
Under review as a conference paper at ICLR 2018

BIT-REGULARIZED OPTIMIZATION OF NEURAL NETS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a novel optimization strategy for training neural networks which we call
“BitNet”. The parameters of neural networks are usually unconstrained and have a
dynamic range dispersed over all real values. Our key idea is to limit the expressive
power of the network by dynamically controlling the range and set of values that
the parameters can take. We formulate this idea using a novel end-to-end approach
that regularizes a typical classification loss function. Our regularizer is inspired by
the Minimum Description Length (MDL) principle. For each layer of the network,
our approach optimizes real-valued translation and scaling factors and integer-
valued parameters (weights). We empirically compare BitNet to an equivalent
unregularized model on the MNIST and CIFAR-10 datasets. We show that BitNet
converges faster to a superior quality solution. Additionally, the resulting model
has significant savings in memory due to the use of integer-valued parameters.

1 INTRODUCTION

In the past few years, the intriguing fact that the performance of deep neural networks is robust to
compact representations of parameters (Merolla et al., 2016; Zhou et al., 2016a), activations (Lin
et al., 2015; Hubara et al., 2016) and even gradients (Zhou et al., 2016b) has sparked research in both
machine learning (Gupta et al., 2015; Courbariaux et al., 2015; Han et al., 2015a) and hardware (Judd
et al., 2016; Venkatesh et al., 2016; Hashemi et al., 2016). With the goal of improving the efficiency
of deep networks on resource constrained embedded devices, learning algorithms were proposed for
networks that have binary weights (Courbariaux et al., 2015; Rastegari et al., 2016), ternary weights
(Yin et al., 2016; Zhu et al., 2016), two-bit weights (Meng et al., 2017), and weights encoded using
any fixed number of bits (Shin et al., 2017; Mellempudi et al., 2017), that we herein refer to as the
precision. Most of prior work apply the same precision throughout the network.

Our approach considers heterogeneous precision and aims to find the optimal precision configuration.
From a learning standpoint, we ask the natural question of the optimal precision for each layer of
the network and give an algorithm to directly optimize the encoding of the weights using training
data. Our approach constitutes a new way of regularizing the training of deep neural networks, using
the number of unique values encoded by the parameters (i.e. two to the number of bits) directly as a
regularizer for the classification loss. To the best of our knowledge, we are not aware of an equivalent
matrix norm used as a regularizer in the deep learning literature, forming a direct relationship between
the low-level bit precision and regularization schemes inspired by the Minimum Description Length
(MDL) principle.

Outline and contributions: Sec. 3 provides a brief background on our network parameters quantization
approach, followed by a description of our model, BitNet. Sec. 4 contains the main contribution
of the paper viz. (1) Convex and differentiable relaxation of the classification loss function over
the discrete valued parameters, (2) Regularization using the complexity of the encoding, and (3)
End-to-end optimization of a per-layer precision along with the parameters using stochastic gradient
descent. Sec. 5 demonstrates faster convergence of BitNet to a superior quality solution compared
to an equivalent unregularized network using floating point parameters. Sec. 6 we summarize our
approach and discuss future directions.
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2 RELATIONSHIP TO PRIOR WORK

There is a rapidly growing set of neural architectures (He et al., 2016; Szegedy et al., 2016) and
strategies for learning (Duchi et al., 2011; Kingma & Ba, 2014; Ioffe & Szegedy, 2015) that study
efficient learning in deep networks. The complexity of encoding the network parameters has been
explored in previous works on network compression (Han et al., 2015a; Choi et al., 2016; Agustsson
et al., 2017). These typically assume a pre-trained network as input, and aim to reduce the degradation
in performance due to compression, and in general are not able to show faster learning. Heuristic
approaches have been proposed (Han et al., 2015a; Tu et al., 2016; Shin et al., 2017) that alternate
clustering and fine tuning of parameters, thus fixing the number of bits via the number of cluster
centers. For example, the work of (Wang & Liang, 2016) assigns bits to layers in a greedy fashion
given a budget on the total number of bits. In contrast, we use an objective function that combines both
steps and allows an end-to-end solution without directly specifying the number of bits. Furthermore,
we are able to show improved convergence over non bit-regularized networks training from scratch.

