
Workshop track - ICLR 2018

IMPROVING ADAM OPTIMIZER

Ange Tato & Roger Nkambou
Department of Computer Science
Université du Québec à Montréal
Montral, Qubec, Canada
{nyamen tato.ange adrienne,nkambou.roger}@uqam.ca

ABSTRACT

We present a modified version of the Adam (Adaptive moment estimation) opti-
mization algorithm, able to improve the speed of convergence and finds a better
minimum for the loss function com-pared to the original algorithm. The proposed
solution borrows some ideas from the momentum based optimizer and the exponen-
tial decay technique. The current step size made by Adam to update the parameters
is modify in such a way that the new step takes in consideration the direction
of the gradient and the previous steps update. We conducted several tests with
deep Convolutional Neural Networks in the MNIST data. The results showed that
AAdam(Accelerated Adam) outperforms Adam and NAdam (Nesterov ac-celerated
Adam). The preliminary evidence suggests that making such a change improves
the speed of convergence and the quality of the learned models.

1 INTRODUCTION

There are several ways to improve learning in deep learning neural networks such as improving the
architecture (for example by making it deeper), finding the optimal parameters, playing with the
data representation, choosing the best optimization algorithm etc. To date, there are no guidelines
for setting up an optimal deep learning architecture. In this paper, we will be interested in a way to
optimize the learning process in deep learning architecture using optimization algorithms based on
the gradient descent method. The main goal is to get a better solution as quickly as possible.

The goal of an optimizer is to minimize an objective function (generally called the loss), which is
intuitively the difference between the predicted data and the expected values. The minimization
consists of finding the set of parameters of the architecture that give best results in the targeted tasks
such as classification, prediction or clustering. There are several optimization algorithms in the
literature Ruder (2016). The majority of these algorithms are first order methods and are based on the
gradient descent method. Gradient descent techniques,e.g. back-propagation of error, are usually
used to find a matrix of weights that meets error criteria. Adam (Adaptive Moment estimation)
Kingma & Ba (2014) is probably the most used optimizer algorithm in the literature Goodfellow et al.
(2016) Isola et al. (2017) Xu et al. (2015). In this paper, we propose a version of this algorithm called
AAdam (Accelerated Adam) that improves the convergence of the algorithm in deep architectures
(especially convolutional neural networks) and gives them a better ability to generalize on new data.
AAdam compares favorably to other optimization methods. We conducted several tests with simple
feedfoward neural nets and deep Convolutional Neural Networks in the MNIST 1 dataset. The results
showed that AAdam outperforms not only Adam, but also its improved version known as NAdam
(Nesterov Accelerated Adam) Dozat (2016). The preliminary evidence suggests that such a change
improves the speed of convergence and the quality of the learned models.

2 RELATED WORK: ADAM AND NADAM

Learning in neural networks is done by minimizing an error function also called the loss function.
This function therefore measures the difference between the expected outputs and calculated on
the complete sample. An error close to 0 implies that the network correctly classifies the data on

1http://yann.lecun.com/exdb/mnist/

1



Workshop track - ICLR 2018

which it has learned. However, recovering the global minimum becomes harder as the network size
increases and this is in practice, irrelevant as global minimum often leads to overfitting Choromanska
et al. (2015). Thus, the goal is to minimize the cost but by making sure to not overfit the model on
training data. The ideal being to lead to a network able to well classifying the data used for training
as well as the data they have never seen before (validation data). AdamKingma & Ba (2014) is a
first order gradient based algorithm of stochastic objective functions, based on adaptive estimates of
lower-order moments. The first moment normalized by the second moment gives the direction of the
update. Adam updates are directly estimated using a running average of first and second moment
of the gradient. It computes adaptive learning rates for each parameters. In addition to storing an
exponentially decaying average of past squared gradients vt like AdaDelta and RMSprop, Adam
also keeps an exponentially decaying average of past gradients mt, similar to momentum. NAdam
Dozat (2016) is a modifyed version of ADAM momentum that takes advantage of insights from
NAG(Nesterov accelerated gradient).

3 AADAM: ACCELERATED ADAM OPTIMIZER

The main idea behind AAdam is to speed up the progress along dimensions in which gradient
consistently point in the same direction. In addition to storing an exponentially decaying average
of past squared gradients vt and an exponentially decaying average of past gradients mt like Adam,
AAdam also keeps an exponentially decaying average of past updates. Thus, the current update not
only depends on the previous gradients, it also depends on the previous values of the update ∆θ . We
keep track of past parameters updates with an exponential decay where β1 (approximatively 0.9, the
same β1 in Adam) is the constant controlling the decay. It adds a small value d to the current update
of Adam. That value (d) is multiplied by the sign of the current gradient. The new update rule is
summarized as follows :

θn+1 = θn − (η
β1√
v̂n + ε

m̂n + d)

d = ∆θn−1 ∗ sign(∇θnJ(θ)) ∗ (1− β1)

m̂n, v̂n = Adam Parameters
∆θn−1 = Last update step.

