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ABSTRACT

Imitation Learning is the task of mimicking the behavior of an expert player in
a Reinforcement Learning (RL) Environment to enhance the training of a fresh
agent (called novice) beginning from scratch. Most of the Reinforcement Learning
environments are stochastic in nature, i.e., the state sequences that an agent may
encounter usually follow a Markov Decision Process (MDP). This makes the
task of mimicking difficult as it is very unlikely that a new agent may encounter
same or similar state sequences as an expert. Prior research in Imitation Learning
proposes various ways to learn a mapping between the states encountered and the
respective actions taken by the expert while mostly being agnostic to the order in
which these were performed. Most of these methods need considerable number
of states-action pairs to achieve good results. We propose a simple alternative to
Imitation Learning by appending the novice’s action space with the frequent short
action sequences that the expert has taken. This simple modification, surprisingly
improves the exploration and significantly outperforms alternative approaches like
Dataset Aggregation. We experiment with several popular Atari games and show
significant and consistent growth in the score that the new agents achieve using just
a few expert action sequences.

1 INTRODUCTION

Traditional Reinforcement Learning algorithms have a common trait; train from scratch by giving the
agent large number of states and responses to actions taken by the agent in a given task/environment.
The agent then figures out a way to improve its performance on the task after sufficient time is given.
On the contrary, human beings have substantial prior information about the task being performed.
For example, in a video game, humans do not take random actions even when we play for the first
time because we have some context about the game and goals. In reasonable time, we become adept
at playing the particular game. This motivates the idea of Imitation Learning ((Abbeel & Ng, 2004;
Argall et al., 2009; Pomerleau, 1989)); the task of augmenting a novice agent (just beginning to train)
with the information from an expert. In a typical Imitation Learning set up, the policy of expert is
given as an oracle and the novice agent tries to map the states encountered to the actions suggested
by the expert.

1.1 CHALLENGES OF IMITATION LEARNING

Prior work in Imitation Learning demands both state and action information of the expert. Often,
this requirement becomes unreasonable for applications like learning to play Atari games (Mnih
et al., 2013) because having access to all video frames and the respective actions taken by an expert
is infeasible and causes memory overheads. For example, in the case of Atari games, each input
frame is 210*160*3 dimensional matrix and the length of an episode of a game could range in few
thousands. If we keep accumulating such episodes, we quickly run out of memory as we have several
thousands of images and corresponding actions. Also, popular methods need careful and task specific
feature engineering (Duan et al., 2017) which is far from desirable. Ideally, we would like to learn
from minimal demonstrations of an expert.
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Our main contribution is the observation and corroboration of the fact that appending the action space
of a novice agent with the most frequent action sequences of an expert helps achieve considerably
better exploration, and hence better learning, in less time. Our biggest strength is that, we only need
very few reliable trajectories of actions that an expert has taken (about 20 action sequences for ATARI
games as we see later in section4; we don’t even need the states). This causes negligible memory
overhead and we show consistent improvement in scores achieved on popular Atari games. One may
draw parallels between our approach and ‘Options Framework’ for finding extended actions(Sutton
et al., 1999; Fox et al., 2017). ‘Options’ is a hierarchical framework that has multi-level actions like a
tree and an agent chooses a path. Our proposal differs from this in the fact that we are not discovering
best ‘Options’, rather we are giving the agent some information about potentially good ‘Options’ to
explore better.

We would like to emphasize that our improvement is time-wise unlike many other approaches that
compare episode-wise. Improved performance on episodes with a considerable time overhead for
each episode can give a misleading and impractical impression of superiority.

2 PREVIOUS WORK

One of the prime works in Imitation Learning is ‘Dataset Aggregation (DAgger)’(Ross et al., 2011).
It proposes to use a blend of policies of the expert π∗ and new training agent π̂i. At iteration i, we act
according to the policy

πi = βiπ
∗ + (1− βi)π̂i (1)

We collect a sequence of T states and perform the actions given by eqn. 1. At each of these states,
the expert policy may give different action to what eqn. 1 suggests. The principle is to minimize
this difference between the policies of the oracle and the current agent. DAgger proposes a simple
supervised classifier to minimize this ‘error’ in prediction.

