix with top-r column norms
3: indices← argsort(|colnorms(grad)|)[−r :] ▷ Identify indices of top-r column norms
4: return grad[:, indices]

To optimize memory usage in PyTorch’s Distributed Data Parallel (DDP) framework (Paszke et al., 2019), we implement
strategic modifications to our model architecture ti improve distributed training efficiency (see Algorithm 2). We designate
the weights in the linear layers as non-trainable to circumvent the default memory allocation for full-sized gradient matrices.
Instead, we introduce virtual, trainable parameters— occupying merely 1 byte each—linked to each weight matrix. These
virtual parameters hold the compressed gradient of the corresponding weight matrix in the wgrad attribute. This method
uses DDP’s asynchronous all-reduce capabilities while preventing unnecessary memory allocation.

E. Experiments: Hyperparameters
Pretraining We introduce details of the LLaMA architecture and hyperparameters used for pre-training. Table 8 shows
the dimensions of LLaMA models across model sizes.

Params Hidden Intermediate Heads Layers Steps Data amount

60M 512 1376 8 8 3.8K 1.0B
350M 1024 2736 16 24 20.6K 5.4B
1B 2048 5461 24 32 33.6K 8.8B
7B 4096 11008 32 32 - -
13B 5120 13824 40 40 - -

Table 8: Model dimensions for the various LLaMA models. We report the training steps and data amount in tokens for the 60M, 350M,
and 1B models.
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For pretraining all models we use a max sequence length of 256 for all models, with a batch size of 262144 tokens. For all
baseline experiments, we adopt learning rate warmup for the first 1000 steps, and use cosine annealing for the learning rate
schedule, decaying to 10% of the initial learning rate.

GRASS, GALORE and FLORA use a projection matrix update frequency of 200. GRASS uses an additional warmup at
each update for 200 steps when resetting optimizer states for the 60M and 350M training jobs, while the 1B job did not
require resetting optimizer states. Both 60M and 350M GRASS pretraining jobs uses Top-K sampling while the 1B job uses
Multinomial sampling without replacement.

For all methods on each size of models, we tune learning rate from a set of {0.01, 0.005, 0.001, 0.0005, 0.0001}, and the
best learning rate is chosen based on the validation perplexity (or train perplexity when a validation does not exist as in
Dolma). All models used a scale factor α = 0.25. We found that GALORE was sensitive to hyperparameters and exhibited
loss spikes and divergence at the prescribed learning rates in the paper (0.01) particularly at the 1B scale, and as a result we
had to train using reduced learning rates where we did not observe such spikes. The learning rates of GRASS and GaloRE
were higher than the full model which showed instability at values greater than 0.001. Unless otherwise specified we average
losses using a window of 15 steps.

Finetuning We finetune the pre-trained RoBERTa-Base model on the GLUE benchmark using the pretrained model on
Hugging Face. We report accuracy for SST-2, MNLI, QNLI and RTE. For CoLA and STS-B, we use Matthew’s Correlation
and Pearson-Spearman Correlation as the metrics, respectively. For MRPC and QQP, we report the average of F1 score and
accuracy. we report the best performance out of three seeds due to the instability of the method. We train all models for 3
epochs using a max sequence length of 128, and a batch size of 32. We report the best performance at the end of an epoch.
We used a projection update frequency of 100 for all methods. We tuned the learning rate and scale factor for GALORE,
FLORA, LoRA and GRASS from {1e− 5, 2e− 5, 3e− 5, 4e− 5, 5e− 5} and scale factors {1, 2, 4, 8, 16}. We apply the
projection matrices or LoRA to target modules “query", “value", “key", “intermediate.dense" and “output.dense" and use a
rank r = 8.

Table 9 shows the hyperparameters used for finetuning RoBERTa-Base for GRASS.

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Batch Size 32 32 32 32 32 32 32 32
# Epochs 3 3 3 3 3 3 3 3
Learning Rate 2E-05 2E-05 3E-05 2E-05 2E-05 2E-05 2E-05 2E-05
Rank Config. r = 8 r = 8 r = 8 r = 8 r = 8 r = 8 r = 8 r = 8
α 2 2 2 2 2 2 2 2
Max Seq. Len. 128 128 128 128 128 128 128 128

Table 9: Hyperparameters of finetuning RoBERTa base for GRASS.

Throughput benchmarking We benchmark throughput on a single 80GB A100 GPU using a total batch size of 1024
and a sequence length of 256 across models. We use the following per device batch sizes: 60M (256), 350M (64), 1B (16),
7B (16), 13B (1). The 7B model runs into OOM when training with Full rank so the estimated throughput is only for the
forward and backward pass without an optimizer update (overestimate). GRASS can train a 13B model on the 80GB GPU
unlike GALORE and Full.

