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Abstract

Encoding models of functional magnetic resonance imaging (fMRI) data attempt to
learn a forward mapping that relates stimuli to the corresponding brain activation.
Computational tractability usually forces current encoding as well as decoding
solutions to typically consider only a small subset of voxels from the actual 3D
volume of activation. Further, while brain decoding has received wider attention,
there have been only a few attempts at constructing encoding solutions in the extant
neuroimaging literature. In this paper, we present a deep autoencoder consisting
of convolutional neural networks in tandem with long short-term memory (CNN-
LSTM) model. The model is trained on fMRI slice sequences and predicts the
entire brain volume rather than a small subset of voxels from the information in
stimuli (text and image). We argue that the resulting solution avoids the problem of
devising encoding models based on a rule-based selection of informative voxels and
the concomitant issue of wide spatial variability of such voxels across participants.
The perturbation experiments indicate that the proposed deep encoder indeed learns
to predict brain activations with high spatial accuracy. On the challenging universal
decoder imaging datasets (Pereira et al.,|2018)), our model yielded encouraging
results.

1 Introduction

Apart from clinical use for diagnosing a variety of clinical conditions such as depression, Alzheimer’s
dementia etc., functional magnetic resonance imaging (fMRI) studies are conducted extensively in
neuroscience research to understand how knowledge is represented in the brain. Since the work
of Mitchell et al.| (2008), there has been an increasing interest in using computational models to
interpret neural activity using either the decoding (reconstructing stimulus information from the
brain activation) or encoding models (stimulus features are used to model brain activity) (Naselaris
et al., 2011} Mesgarani et al., [2014; D1 Liberto et al.| 2015). An encoding model is important
for neuroscientists who can use the model predictions to investigate and test hypotheses about the
transformation from stimulus to brain response in patients. In the context of fMRI, the voxel response
is a proxy for brain activity and so a fMRI encoding model predicts voxel responses.

In this paper, we present an autoencoding model that predicts the complete brain activity associated
with multi-modal forms of concrete nouns, which include words and images. The theory underlying
this computational model is that when the autoencoder is trained on sufficiently large corpus, the
model can transform the stimulus S which is either a word or image (or both) into corresponding
3D brain encoding E. To meet the demand for larger training corpus for deep learning models, we
split the 3D volume into several 2D slices. We present experimental evidence showing that the best
encoding model is achieved when it is presented with multi-modal stimulus information rather than
words or images alone.

*The first two authors made equal contribution.

Workshop on Modeling and Decision-Making in the Spatiotemporal Domain, 32nd Conference on Neural
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Figure 1: The sequence of slices show (i) actual brain activation for the word “Apartment” after
converting voxel activation per subject into 70 slices (top row), (ii) activation prediction by model
trained on multi-modal embeddings (middle row), and (iii) activation prediction by model trained on
GloVe embedding (bottom row).

Related work:  Recent approaches of modeling fMRI data use training dataset to estimate a
separate model for each recorded voxel. Together, these models describe how information of the
sensory stimulus or visual function is encoded in the measured brain activity (Naselaris et al. [201T).
Some methods rely on the parametric regression that assumes that the response is linearly related
to stimulus features after fixed parametric nonlinear transformation(s) (Mitchell et al., [2008)). Word
embedding representations were used as input to build encoding systems (Oota et al.| 2018};|Abnar|
et al, 2018)). Earlier methods either used a set of selective voxels from the dataset (Anderson et al.
2017; [Pereira et al.| 2018)) or handpicked region-based voxels to model brain encoding (Oota et al.
2018)) and decoding analysis. However, it is very difficult to estimate a model with minimal training
data, especially when there are hundreds of stimulus features that need to be mapped to thousands of
voxels. In the next section, we discuss the disadvantages of such methods and our enhancements to
overcome these issues.

2 fMRI Encoding: Our Approach

Voxels and Semantic slices: A voxel is a three-dimensional rectangular cuboid and smaller voxels
contain fewer neurons on average and hence have less signal than larger voxels. The three-dimensional
volume of the subject’s brain comprises several voxels arranged sequentially and can be unfolded
into a single line (raster coding). Earlier studies used a subset of voxels for learning encoding models
using multiple regression to obtain maximum likelihood estimates of the voxel values. That is,
predict a set of voxel values that minimizes the sum of squared error in reconstructing the fMRI

images (Mitchell et al., 2008}, [Tain & Huth| 2018).

Though earlier experiments were conducted with minimal subsets of voxels, behavioral and long-term
studies of subjects may require generating the entire 3D volume when the subject is tested with
various stimuli 2016)). This creates a necessity for encoding models that are capable of
generating a complete 3D volume of the subject’s brain based on past fMRI history. We attempted to
perform the task of predicting complete 3D volume by utilizing all voxels in the training data
2018), converting them to sequences of 2D slices. We argue that the slices provide enough
semantic encoding information to train a spatio-sequential model, since we observed a gradual change
in activation in regions across multiple slices, as seen in Figure[I] This approach also mitigates the
problem of lack of large training data to train deep learning models.
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Figure 2: Proposed architecture of the CNN-LSTM autoencoder model used for our experiments.