As mentioned earlier, the novice only has access to the policy of the expert as an oracle. This may
lead to a wide gap between the policy functions of both the trainee and trainer/expert. For example,
if the network architecture of the trainee is too small compared to the expert (whose network is not
accessible to the trainee), the intrinsic learning capacity of the trainee is limited. If we force it to
learn the map between states and expert suggested actions, the learning may converge poorly.

(He et al., 2012) proposes to alleviate this by demonstrating actions that are not necessarily the best
ones but good enough for a given state and are easier for the trainee to achieve. The expert’s policy
gives a non-zero probability for all possible actions for a given state. The novice’s goal would be
to predict an action that lowers the classification loss (in principle, it has to be the best action but
predicting the second best may not be all that worse). The higher an action is predicted by the novice’s
policy, the easier it is for it to achieve. The lower the difference between the novice’s probabilities
and the expert’s probabilities, the better it is. Hence, by combining task loss and novice’s predictions,
(He et al., 2012) comes up with a new policy give by

π̃i(s) = argmaxa∈Aλi.scoreπi(s, a)− L(s, a)

where L(s, a) is a loss function for the experts predictions and is chosen to be in [0, 1].

Both the previous approaches need the information about the trajectories traversed (or the actions
taken) by the expert to train a classifier in a supervised manner. (Stadie et al., 2017) proposes a
method for ‘Third-person Imitation Learning’ which is to train the current trainee in an unsupervised
manner by observing an expert perform a task and inferring that there is a correspondence to itself. In
this problem, we are given two MDPsMπE (of an expert) andMπθ (of novice). Suppose we are given
a set of trajectories ρ = (s1, ...., sn)

n
i=0 generated by πE which is optimal under the reward scheme

Rπθ , the goal is to recover proxy policy πθ from ρ which is optimal w.r.t the reward scheme Rπθ .
This work addresses an important concern of learning from people whom you cannot exactly match,
i.e., we need not provide with sequences and actions that the novice should have taken. Rather, we
can learn from the demonstrations of any person whose reward scheme does not match the novice’s
but lies in the same environment.

In a recent development, Generative Adversarial Imitation Learning (GAIL (Ho & Ermon, 2016))
proposes a remarkably new approach of model free Imitation Learning. GAIL proposes to reduce the
difference between the expert and novice distributions of state-action pairs DE(s, a) and Dθ(s, a)
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respectively. This is different from previous approaches because we don’t need to train a supervised
classifier. We only need to sample a few state-action pairs generated by novice and expert policies
separately. Then, we optimize an information theoretic loss function called Jensen-Shannon diver-
gence that enforces high mutual information between distributions of both novice and expert. It is
given by:

minπmaxDEπ[logD(s, a)] + EπE [log(1−D(s, a))]− λH(π)

Here, π and πE are novice and expert policies and novice wants to mimic the behaviour of expert.
H is the entropy of novice policy and serves as a regularizer. In a followup to GAIL, Information
Maximizing Generative Adversarial Imitation Learning (InfoGAIL (Li et al., 2017)) was proposed to
deal with the case of having demonstrations from a mixture of experts as opposed to a single expert.
It infers the latent structure of human demonstrations while ignoring noise and variability in various
demonstrations by various people.

While the primary advantage of GAIL/InfoGAIL approach is being model-free and unsupervised, it is
hard to have a parallel setup where multiple agents play according to a central policy and periodically
update the central policy like in the case of Asynchronous Advantage Actor-Critic (A3C,(Mnih et al.,
2016)). This causes scalability issues and it is hard to port this algorithm to Atari games. Having
parallel threads for GAIL is an orthogonal research work and is beyond the scope of this paper.

Our work differs from the aforementioned approaches in the fact that we do not need any information
about the state-action correspondence for the expert. We only have to log actions that an expert takes
and identify the frequent sequences as potentially good options for the novice to explore. In our
experiments (section 4), we realize that the distribution of action-pairs saturates with access to just as
few as 25 episodes.