Intuition behind AAdam : If we consider that our objective is to bring a ball (parameters of our
model) to a lowest elevation of a road (cost function), what we do is to adapt the speed of the ball by
trying to sending it more in the direction of the gradient. That also implies decreasing the step size
taken by the ball on the opposite direction. This is done by adding a small portion of past updates to
the current updates of Adam. The update is a vector that has the direction of the gradient. In case
the gradient changes direction, the size of the step taken by AAdam will be less larger than the one
taken by Adam step. This new update accelerate the move of the ball towards the minimum (local or
global depending on where we started). Since the step added to the step proposed by Adam is not
very big, one can hope that if Adam finds a better minimum, AAdam will find it too but more quickly.
It should not be forgotten that finding a better minimum does not imply a better ability to generalize,
on the contrary, finding a better minimum could lead to overfitting.

4 EXPERIMENTS

In order to empirically evaluate the proposed modification, we investigated deep convolutional
neural networks. Using the MNIST dataset, we demonstrate promising results. We use the same
parameter initialization when comparing AAdam with Adam and Nadam. The CNN has two layers
of convolution and two fully connected layers. The best learning rate found for those optimizers was
0.002, β1 was set to 0.9 and β2 was set to 0.999 as recommended for Adam Kingma & Ba (2014). No
pre-processing was applied to training images. All optimizers were trained with a mini-batch size of
250. All weights were initialized from a values truncated normal distribution with standard deviation
0.1. The biases values were initialized to 0.1. We used the tensorflow library which already proposes
the implementation of Adam optimizer. Since we did not find any available implementation of
NAdam optimizer, we developed it by our selves using python and on the basis of the implementation

2



Workshop track - ICLR 2018

of Adam available in tensorflow. We made the code of AAdam and NAdam available and on our
github repository 2.

5 RESULTS AND DISCUSSIONS

We conducted several tests where we changed the CNN architecture (deep to non-deep) and the
different parameters; AAdam gave better results in the majority of cases. We chose to show only a
part of these results in the graphs. Figure 1-1 shows the evolution of the loss value on the training data.
The results in this figure show that the three optimizers have practically the same performance. They
yield similar convergence. We slightly cropped the figure, but at the five thousandth step, AAdam
gives the lowest value of the loss which was 2.208 ∗ 10−4 compared to respectively 3.019 ∗ 10−4 and
2.921 ∗ 10−4 for Adam and NAdam. NAdam is nevertheless the most faster. As we can see, AAdam
is between Adam and NAdam most of the time. In figure 1-2, AAdam outperforms the other two
optimizers on validation data by a relatively large margin. The empirical performance of AAdam is
consistent with the intuition behind the method. We can see that AAdam has a better generalization
capacity than the other two algorithms. Between the step 3000 and 4000, when the loss value of
NAdam and Adam is increasing, the loss value of AAdam is decreasing. This is a good behavior
since the objective is to minimize the cost on the validation data as much as we can. We can also
notice that, even if NAdam has a better convergence compared to other two on the training set, it has
the worst behaves on the validation set. The best accuracy so far we had on the 10000 images test
data of MNIST for ADAM was 99.12, for NAdam 99.08 and for AAdam 99.28.

In summary, AAdam achieves the best results especially on the validation set. Even if it requires
more memory, AAdam clearly outperforms Adam and NAdam in reducing training and validation
loss. AAdam also gives better accuracy than the others.

Figure 1: 1) The variation of the loss value in the training data. AAdam is between Adam and NAdam
most of the time. 2) The variation of the loss value in the test data. AAdam outperforms Adam and
NAdam with same settings. The validation data consist of 10000 images.

6 CONCLUSION

In this paper, we introduced a simple and intuitive method to modify Adam optimizer and to make
it more efficient. This work takes Adam algorithm one step further, and improves its convergence
and its generalization without noticeably increasing complexity. The only drawback of the proposed
solution is that it takes more memory than the standard approach. In one hand, if one care much
about ’very’ fast convergence and less on the generalization ability of the final model, one should
choose NAdam. On the other hand, if one care about fast convergence (not as much as with NAdam)
but wants a more robust model able to generalize well on new cases, one should choose AAdam.

2https://github.com/angetato/Optimizers-for-Tensorflow

3



Workshop track - ICLR 2018

REFERENCES

Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun. The
loss surfaces of multilayer networks. In Artificial Intelligence and Statistics, pp. 192–204, 2015.

Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT press Cambridge, 2016.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. arXiv preprint, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich
Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual
attention. In International Conference on Machine Learning, pp. 2048–2057, 2015.

4


	Introduction
	Related Work: Adam and NAdam
	AAdam: Accelerated Adam optimizer
	Experiments
	Results and discussions
	Conclusion

