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Abstract

Neural networks are known to produce unexpected results on inputs that are far1

from the training distribution. One approach to tackle this problem is to detect the2

samples on which the trained network can not answer reliably. ODIN is a recently3

proposed method for out-of-distribution detection that does not modify the trained4

network and achieves good performance for various image classification tasks. In5

this paper we adapt ODIN for sentence classification and word tagging tasks. We6

show that the scores produced by ODIN can be used as a confidence measure for7

the predictions on both in-distribution and out-of-distribution datasets.8

1 Introduction9

Neural networks have been shown to perform well on various computer vision and natural language10

processing tasks. The performance of neural networks is usually measured on the test sets of the11

corresponding datasets, which does not show how the networks would perform on the samples from12

other distributions.13

Complex neural models that perform well on ImageNet dataset produce nonsensical labels for images14

far from its training and test sets (see [Nguyen et al., 2015] for examples on unrecognizable images15

and Figure 1 from [Shafaei et al., 2018] for more realistic images). Similar examples can be found16

for neural models for NLP tasks. Table 1 shows the results of a simple neural POS tagger on different17

sentences.18

Table 1: The output of a neural POS tagger trained on English-LinES dataset on samples from three
different datasets.

UD English-LinES (Accuracy = 14.3%, PbThreshold(s) = 0.99598, ODIN(s) = 0.05904)
Sentence Identifying filters that are currently in effect
Ground truth VERB NOUN PRON VERB ADV ADP NOUN
Predicted labels ADJ NOUN PRON VERB ADV ADP NOUN
Probabilities 0.97 1.00 1.00 1.00 1.00 1.00 1.00

UD English-EWT (Accuracy = 42.9%, PbThreshold(s) = 0.89237, ODIN(s) = 0.05899)
Sentence Try googling it for more info :)
Ground truth VERB VERB PRON ADP ADJ NOUN SYM
Predicted labels PRON VERB PRON ADP ADV ADV PUNCT
Probabilities 0.58 1.00 1.00 0.99 1.00 0.70 0.98

UD Dutch-Alpino (Accuracy = 57.1%, PbThreshold(s) = 0.99699, ODIN(s) = 0.05906)
Sentence Daarbij is een Macedonische militair gedood .
Ground truth ADV AUX DET ADJ NOUN VERB PUNCT
Predicted labels NOUN AUX DET ADJ ADJ NOUN PUNCT
Probabilities 1.00 1.00 0.98 1.00 1.00 1.00 1.00
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This limitation of neural networks makes it hard to deploy them in critical applications. One of the19

possible directions to solve the problem is to measure the confidence of the prediction and do not20

output the prediction if the confidence is low.21

Hendrycks and Gimpel [2017] showed that for various neural models, correctly classified examples22

tend to have higher maximum softmax probabilities than incorrectly classified examples and out-of-23

distribution examples. They performed several experiments on deep convolutional networks trained24

on CIFAR-10 and CIFAR-100 and show that by looking at the maximum predicted probability one25

can classify images from CIFAR-10 and SUN test sets with 95% AUROC.26

Liang et al. [2018] improved upon this baseline by using two relatively simple but efficient tricks:27

(a) by adding temperature to the softmax calculation, (b) by applying adversarial-like perturbation28

on the inputs. The method is called ODIN. Additionally, the authors showed that the performance29

of ODIN strongly depends on the actual distance between the test distributions. For example, if the30

in-distribution and out-of-distribution datasets are non-intersecting subsets of CIFAR-100, then ODIN31

doesn’t work well.32

Our contributions are the following:33

1. We adapt ODIN for two natural language processing tasks: sentiment analysis and part-of-34

speech tagging. We show that the two tricks used in ODIN are helpful for sentiment analysis,35

but we could not get improvement from input perturbations for POS tagging.36

2. We choose the in-distribution (ID) and out-of-distribution (OOD) datasets in a way that the37

labels used in the datasets are the same. This choice allows us to measure the accuracy of38

the model on the test set of the OOD dataset. We show that the scores produced by ODIN are39

relatively higher for the correctly classified examples of the OOD dataset, even when the40

datasets are close and ODIN fails to properly separate them. For part-of-speech tagging, we41

show that the scores produced by ODIN have higher rank correlation with the accuracy of42

the neural network predictions than the simpler baseline on both ID and OOD datasets.43

3. We demonstrate that although character-level embeddings improve POS tagging accuracy,44

they make it harder to distinguish ID and OOD test sets for the two OOD detection methods.45