Our approach is closely related to optimizing the rate-distortion objective (Agustsson et al., 2017). In
contrast to the entropy measure in (Choi et al., 2016; Agustsson et al., 2017), our distortion measure
is simply the number of bits used in the encoding. We argue that our method is a more direct measure
of the encoding cost when a fixed-length code is employed instead of an optimal variable-length code
as in (Han et al., 2015a; Choi et al., 2016). Our work generalizes the idea of weight sharing as in
(Chen et al., 2015a;b), wherein randomly generated equality constraints force pairs of parameters to
share identical values. In their work, this ‘mask’ is generated offline and applied to the pre-trained
network, whereas we dynamically vary the number of constraints, and the constraints themselves.
A probabilistic interpretation of weight sharing was studied in (Ullrich et al., 2017) penalizing the
loss of the compressed network by the KL-divergence from a prior distribution over the weights.
In contrast to (Choi et al., 2016; Lin et al., 2016; Agustsson et al., 2017; Ullrich et al., 2017), our
objective function makes no assumptions on the probability distribution of the optimal parameters.
Weight sharing as in our work as well as the aforementioned papers generalizes related work on
network pruning (Wan et al., 2013; Collins & Kohli, 2014; Han et al., 2015b; Jin et al., 2016; Kiaee
et al., 2016; Li et al., 2016) by regularizing training and compressing the network without reducing
the total number of parameters.

Finally, related work focuses on low-rank approximation of the parameters (Rigamonti et al., 2013;
Denton et al., 2014; Tai et al., 2015; Anwar et al., 2016). This approach is not able to approximate
some simple filters, e.g., those based on Hadamard matrices and circulant matrices (Lin et al.,
2016), whereas our approach can easily encode them because the number of unique values is small1.
Empirically, for a given level of compression, the low-rank approximation is not able to show faster
learning, and has been shown to have inferior classification performance compared to approaches
based on weight sharing (Gong et al., 2014; Chen et al., 2015a;b). Finally, the approximation is not
directly related to the number of bits required for storage of the network.

3 NETWORK PARAMETERS QUANTIZATION

Though our approach is generally applicable to any gradient-based parameter learning for machine
learning such as classification, regression, transcription, or structured prediction. We restrict the
scope of this paper to Convolutional Neural Networks (CNNs).

Notation. We use boldface uppercase symbols to denote tensors and lowercase to denote vectors. Let
W be the set of all parameters {W(1), . . . ,W(N)} of a CNN with N layers, W̃ be the quantized
version using B bits, and w is an element of W. For the purpose of optimization, assume that B is
a real value. The proposed update rule (Section 4) ensures that B is a whole number. Let y be the
ground truth label for a mini-batch of examples corresponding to the input data X(1). Let ŷ be the
predicted label computed as the maximum value in X(N).

Quantization. Our approach is to limit the number of unique values taken by the parameters W. We
use a linear transform that uniformly discretizes the range into fixed steps δ. We then quantize the

1Hadamard matrices can be encoded with 1-bit, Circulant matrices bits equal to log of the number of columns.
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weights as shown in (1).

W̃ = α+ δ × round
(
W−α
δ

)
,

where, α = minw(W
(n)), β = maxw(W

(n)), δ = f(W(n),B) = β−α
2B

.
(1)

and all operations are elementwise operations. For a given range α, β and bits B, the quantized
values are of the form α+ zδ, z = 0, 1, . . . , 2B , a piecewise constant step-function over all values in
[α, β], with discontinuities at multiples of α + zδ/2, z = 1, 3, . . . , 2B − 1, i.e. W is quantized as
W̃ = α+ δZ. However, the sum of squared quantization errors defined in (2) is a continuous and
piecewise differentiable function:

Q(W(n),B) = 1

2
||W̃(n) −W(n)||22. (2)

where the 2-norm is an entrywise norm on the vector vec(W̃(n)−W(n)). For a given range α, β and
B, the quantization errors form a contiguous sequence of parabolas when plotted against all values in
[α, β], and its value is bounded in the range [0, δ2/8]. Furthermore, the gradient with respect to B
is ∂Q(W(n),B)

∂ B = (W̃(n) −W(n)) ∂δ∂ BZ with ∂δ
∂ B = −δ. The gradient with respect to w ∈W(n) is

∂Q(W(n),B)
∂w = (W̃(n) −W(n))(0− 1).