Communication benchmarking For the weak scaling throughput experiments we use a local batch size of 16, a total
batch size of 16× num_workers and a projection rank of 256 across all methods and model sizes.

F. Experiments: Pretraining Memory
For estimating memory for pretraining we use a token batch size of 256 and a rank r = 128 across models. We do not use
the layerwise trick in Zhao et al. (2024) since this is currently inefficient during distributed training. As the GPU memory
usage for a specific component is hard to measure directly, we estimate the memory usage of the weight parameters and
optimizer states for each method on different model sizes. The estimation is based on the number of original parameters, the
model dimensions, and the number of low-rank parameters, all trained in BF16 format.
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As an example, to estimate the memory requirements for the 13B model, we compute memory consumption across different
components: activations, parameters, gradients, and optimizer states.

Parameter Definitions Let the following variables define our 13B model’s configuration:

• L: sequence length (256)
• B: batch size (1)
• D: model hidden size (5120)
• N : number of layers (40)
• H: number of attention heads (40)
• V : vocabulary size (32000)
• r: rank (128)

Layer Normalization = B · L ·D · 2
Embedding Elements = B · L ·D

QKV = Embedding Elements · 2
QKT = 2 · Embedding Elements · 2

Softmax = B ·H · L2 · 2

PV =
Softmax

2
+ Embedding Elements · 2

Out Projection = Embedding Elements · 2
Attention Block Activation = Layer Normalization + QKV + QKT + Softmax + PV + Out Projection

FF1 = Embedding Elements · 2
GELU = Embedding Elements · 4 · 2

FF2 = Embedding Elements · 4 · 2
Feed-Forward Activation = Layer Normalization + FF1 + GELU + FF2

Final Layer Activation = Embedding Elements · 2
Model Activations = Layer Normalization + (N · (Attention Block Activation + Feed-Forward Activation))

+ Final Layer Activation
Cross-Entropy Loss = B · L · V · 2 +B · L · V · 4
Total Cross-Entropy = Cross-Entropy Loss

Total Activation Memory = Model Activations + Total Cross-Entropy

Figure 6: Activation memory estimation for the different baselines.

F.1. Activation Memory Calculation

The activation memory calculation is conducted by accounting for each significant computation within the model layers,
including attention mechanisms and feed-forward networks. Each term in Figure 6 considers the BF16 precision used for
storing the activations.

F.2. Memory Calculation for Parameters and Gradients

Memory for parameters and gradients is estimated as follows:

• Total number of parameters across all layers: Computed by summing up all parameter tensors within the model.
• Parameter memory in bytes: Total number of parameters multiplied by 2 (assuming BF16 precision).
• Gradient memory: For Full-rank and GALORE this equals the parameter memory if all parameters are trainable and

gradients are stored in BF16. For GRASS this equals the projected gradient memory corresponding to the trainable
parameters.
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F.3. Optimizer State Memory Calculation

• The Adam optimizer in pure BF16 precision stores the first and second moment estimates for each parameter, requiring
2mn floats for a weight matrix with dimensions m× n.

• MeSO methods, including GRASS, reduce optimizer state memory by projecting gradients into a lower-dimensional
subspace. GRASS, using sparse projections, needs 2r+ 2nr floats to store the first and second moment estimates of the
compressed gradient (GC ∈ Rr×n) and the sparse projection matrix (P ∈ Rm×r). GALORE and FLORA, which use
dense projection matrices, require mr + 2nr floats for the optimizer states.

F.4. Total Memory Estimation

The total memory required for the model during training is calculated by summing the memory for parameters, gradients,
activations, and optimizer states, along with any additional memory overhead as per the adaptation method used.

For GRASS applied to the 13B model, the memory costs are detailed as follows:

• Total Parameters: Approximately 13 Billion
• Activation Memory: 1936.25 MB
• Parameter Memory: 24825.79 MB
• Gradient Memory: 1230.79 MB
• Optimizer State Memory: 2461.72 MB
• Extra Memory (for largest parameter tensor): 312.50 MB
• Total Memory: 30767.05 MB

G. Experiment: Finetuning Memory

Figure 7: LLaMA finetuning memory footprint of GRASS and LoRA for rank r = 64, sequence length 256, batch size 1.

Figure 8: LLaMA finetuning memory footprint of GRASS and LoRA for rank r = 64, sequence length 512, batch size 4.

In Figure 7 and Figure 8, we compare the finetuning memory footprint of GRASS and LoRA when finetuning a LLaMA
model at various scales (350M, 1B, 7B) using token batch sizes of 256 and 2048 (4×512), respectively. Both methods are
applied to all linear layers with a fixed rank of 64. Our analysis reveals that at larger batch sizes, activations predominantly
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contribute to the memory footprint, resulting in comparable memory usage between GRASS and LoRA.