Additionally, the scores produced by these methods have lower rank correlation with the46

prediction accuracy for all datasets we have tried compared to the models without character-47

level embeddings.48

2 Related Work49

There are various ways to approach out-of-distribution detection problem for high dimensional50

inputs. Shafaei et al. [2018] made a detailed comparison of different approaches on basic image51

classification tasks. Hendrycks and Gimpel [2017] set a baseline for these methods by looking at the52

maximum softmax probabilities (PbThreshold1). Liang et al. [2018] improved upon this baseline53

using temperature rescaling and perturbations on inputs (ODIN). Gal and Ghahramani [2016] showed54

that Bayesian interpretation of dropout allows to use it to measure the uncertainty of neural network’s55

prediction (MC-Dropout). Lakshminarayanan et al. [2017] showed that an ensemble of multiple deep56

networks can be used to capture uncertainty in a non-Bayesian way. It is important to note that these57

methods require access to the datasets and to the neural networks trained on them. PbThreshold58

and ODIN can be applied to any pretrained neural network. MC-Dropout is applicable to any network59

with a dropout layer (notably, ResNets do not use dropout), and Lakshminarayanan et al. [2017]60

requires an ensemble of neural networks.61

Another class of approaches for OOD detection are based on generative models. Shafaei et al. [2018]62

evaluated methods based on autoencoders (AEThreshold) and PixelCNN++ [Salimans et al., 2017],63

and showed that for basic image classification tasks ODIN outperforms them (in terms of OOD64

detection accuracy). Recently, Choi and Jang [2018] used an ensemble of generative models to65

beat ODIN on OOD detection for MNIST and CIFAR-10 datasets (in terms of AUROC). Note that66

these generative approaches are model-independent, they do not depend on the neural network that67

performs the actual classification.68

1We use the codenames of the algorithms from [Shafaei et al., 2018]
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Table 2: The datasets used in our experiments along with the performance of the state-of-the-art
models on these datasets.

Labels Number of sentences Accuracy of SOTA models

Train Dev. Test

Yelp Reviews 5 650000 0 50000 70.02 [Howard and Ruder, 2018]
SST-5 5 8544 1101 2210 54.70 [Peters et al., 2018]
en-EWT 17 12543 2002 2077 95.94 [Lim et al., 2018]
en-LinES 17 2738 912 914 97.06 [Lim et al., 2018]
en-GUM 17 2914 707 769 96.44 [Lim et al., 2018]
nl-Alpino 17 12269 718 596 96.90 [Straka, 2018]

Most of the research on OOD detection is focused on image classification tasks. Notable exceptions69

are [Hendrycks and Gimpel, 2017] and [Shalev et al., 2018]. Applications of more advanced methods70

to NLP tasks remain largely unexplored.71

Additionally, all experiments described above are performed on ID and OOD datasets with different72

sets of labels. These experiments are good enough to measure the performance of OOD detection. On73

the other hand, when the distributions of the two datasets have a significant overlap, OOD detection74

methods fail to produce high accuracy scores. This phenomenon is demonstrated in Section 4.5 of75

[Liang et al., 2018]. In the context of measuring the confidence of neural network predictions it is76

fine to misclassify OOD samples as ID unless the network does not produce incorrect answers for the77

misclassified examples. In order to measure the accuracy of neural models on misclassified OOD78

samples we choose the ID and OOD datasets to have the same set of labels.79

3 Experiments80

3.1 Datasets81

We performed experiments for two tasks: sentiment analysis and part-of-speech tagging. For82

sentiment analysis we used the five-class Yelp reviews dataset from [Zhang et al., 2015] and Stanford83

Sentiment Treebank (SST) [Socher et al., 2013]. SST has labels for every sentence and for every84

phrase produced from the dependency trees of the sentences. The labels are real numbers between85

0 and 1. We created a five-class version of the labels by splitting [0,1] into five equal intervals.86

For part-of-speech tagging we used two English and one more Dutch treebanks from Universal87

Dependencies v2.2 [Zeman et al., 2018a] used in the CoNLL Shared Task 2018 [Zeman et al., 2018b].88

The majority of the sentences in English-LinES treebank are from literature. English-EWT dataset is89

larger and is more diverse. The datasets are described in Table 22.90

3.2 Neural models91

In contrast to Liang et al. [2018], we did not use state-of-the-art neural networks. Instead, we trained92

simple recurrent models for both tasks. For simplicity, we did not use pretrained word embeddings.93