3 OUR PROPOSAL

On a broad note, our proposal is to extend the action set of a Reinforcement Learning (RL) agent by
including a small set of k-step sequences that an expert in the same environment has frequently taken.
For example, let’s say an environment has just N = 2 actions A = {L,R}. All possible k = 2-step
action sequences are A2 = {LR,RL,RR,LL}.
Suppose we have access to 3 episodes of an expert E’s actions: sequence1: L−R−R−R− L−
L − L − L − R − L, sequence2: L − L − R − R − R − L − R − R − L − R and sequence3:
L− L− L−R− L−R−R− L−R−R. We accumulate the frequency counts for each action
pair and obtain the histogram H2 = {LL : 3 + 1 + 2 = 6, LR : 2 + 3 + 3 = 8, RL : 2 + 2 + 2 =
6, RR : 2 + 3 + 2 = 7}. The top N = 2 meta actions are LR and RR. We now enlarge the
action set for a novice agent as A+ = A

⋃
{LR,RR} = {L,R,LR,RR}. We treat all 4 actions

as independent. Similarly, if we were to choose top 3-step action sequences, we would obtain the
histogramH3 = {LLL : 2+0+1 = 3, LLR : 1+1+1 = 3, LRL : 1+0+1 = 2, RLL : 1+0+0 =
1, LRR : 1 + 2+ 2 = 5, RLR : 0 + 2+ 2 = 4, RRL : 1 + 2+ 1 = 4, RRR : 1 + 1+ 0 = 2}. The
top-N 3-step actions would then be {LRR,RLR/RRL}.
We notice that as k increases, picking top-k action sequences becomes harder due to ties (like RLR
and RRL). As we see in our experiments in section 4, k = 2 seems to be an appropriate choice for
ATARI games. Please note that we only pick top-N action sequences for any k as we want the growth
of effective action space A+ to be linear in k,N . We can then train any popular RL algorithm on A+

for the novice agent. In our case, we chose to use the state-of-the-art GPU enabled Asynchronous
Advantage Actor-Critic (GA3C, (Babaeizadeh et al., 2017)). GA3C essentially has a similar structure
to A3C (Mnih et al., 2016). In this set-up, multiple agents play individual games simultaneously with
a common central policy and send gradient updates to a central server. The server periodically applies
the gradient updates from all the agents and sends out a fresh policy to all the agents. This approach
is heavily parallelizable and brings down the training time of RL agents from days to hours.

3.1 MOTIVATION:

The primary motivation to pursue this approach comes from the fact that a human baby does not try
to infer the utility of the demonstrator while trying to explore the world, but he/she merely tries to
replicate frequently performed actions taken by the demonstrator for exploring the world.
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Analogously, given a very limited demonstration, trying to learn a mapping between state action pairs
is implicitly trying to learn the utility function of the expert. It is too ambitious to learn a reliable
mapping by training complex neural network with very few state-action pairs. Instead, during the
exploration phase, we trust the observed action sequence rather than our ability to figure out the inner
state-action mapping mechanism of the expert.

Consider a novice tennis player who wants to imitate the playing style of an expert player like Roger
Federer. He/She could identify Federer’s popular mini-moves (action sequences) and try to mimic
them as and when possible. A forehand shot whenever possible will involve bending legs, swinging
arm, and ending the swing with hands all the way over the other shoulder. By trying to mimic this
sequence, humans naturally and reflexively explore faster, understand the importance of each step
and later even modify expert behaviour with more experience. In the initial stages, it is pointless
to figure out why we need to bend legs or swing your arms all the way long after hitting the ball.
Inferring utility comes with enough experience. We precisely experiment with this point and show
that merely providing short frequent action sequences (combo-action) taken by expert as an option
improves the exploration significantly leading to significantly faster learning.

A preliminary evidence to the feasibility of this approach is given in the report(Anonymous, 2018).
The authors append all possible action pairs to the the original action space (causing it to grow
exponentially). They devise a method to update both individual actions and their pairs from the same
episode thereby extracting more gradients by playing the same number of episodes. In our case, by
trimming down the effective action space from exponential to linear using expert action sequences,
we increase the scope of this approach.