In the above equations, the “bins” of quantization are uniformly distributed between α and β. Previous
work has studied alternatives to uniform binning e.g. using the density of the parameters (Han et al.,
2015a), Fisher information (Tu et al., 2016) or K-means clustering (Han et al., 2015a; Choi et al.,
2016; Agustsson et al., 2017) to derive suitable bins. The uniform placement of bins is asymptotically
optimal for minimizing the mean square error (the error falls at a rate of O(1/2B)) regardless of
the distribution of the optimal parameters (Gish & Pierce, 1968). Uniform binning has also been
shown to be empirically better in prior work (Han et al., 2015a). As we confirm in our experiments
(Section 5), such statistics of the parameters cannot guide learning when training starts from randomly
initialized parameters.

4 LEARNING

The goal of our approach is to learn the number of bits jointly with the parameters of the network via
backpropagation. Given a batch of independent and identically distributed data-label pairs (X(1),y),
the loss function defined in (3) captures the log-likelihood.

l(W) = − logP (y|X(1);W), (3)

where the log likelihood is approximated by the average likelihood over batches of data. We cannot
simply plug in W̃ in the loss function (3) because W̃ is a discontinuous and non-differentiable
mapping over the range of W. Furthermore, W̃ and thus the likelihood using W̃ remains constant
for small changes in W, causing gradient descent to remain stuck. Our solution is to update the high
precision parameters W with the constraint that the quantization errorQ(W,B) is small.The intuition
is that when W and W̃ are close, l(W) can be used instead. We adopt layer-wise quantization to
learn one W̃(n) and B(n) for each layer n of the CNN. Our new loss function l(W̃) defined in (4) as
a function of l(W) defined in (3) and Q(W,B) defined in (2).

l(W̃)
∆
= l(W) + λ1

N∑
i=1

Q(W(i),B(i)) + λ2

N∑
i=1

2B
(i)

, (4)

where, λ1 and λ2 are the hyperparameters used to adjust the trade-off between the two objectives.
When λ1 = 0, λ2 = 1, the CNN uses 1-bit per layer due to the bit penalty. When λ1 = 1, λ2 = 0,
the CNN uses 32 bits per layer in order to minimize the quantization error. The parameters λ1 and λ2

allow flexibility in specifying the cost of bits vs. its impact on quantization and classification errors.

During training, first we update W and B using (5),

W(i) ← W(i) − µ · ∂l(W̃)
∂W(i) = W(i) − µ · ∂l(W)

∂W(i) − µλ1 · ∂Q(W(i),B(i))
∂W(i) ,

B(i) ← B(i)− sign(µ∂l(W̃)

∂ B(i) ) = B(i)− sign(µλ1
∂Q(W(i),B(i))

∂ B(i) + µλ22
B(i)

).

(5)
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where µ is the learning rate. Then, the updated value of W in (5) is projected to W̃ using B as in (1).
The sign function returns the sign of the argument unless it is ε-close to zero in which case it returns
zero. This allows the number of bits to converge as the gradient and the learning rate goes to zero 2.
Once training is finished, we throw away the high precision parameters W and only store W̃ in the
form of α+ δZ for each layer. All parameters of the layer can be encoded as integers, corresponding
to the index of the bin, significantly reducing the storage requirement.

Overall, the update rule (5) followed by quantization (1) implements a projected gradient descent
algorithm. From the perspective of W̃, this can be viewed as clipping the gradients to the nearest
step size of δ. A very small gradient does not change W̃ but incurs a quantization error due to change
in W. In practice, the optimal parameters in deep networks are bimodal (Merolla et al., 2016; Han
et al., 2015b). Our training approach encourages the parameters to form a multi-modal distribution
with means as the bins of quantization.