Architecture: We used a CNN-LSTM based autoencoder model, whose architecture is inspired
from [Vinyals et al (2015). Figure [2]describes a basic overview, where CNNs are used for fMRI
slice encoding and decoding and LSTMs to learn temporal/semantic features across slices. Both
the encoder and decoder have CNN layers with 64, 128 and 256 filters, respectively. Two layers
of LSTMs (256, 128) were used as latent layers. The multi-modal features of text and image, pass
through two independent layers of LSTM before concatenating to the outputs of CNN encoder. The
model uses fMRI slice inputs and “one step ahead” slices as outputs during training. During testing,
only the multi-modal input (image, word embedding, and start slice) is given to initiate the cascade
of predictions. The model uses its own output at time step ¢ as input in time step £+1.

Multi-modal Semantic models: In Multi-modal semantics (Bruni et al., 2014), a model takes a
corpus of images with relevant word vectors as input and finds a correspondence between the two
modalities. For the linguistic input, we used GloVe (Pennington et al.} 2014)) - a popular context-
predicting text-based semantic model to obtain a 300-dimensional word embedding which represents
the concept word. Image representation comprising 2048 features is obtained by using the output of
the fully connected layer of Xception (Simonyan & Zisserman, [2014) model pre-trained on ImageNet
dataset 2009). We retrieved 5 images per word from the image stimuli corpus for the
180 concepts (pictures) of the experiment 1 in[Pereira et al.| (2018)’s dataset. We concatenate image
features and the corresponding word vector of stimulus word to give as input to LSTM and a blank
slice (start slice as in Figure[2) as input to the CNN model.

3 Experiments

Dataset: We used data from paradigm 1 of fMRI experiment 1 (Pereira et al.| 2018)), where authors
conducted experiments with multiple subjects by showing various forms of stimulus (sentence,
word+picture, or both). Paradigm 1 contains three experiments. (i) In the first experiment, the target
word was presented in the context of a sentence that made the relevant meaning salient. (ii) In the
second, the target word was presented with a picture that depicted some aspect(s) of the relevant
meaning. (iii) In the third, the target word was presented in a multi-modal form where both word
and image were used. This fMRI dataset was collected from a total of 16 participants. For each
participant in paradigm 1, a total set of 180 words were used as stimuli in multi-modal form (word,
picture). The dataset contains fMRI captured as 128 x 88 voxel windows arranged as 85 slices, per
subject per stimulus. Out of 85 slices, we ignored the initial 9 slices and the last 7 slices since no
activation was observed in any of the brain regions.

Results and Discussion: ~ Using the approach discussed in Section[2] we trained separate encoding
models per experiment for each subject. The encoding performance was evaluated by training and
testing models using different subsets of the 180 concepts in a 5-fold cross-validation scheme.
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Figure 3: Similarity structure between ground truth and predicted brain activations. (a) correlation
between predicted brain responses, to show that predictions are unique (left) (b) correlation between
actual and predicted brain response with Multi-modal stimulus (center), and (c) correlation between
actual and predicted brain response with GloVe embedding stimulus alone (right)

The encoder models were trained until Multi-modal [Xception Image| GloVe (Text)

the epochs stopped using early stopping |Subjects|Prec. Rec. F1 [Prec. Rec. F1 |Prec.Rec. Fl1

method, when validation loss did not ~—y=70830.98 0.86/0.81 0.98 0.85 [0.83 0.97 0.86
change for more than 15 epochs. We | o) 1078 0.990.85/0.72 0.97 0.82 [0.75 0.99 0.83
observed an average validation loss of | 3y 1 g6 0.990.90/0.85 0.98 0.89 |0.86 0.98 0.90
0.0007 for word based models, 0.0006 | 4y |81 0.960.85/0.82 0.96 0.86 |0.81 0.95 0.85
for image based models and 0.0003 vali- | (5) {085 0.970.86/0.81 0.96 0.85 |0.81 0.97 0.86
dation loss for multi-modal model across

all tested subjects. In order to assess Table 1: Performance results for individual subjects are

the similarity between the actual and
predicted brain slices, we compared the
slice-wise voxel coordinates and inten-
sity of the voxels. We measured the pre-
cision, recall, and F1-scores using voxel intensities and location of voxel coordinates between the
predicted and actual slice data. Table[T|depicts the performance comparison between text, image
and multi-modal stimulus models. Although the precision, recall, F1-scores of all modalities are
nearly similar, from Figure[I} we observe that the similarities between ground truth and cortical brain
responses from multi-modal based encoding model are better with a near-perfect recall. Some of the
voxel intensity values predicted by the GloVe embedding model are very negligible in certain brain
regions, which cause no activation. Figure [3]shows the similarity (correlation) matrix between actual
and predicted brain response with multi-modal stimuli and word embedding stimulus. The correlation
matrix is calculated by considering both the actual and predicted voxels in every brain slice. We
considered voxels with high activations, that is, those with intensity values greater than a threshold
(= mean + standard deviation) and discarded the remaining voxels with low activation values. Here,
we found reliable correlations between fMRI responses from trained model and the actual brain
responses for all the test words in the case of the model trained with multi-modal information as
compared to word embedding information alone. We verified the robustness of the learned encoding
model with perturbation experiments where random input is given as stimulus to the trained model.
The model yielded brain responses that had minimal correlation with any of the semantic encodings
for the 180 concepts.

shown separately for cases when multi-modal, Xception
vector (last FC layer), and GloVe embedding information
was utilized.

4 Conclusion

In this work, we proposed an encoder model which can generate a complete 3D model of the brain
using multi-modal input, by training the model on subject’s brain response for words in the training
set. Different from previous work, our method predicts the complete set of voxels, as given in the
dataset rather than selected few voxels per subject. The key distinction of our work is the utilization
of machine translation inspired encoder-decoder model to generate complete brain image.
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