4 EXPERIMENTS

We validate our approach on 8 Atari-2600 games namely Atlatis, SpaceInvaders, Qbert, DemonAttack,
BeamRider, TimePilot, Asteroids and FishingDerby. The number of basic actions in these games
ranges from 4 to 18 (see table 4.2). Atari-2600 games are standard benchmarks for Reinforcement
Learning(Mnih et al., 2013; 2015; 2016). We program using Tensorflow framework and use the
environments provided by OpenAI Gym. We compare our results time-wise against the state-of-the-
art algorithm GPU enabled Asynchronous Advantage Actor Critic (GA3C) from NVIDIA whose code
is publicly available at https://github.com/NVlabs/GA3C. GA3C was carefully developed
and curated to make good use of GPU and is the best performing algorithm on Open AI Atari games
to the best of our knowledge. We also compare against the popular DAgger algorithm for Imitation
Learning.

Dagger: Pseudocode for our implementation of DAgger is given in Algorithm 1. It trains a classifier
network by obtaining training data from expert’s policy and acts according to a mixed policy. As
mentioned earlier, DAgger has a major problem of memory explosion in the case of Atari games
because the input video frame size is 210× 160× 3 and we play thousands of episodes each with
number of steps ranging from 790− 7400(given in table 4.2); if we keep on appending trajectories
indefinitely to the training datasetD. For this reason, we limit size of the datasetD to 20, i.e., we only
store the last 20 trajectories of states that novice takes as per the blended policy and the respective
actions that the expert suggests.

But giving indefinite access to expert’s policy makes it an unfair comparison as the whole premise of
our approach is the case where we only have very little information about the expert. Hence we chose
to limit the number of episodes for which expert policy is available. We show results for different
episode limits- 100, 500 and 1000 to identify how many episodes are needed to give a good start that
can match our proposal in the longer run. After the limit is reached, access to expert policy is taken
away and the residual network of the novice continues to train using the usual GA3C algorithm until
we complete a total 15 hrs training time (choice of 15 hrs is explained in section 4.1).

InfoGAIL: We also tried to compare our approach to InfoGAIL. We used the publicly available
code for InfoGAIL and made only a few essential changes to use it for Atari-2600 games. InfoGAIL
uses auxiliary information like velocity and acceleration of vehicle along with the current video
frame. Since we do not have such information in Atari games, we stack up the latest 4 video frames.
To be more precise, at each state, we have a 210 × 160 image. We first take a grey scale version
of the image using the popular np.dot(rgb[..., : 3], [0.299, 0.587, 0.114]) step. We then resize the
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image to 84 ∗ 84. We then concatenate the previous 3 84 ∗ 84 frames with the current one to obtain a
84 ∗ 84 ∗ 4 input to the neural network. Please note that we used this pre-processing for our method,
GA3C, Dagger and InfoGAIL for a fair comparison. InfoGAIL also expects features extracted from
a pre-trained convolutional neural network trained on ImageNet dataset. We use VGG16 network
to extract 512 dimensional features (we do not use ResNet50 because 2048 dimensional features
cause memory overheads with larger batch sizes). As for the expert demonstrations, we provided
state-action pairs for 100 episodes each with a trajectory length of 100. This amounts to 10000 state
action-pairs for each game.

Challenges with InfoGAIL: Unfortunately, despite trying with several hyper-parameter settings, we
could not get InfoGAIL to converge to the expected scores. The overall scores for an episode seem
to either stagnate or even worse diverge in one game (Qbert). As mentioned before, this behaviour
is plausible because InfoGAIL does not use multiple parallel threads like A3C. In our experience,
we see that getting convergence on Atari games without any parallelization takes a few days to train.
Since we limit ourselves to 15 hrs of training, it’s hard for a Generative Adversarial setup to converge.
Nevertheless, we show the pseudocode in algorithm 2 and time-wise plots in figure 4 for InfoGAIL
in the supplementary material.

For a game with N basic actions, we have a total of Nk k-step meta-actions. Using all possible
k-tuples of actions leads to exponentially exploding action space and is infeasible for games with
large basic action space. Hence, we choose the top N meta actions taken by the expert among the
Nk possibilities. This keeps the effective action space to kN which grows linearly in k and N . We
limit the size of meta-actions k to 2 because large action spaces may lead to poor convergence.