Note that l(W̃) is a convex and differentiable relaxation of the negative log likelihood with respect
to the quantized parameters. It is clear that l(W̃) is an upper bound on l(W), and l(W̃) is the
Lagrangian corresponding to constraints of small quantization error using a small number of bits.
The uniformly spaced quantization allows a closed form for the number of unique values taken by the
parameters. To the best of our knowledge, there is no equivalent matrix norm that can be used for the
purpose of regularization.

5 EXPERIMENTS

We evaluate our algorithm, ‘BitNet’, on two benchmarks used for image classification, namely
MNIST and CIFAR-10. MNIST: The MNIST (LeCun et al., 1998) database of handwritten digits
has a total of 70, 000 grayscale images of size 28 × 28. We used 50, 000 images for training and
10, 000 for testing. Each image consists of one digit among 0, 1, . . . , 9. CIFAR-10: The CIFAR-10
(Krizhevsky, 2009) dataset consists of 60, 000 color images of size 32× 32 in 10 classes, with 6, 000
images per class corresponding to object prototypes such as ‘cat’, ‘dog’, ‘bird’, etc. We used 40, 000
images for training and 10, 00 images for testing. The training data was split into batches of 200
images.

Setup. For BitNet, we evaluate the error on the test set using the quantized parameters W̃. We also
show the training error in terms of the log-likelihood using the non-quantized parameters W. We
used the automatic differentiation provided in Theano (Bergstra et al., 2010) for calculating gradients
with respect to (4).

Since our motivation is to illustrate the superior anytime performance of bit regularized optimization,
we use a simple neural architecture with a small learning rate, do not train for many epochs or
till convergence, and do not compare to the state-of-the-art performance. We do not perform any
preprocessing or data augmentation for a fair comparison.

We use an architecture based on the LeNet-5 architecture (LeCun et al., 1998) consisting of two
convolutional layers each followed by a 2× 2 pooling layer. We used 30 and 50 filters of size 5× 5
for MNIST, and 256 and 512 filters of size 3 × 3 for CIFAR-10 respectively. The filtered images
are fed into a dense layer of 500 hidden units for MNIST (1024 units for CIFAR-10 respectively),
followed by a softmax layer to output scores over 10 labels. All layers except the softmax layer use
the hyper-tangent (tanh) activation function. We call this variant ‘LeNet32‘.

Baselines. In addition to LeNet32, we evaluate three baselines from the literature that use a globally
fixed number of bits to represent the parameters of every layer. The baselines are (1) ‘linear-n’:
quantize the parameters at the end of each epoch using 1 (2) ‘kmeans-n’: quantize the parameters
at the end of each epoch using the K-Means algorithm with 2n centers, and (3) ‘bayes-n’: use the
bayesian compression algorithm of (Ullrich et al., 2017). The baseline ‘kmeans-n’ is the basic idea
behind many previous approaches that compress a pre-trained neural model including (Han et al.,
2015a; Choi et al., 2016). For ‘bayes-n’ we used the implementation provided by the authors but
without pre-training.

2In our experiments we use ε = 10−9.
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Figure 1: Performance of BitNet in comparison to LeNet32 and baselines on the MNIST and CIFAR-
10 datasets. The left panel shows the test error % and the right panel shows the training error over
training iterations. The learning rate µ is halved after every 200 iterations.

Impact of bit regularization. Figure 1 compares the performance of BitNet with our baselines. In
the left panel, the test error is evaluated using quantized parameters. The test error of BitNet reduces
more rapidly than LeNet32. The test error of BitNet after 100 epochs is 2% lower than LeNet32.
For a given level of performance, BitNet takes roughly half as many iterations as LeNet32. As
expected, the baselines ‘kmeans8’ and ‘bayes8’ do not perform well without pre-training. The test
error of ‘kmeans8’ oscillates without making any progress, whereas ‘bayes8’ is able to make very
slow progress using eight bits. In contrast to ‘kmeans8’, the test error of ‘linear8’ is very similar to
‘LeNet32’ following the observation by (Gupta et al., 2015) that eight bits are sufficient if uniform
bins are used for quantization. The test error of ‘BitNet’ significantly outperforms that of ‘linear8’
as well as the other baselines. The right panel shows that the training error in terms of the log
likelihood of the non-quantized parameters. The training error decreases at a faster rate for BitNet
than LeNet32, showing that the lower testing error is not caused by quantization alone. This shows
that the modified loss function of 4 has an impact on the gradients wrt the non-quantized parameters
in order to minimize the combination of classification loss and quantization error. The regularization
in BitNet leads to faster learning. In addition to the superior performance, BitNet uses an average of
6 bits per layer corresponding to a 5.33x compression over LeNet32. Figure 2 shows the change in
the number of bits over training iterations. We see that the number of bits converge within the first
five epochs. We observed that the gradient with respect to the bits quickly goes to zero.