Similar to [Joulin et al., 2017], we used hashing trick to map the words to hashes and embed the94

hashes using D-dimensional vectors. We randomly initialized the embedding matrix and made it95

trainable.96

Let s be a sentence from one of the datasets, and w1, . . . , wM be the words. The embedding of97

the m-th word of the sentence will be xm = Wehash(wm). We apply bidirectional LSTM on the98

embeddings:
−→
hm,
←−
hm = BiLSTM(xm). For sentiment analysis we apply a dense layer on the99

concatenation of the last states of the two LSTMs: fsc(s) = W [
−→
hM ,
←−
h1] + b. The loss function100

is a cross-entropy: loss(s) = ce(S(fsc(s), 1)), where Si(z, T ) =
exp(zi/T )∑C

j=1 exp(zj/T )
is the modified101

softmax function, T is the temperature scaling parameter, and C is the number of classes.102

2State-of-the-art results for sentiment analysis datasets are retrieved from http://nlpprogress.com
on 27.10.2018. UD POS tagging results are from http://universaldependencies.org/conll18/
results-upos.html.
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Table 3: Out-of-distribution detection performance on part-of-speech tagging tasks. Performance
is reported in AUROC scores (higher is better). Char. column indicates whether character-level
embeddings were used in the model. ε, T column lists the best hyperparameters for ODIN found using
grid search on validation sets. All scores are in percents.

ID OOD Char. Accuracy PbThreshold ODIN

ID OOD AUROC ε, T AUROC

Yelp SST-5 No 59.6 24.5 79.9 0.011, 2K 90.68
Mean / Med. / Tok. Mean / Med. / Tok.

en-LinES en-EWT Yes 89.6 75.9 66.8 70.7 57.1 0, 5K 75.1 71.3 58.2
en-LinES en-EWT No 87.8 73.4 72.4 73.9 57.9 0, 10K 77.0 74.0 59.1
en-LinES nl-Alpino Yes 89.6 31.7 95.2 97.4 76.5 0, 2K 99.1 98.3 79.8
en-LinES nl-Alpino No 87.8 28.6 97.5 97.4 77.4 0, 5 98.2 97.9 81.7

For POS tagging we apply a dense layer on every hidden state: fst(wm) =W ([
−→
hm,
←−
hm]) + b. The103

loss function is the average of word-level cross entropies loss(s) = 1
M

∑
ce(S(fst(wm), 1)).104

3.3 Out-of-distribution detection method105

We use ODIN to detect out-of-distribution samples and compare it with the PbThreshold baseline. For106

every sentence s we compute the scores for each of the methods: PbThreshold(s) = maxS(fsc(s))107

and ODIN(s) = maxS(fsc(x̃), T ), where x̃ = x+ ε sign(∇xSŷ(x))), where ŷ = argmaxS(x, 1).108

Here ε (perturbation magnitude) and T (temperature) are hyperparameters, which are chosen based109

on the OOD detection performance on the development sets. For POS tagging, the gradient in the110

ODIN score formula is applied to the mean of word-level probability maximums. The final ODIN111

score of the sentence is some aggregate of the word-level ODIN scores. We tried mean and median112

as the aggregate function. Additionally, we tried to do out-of-distribution detection at the level of113

tokens, which is expected to be more challenging, as the vocabularies of the datasets have a significant114

overlap.115

Hendrycks and Gimpel [2017] and Liang et al. [2018] report multiple scores for OOD detection116

performance, while Shafaei et al. [2018] reports only accuracy. We follow [Choi and Jang, 2018]117

and choose AUROC, as it does not require to tune a threshold. We report the scores on the test sets.118

Appendix H of [Liang et al., 2018] demonstrates that the choice of the OOD distribution is not critical119

for the hyperparameter tuning.120

3.4 Evaluating confidence scores121

For every sentence we produce the scores PbThreshold(s) and ODIN(s) and attempt to interpret122

them as confidence scores for the prediction of the neural network. To measure how well these scores123

can perform as a confidence measure, we calculate Spearman’s rank correlation coefficient between124

the scores and the accuracy numbers.125

4 Results and Discussions126

Table 3 shows the results for OOD detection and Table 4 shows the rank correlation coefficients for127

PbThreshold and ODIN methods.128

The role of the temperature scaling and input perturbations All our experiments confirm the129

observation from [Liang et al., 2018] that temperature scaling improves out-of-distribution detection.130