Algorithm 1 Algorithm for our variant of Dagger
Initialize D ← φ
Let π̂i denote the novice’s policy at iteration i
Let π∗ denote the expert’s policy
Let M be the maximum length of D . At most M trajectories are stored in the data buffer D
Let K be the maximum episode for which expert policy is available D . After K steps, residual
network trains in usual GA3C style without π∗
Obtain π̂1 by randomly initializing novice’s network weights
for each parallel thread (as in A3C) do

for i = 1 : K do
Let πi = βiπ

∗ + (1− βi)π̂i
Sample T -step trajectory by playing using πi
Get dataset Di = (s, π∗(s)) where s is a state visited in the T -step trajectory
Append Di to D : D ← D ∪Di

if len(D) > M then D ← D[−M :]
end if
Train novice’s classifier network on supervised data D

end for
for i = K : N do

t← 0
repeat

Perform at according to policy π̂i
Receive reward rt and new state st+1

t← t+ 1
until terminal st
R← 0
for i ∈ t− 1, ...., tstart do

R← ri + γR
Optimize novice’s network using (st, at, R) as in A3C

end for
end for

end for
return π̂N
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Figure 1: Action Pair distribution for Atlantis (on the left, 42 = 16 pairs) and SpaceInvaders(on
the right, 62 = 36 pairs)

4.1 HOW DO WE GET EXPERT META-ACTIONS?

Our focus is to train a novice agent under the assumption that we have human-expert action sequences.
Obtaining human actions is hard because we need to find people that play a variety of Atari games.
Hence we chose to treat a neural network that is trained using the state-of-the-art GA3C algorithm as
an expert. In the process of training this network, the distribution of action pairs taken by the agent
saturates as the average scores per episode converge. We can then identify the top action pairs. The
onset of such a saturation is hard to quantify and detect automatically. Hence, we standardize the
choice of an ‘expert phase’ while training GA3C ,i.e., we accumulate the counts for each action pair
(N2 such pairs if a game has N basic actions) taken after 15 hrs of training GA3C. To further clarify,
we train GA3C for 15 hrs in total. We then freeze this network and call it the ‘expert network’. We
then play a ‘few’ (∼ 25) episodes with each episode played until termination. We then obtain the
histogram of all action pairs and pick the top-N action pairs. The justification for the 15 hr threshold
is shown in figure 1. We notice that the distribution of the action pairs does not change significantly
after training for about 14 hrs. This suggests the onset of ‘expert phase’. Figure 1 only shows the
time distribution of meta-actions for 2 games (Atlantis and SpaceInvaders with 4 and 6 actions
respectively) to reduce clutter in plots.

Please note that the time for such saturation is dependent on the computing infrastructure. In our case,
we use a 16 core CPU with 122 GB RAM and a single Tesla M60 GPU with 8GB memory. Each
game plays different number of episodes in the stipulated time. Hence, we provide the approximate
number of episodes after which saturation happens for each of the 8 games in table 4.2 to help
reproduce results on other machines.

Also, the 15hrs time to train the ‘expert network’ should not be included in the training time of novice
as we are only substituting humans with a trained network. Once we obtain the frequent meta-actions,
we begin to train the novice from from scratch with enlarged action space.

4.2 NETWORK ARCHITECTURE

Our network architecture is similar to the one used by A3C and GA3C algorithms except for the output
layer that has twice the number of actions as opposed to the former ones. We use 2 convolutional
layers; first with 8× 8 filters (32 of them) and the second with 4× 4 filters (64 of them). They are
followed by a dense layer with 256 nodes. The last layer is the typical softmax layer with as many
nodes as the effective number of actions (basic+meta). There is a parallel last layer for Value function
similar to A3C. The input video frames are all reshaped to 84× 84.
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Table 1: Game Information. Saturation episode refers to the approximate episode after which action
pair distribution remains stable.