We estimate memory requirements for finetuning using the same aproach from Section F but only accounting for the
gradients and optimizer states corresponding to the trainable (instead of all the) parameters. Furthermore, LoRA requires
storing in addition to X (the input to the layer), the activations corresponding to the low-rank input XA to compute
the gradient of B, where A and B are the low-rank adapters (Zhang et al., 2023). This results in an additional memory
requirement for LoRA of 2BLr bytes per linear layer.

H. Experiments: Throughput
Figure 9 compares the normalized throughput (using the Full model) of GRASS and GALORE across 60M, 350M, and 1B
model sizes. We find that the throughput advantage of GRASS over GALORE and Full is > 25% at for the 1B model at rank
64. The throughput approaches that of the full model, as model size decreases or projection rank increases.

Figure 9: Rank vs Normalized Throughput for GRASS and GALORE across 60M, 350M, and 1B model sizes

I. Experiments: Ablations
Rank sweep In Figure 10, we perform rank ablations on GRASS for pretraining a 350M LlaMA model on the C4 subset of
Dolma. We find that between 256 and rank 512 increasing the rank only slightly affects the rate of convergence. Additionally
as GRASS allows full-parameter training, we find that training a model at rank 128 for 80k steps is much more effective
than training a model at rank 512 for 40k steps. GRASS like GALORE (Zhao et al., 2024) can therefore be used to trade-off
memory and computational cost where in a memory-constrained setting one could pick a lower rank and train longer.

Comparison with other baselines In Table 10, we report the validation perplexity of various other baselines on a LlaMA
1B pretraining task on the RealNews subset of C4. The attention and feedforward layers in all models are projected to a
rank of 256, or use low rank adapters of this rank. We find that the training perplexities are lower while the validation
perplexities are higher than in Table 4 for the 60M model due to overfitting on the RealNews dataset. All models use an
update frequency of 200, and we tune the learning rate and scale factor α per model.

In addition to GRASS and GALORE, we also include the ReLoRA baseline (Lialin et al., 2023) without any full-rank training
warmup, the FLORA baseline where P has entries drawn from N (0, 1/r), and the CountSketch baseline where PT is a
CountSketch matrix with r rows with one nonzero entry from {±1} per column. The CountSketch projection has been
applied to embedding layer gradients which are sparse in prior work (Spring et al., 2019), but shows larger variance and
poorer convergence rates for dense gradients.
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Figure 10: GRASS rank ablations for 350M LLaMA training. We report perplexity on Dolma C4 across various ranks and training steps.
Loss is averaged over a window of 50 steps.

Train Perp Eval Perp

Full-Rank 33.48 31.41
GRASS 33.52 32.17
GALORE 33.68 32.10
ReLoRA 34.30 34.19
FLORA 35.91 35.62
CountSketch 36.97 36.93

Table 10: Comparison of various baselines using 1B LLama model validation perplexity. All models are pretrained on 500M tokens of
the RealNews subset of C4. r/dmodel is 256/2048. Best baseline is bolded.

We see that GRASS is competitive with GALORE, while ReLoRA, FLORA, and CountSketch fall short. One way to
interpret this is in terms of variance of the gradient sketches— GRASS being data dependent and based on leverage scores or
row importance norms can better approximate the gradient low rank subspace than a data agnostic sketch like FLORA or
CountSketch (Woodruff, 2014).

Coverage In Figure 11 and Figure 12 we plot the aggregated sampled indices over 15 iterations of 60M LlaMA pretraining
on the RealNews subset of C4. We see that while Multinomial with no replacement and Top-k attain similar performance in
terms of perplexity the sampled indices can be quire different, with top-k tending to oversample indices in particular layers.

J. Analyzing Coverage
We analyze the coverage of indices for a uniform sampling process with replacement. Here 128 indices (rank r) are randomly
chosen from a total of 512 possible indices (model dimension d), with this process being repeated across 15 iterations
(number of iterations k).

The probability P (i) that a specific index i is not chosen in one individual selection from 512 indices is P (i) = 1− 1
512

This reflects the independent probability for each draw within an iteration. Given that each iteration comprises 128
selections, the probability P128(i) that index i is not picked during one full iteration is: P128(i) =

(
1− 1

512

)128
Extending

this to 15 iterations, the probability P15×128(i) that index i is never selected during the entire sampling process is:

P15×128(i) =
((

1− 1
512

)128)15
Thus, the probability that an index is selected at least once throughout the 15 iterations is

given by: Pselected(i) = 1− P15×128(i) Thus 97.66% of the indices are expected to be sampled at least once over the course
of 15 iterations.
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Figure 11: Multinomial Sampling without Replacement: Heatmap
of indices sampled for the different layers across 15 iterations of
LlaMA 60M C4 pretraining.

Figure 12: Top-K Sampling: Heatmap of indices sampled for the
different layers across 15 iterations of LlaMA 60M C4 pretraining.
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