The effect of higher temperatures saturates when T reaches thousands (Figure 1). The positive effect131

of the perturbations on the inputs is visible for sentiment analysis, but not for POS tagging. We132

have noticed that when we try to perform OOD detection at the level of tokens, small perturbations133

(ε = 0.005) bring tiny improvements to the performance (by less than 1 AUROC percent point). But134

for sentence level OOD detection we get worse AUROC scores for ε > 0 (or even when ε < 0) for135

both mean and median averaging.136
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Figure 1: AUROC scores for ODIN out-of-distribution detection method for different values of
hyperparameters. The left image is for sentiment analysis (Yelp dataset as ID, SST-5 as OOD), the
right one is for POS tagging (English-LinES as ID, Dutch-Alpino as OOD, the neural model uses
character-level embeddings).

Sentence-level scores In POS tagging experiments, median of the token-level scores is usually137

a better score for sentence-level OOD detection than the mean when T = 1, while for higher138

temperatures mean is consistenly better. As expected, token-level OOD detection doesn’t work well139

when both ID and OOD datasets are in English (the vocabularies overlap significantly).140

Ranking of the sentences ODIN is clearly better than PbThreshold according to Spearman’s rank141

correlation coefficient for POS tagging tasks (Table 4). For a neural network trained on en-LinES,142

ODIN scores are a good indicator how the network will perform on OOD samples. It is a much143

better indicator for the closer English dataset than the further Dutch dataset. On the other hand,144

when we consider the union of ID and OOD datasets, it works better for the union of en-LinES and145

nl-Alpino datasets.146

To visualize what these correlation coefficients imply in practice, we split the samples into 20 equal147

buckets according to the scores, and compute accuracy on each of the buckets. We expect to see that148

the accuracy numbers are monotonically increasing, and that the accuracy numbers on different test149

sets are close to each other for each bucket. Figure 2 shows that ODIN performs slightly better than150

PbThreshold.151

For sentiment analysis, we could not get improvement in rank correlation with ODIN, although152

the performance of OOD detection is improved. The reasons of this phenomenon are yet to be153

investigated.154

The role of character-level embeddings Character-level embeddings improve the accuracy of the155

neural POS tagger for both ID and OOD datasets (consistent with the results reported by Reimers156

and Gurevych [2017]). On the other hand, they make it harder for PbThreshold and ODIN methods157

to separate ID and OOD datasets. Additionally, the scores from the models with character-level158

embeddings have lower rank correlation with the prediction accuracy. This implies, that the usage of159

character-level embeddings can be a tradeoff between the accuracy of the model and the reliability of160

the confidence scores.161

Table 4: Spearman’s ranking correlation coefficients between sample-level accuracies and the scores
produced by PbThreshold and ODIN (higher is better). For each method we report the coefficient
for ID, OOD test sets and the union of both.

ID OOD Char. PbThreshold ODIN

ID OOD Both ID OOD Both

en-LinES nl-EWT Yes 0.365 0.571 0.565 0.441 0.641 0.636
en-LinES nl-EWT No 0.408 0.632 0.616 0.476 0.684 0.676
en-LinES nl-Alpino Yes 0.365 0.265 0.793 0.441 0.308 0.828
en-LinES nl-Alpino No 0.408 0.312 0.803 0.476 0.445 0.833
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Figure 2: Accuracy of the POS tagger trained on en-LinES (without character-level embeddings) on
20 equal buckets of the union of three test sets. The buckets are computed according to the scores
produced by each method (PbThreshold and ODIN). ε and T for ODIN are determined based on the
development sets of en-LinES (ID) and en-EWT (OOD). The size of a circle is proportional to the
number of samples that fall into that bucket. Ideally, accuracy scores for the i-th bucket should be
higher than for the (i− 1)-th bucket, and y coordinates of the three circles for each bucket should be
the same.

5 Conclusions and Future Work162

In this work we have adapted ODIN out-of-distribution detection method on sentence classification163

and sequence tagging tasks. We showed that as an OOD detector it performs consistently better than164

for the PbThreshold baseline. Additionally, we attempted to quantify how well the scores produced165

by these methods can be used as confidence scores for the predictions of neural models.166

There are many other OOD detection methods that have yet to be tested on NLP tasks. On the other167

hand, our analysis notably doesn’t cover sequence-to-sequence tasks. We have shown that the usage168

of character-level embeddings makes OOD detection harder for both PbThreshold and ODIN. The169

role of the pretrained word vectors, the size of the embeddings, the choice of the neural architecture170

(recurrent, convolutional or Transformer-like) on OOD detection performance is left for future work.171
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