Game Basic Saturation Avg steps Top action pairs
Actions episode per episode

Atlantis 4 17000 7438.38 0-2, 0-0, 2-0, 3-0
SpaceInvaders 6 39000 1377.24 4-4, 4-2, 2-4, 2-2, 1-1, 5-5
Qbert 6 60000 1794.18 3-3, 2-2, 5-5, 0-0, 1-1, 4-4
DemonAttack 6 32000 2645.96 4-4, 5-5, 3-3, 1-1, 2-2, 4-2
BeamRider 9 21000 3424.68 1-1, 8-8, 8-1, 7-7, 7-1,1-8,

4-8, 8-4, 7-8
TimePilot 10 32000 1628.03 8-8, 0-0, 0-8, 4-8, 8-4,8-0,

4-4, 0-4, 4-0, 1-8
Asteroids 14 63000 791.1 0-1, 1-0, 1-1, 0-0, 13-0,13-13, 0-13, 1-8,

7-13, 8-1, 8-8, 3-1, 10-10, 1-10
FishingDerby 18 22000 1441.09 17-17, 13-13, 13-17, 17-13, 9-9, 17-9,

9-17, 5-5, 17-5, 13-9, 9-13, 13-5,
5-17, 12-12, 5-13, 5-9, 12-17, 12-13

4.3 RESULTS

Figure 2 compares our proposal to GA3C and DAgger (with varying number of expert episodes) for
each of the 8 games mentioned before. Each dark line in the plot is the mean of 5 rounds of training.
The standard deviation of the curves is plotted in mild color to show how variant each algorithm is
for every game. The green curves correspond to our proposed method, red corresponds to GA3C
baseline and the rest correspond to Dagger with different limit on access to expert policy. We notice
that our method consistently outperforms other baselines by a huge margin in all games. The closest
that GA3C or Dagger could get to our scores are on the game FishingDerby. We also observe that
giving access to more expert episodes translates to better overall performance of Dagger on games
like FishingDerby and Asteroids. In all other games, it’s interesting to note that the Dagger curves
seem to grow better than GA3C in the beginning of the training but do not sustain the same growth
after the objective function is changed. Please note that our method has multi-step actions which
could potentially mean that the agent takes more actions per one query to the policy. Hence, in the
given time, we play more episodes than other baselines. While we care for time-wise comparison, we
have added the episode-wise comparison in the supplementary material 3.

5 CONCLUSIONS

We propose a simple alternative to Imitation Learning by just giving a novice trainee the information
about popular action-sequences that an expert player takes in an RL environment. We show that
our approach outperforms the state-of-the-art GA3C and popular DAgger algorithm for Imitation
Learning consistently by significant margin time-wise. We validate our approach on 8 Atari-2600
games. Our approach has no memory and time overheads unlike other methods for Imitation Learning
and hence scalable to games with large video frame inputs. There is a huge scope for researching how
to learn the best meta-actions without an expert by analyzing the action sequences within a novice’s
training time. Such a direction would intrinsically align with discovering best ‘Options’ in ‘Options
Framework’. We will examine that in our future work.
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Figure 2: Time-wise comparison of our proposal against GA3C and DAgger. The common legend
for all plots is shown in the last game FishingDerby.
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SUPPLEMENTARY MATERIAL

Figure 3: Episode-wise comparison of our proposal against GA3C and DAgger. The common legend
for all plots is shown in the last game FishingDerby.
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Algorithm 2 Algorithm for InfoGAIL
Input: Initial parameters of policy, discriminator and posterior approximation θ0, ω0, ψ0; expert
trajectories τE ∼ πE
Output: Learned policy πθ
for i = 0, 1, 2, ... do

Sample batch of latent codes: ci ∼ p(c)
Sample trajectories: τi ∼ πθi(ci), with the latent code fixed during each rollout.
Sample state-action pairs χi ∼ τi and χE ∼ τE with same batch size.
Update ωi to ωi+1 by ascending with gradients

δωi = Êχi [∇ωi log(Dωi(s, a))] + ÊχE [∇ωi log(1−Dωi(s, a))]

Update ψi to ψi+1 by descending with gradients

δψi = −λ1Êχi [∇ψi log(Qψi(c/s, a))]
Take a policy step from θi to θi+1, using the objective:

Êχi [log(Dωi+1
(s, a))]− λ1L1(πθi , Qψi+1

)− λ2H(πθi)

end for

Figure 4: Time-wise comparison InfoGAIL
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