Sensitivity to Learning Rate. We show that the property of faster learning in BitNet is indirectly
related to the learning rate. For this experiment, we use a linear penalty for the number of bits instead
of the exponential penalty (third term) in (4). In the left panel of Figure 3(a), we see that BitNet
converges faster than LeNet-FP32 similar to using exponential bit penalty. However, as shown in the
figure on the right panel of 3(a), the difference vanishes when the global learning rate is increased
tenfold. This point is illustrated further in Figure 3(b) where different values of λ2, the coefficient for
the number of bits, shows a direct relationship with the rate of learning. Specifically, the right panel
shows that a large value of the bit penalty λ2 leads to instability and poor performance, whereas a
smaller value leads to a smooth learning curve. However, increasing the learning rate globally as in
LeNet-FP32 is not as robust as the adaptive rate taken by each parameter as in BitNet. Furthermore,

5



Under review as a conference paper at ICLR 2018

3

4

5

6

7

8

9

10

11
conv0 conv1

0 100 200 300 400 500 600 700 800
3

4

5

6

7

8

9

10

11
hidden

0 100 200 300 400 500 600 700 800

Minibatch Iterations

N
u
m

. 
B

it
s

softmax

MNIST - µ = 10−3, λ1 = 10−3, λ2 = 10−6.

3

4

5

6

7

8

9

10

11
conv0 conv1

0 100 200 300 400 500 600 700 800
3

4

5

6

7

8

9

10

11
hidden

0 100 200 300 400 500 600 700 800

Minibatch Iterations

N
u
m

. 
B

it
s

softmax

CIFAR-10 - µ = 10−3, λ1 = 10−3, λ2 = 10−6.

Figure 2: Number of bits learned by BitNet for representing the parameters of each layer of the CNN
for MNIST and CIFAR-10.
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Figure 3: Sensitivity of BitNet to Learning Rate.

the learning oscillates especially if the global learning rate is further increased. This establishes an
interesting connection between low precision training and momentum or other sophisticated gradient
descent algorithms such as AdaGrad, which also address the issue of ‘static’ learning rate.

Impact of Number of Layers. In this experiment, we add more layers to the baseline CNN and
show that bit regularization helps to train deep networks quickly without overfitting. We show a
sample of a sequence of layers that can be added incrementally such that the performance improves.
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Table 1: Performance of BitNet at the end of 30 epochs on MNIST and at the end of 100 epochs on
CIFAR-10 with increasing complexity of the neural architecture. The first column (#) denotes the
number of total layers. Compression is the ratio 32 to the average number of bits used by BitNet.
The columns to the right of this ratio specifies the architecture and the number of bits in the final
BitNet model. The column heading for a convolutional layer specifies the number of filters, the
spatial domain and the pooling size. Here λ1 = 10−3, λ2 = 10−6.

MNIST
# Test

Error %
Num.

Params.
Compr.
Ratio

30
1× 1
1× 1

30
3× 3
1× 1

30
3× 3
2× 2

30
5× 5
4× 4

50
5× 5
4× 4

Dense
500

Nodes

Dense
500

Nodes

Classify
10

Labels
4 11.16 268K 6.67 5 6 7 6
5 10.46 165K 5.72 5 6 6 6 5
6 9.12 173K 5.65 5 6 6 6 6 5
7 8.35 181K 5.75 5 5 6 6 6 6 5
8 7.21 431K 5.57 5 6 5 6 6 6 7 5

CIFAR-10
# Test

Error %
Num.

Params.
Compr.
Ratio

30
1× 1
1× 1

30
3× 3
1× 1

30
3× 3
2× 2

50
3× 3
2× 2

50
3× 3
2× 2

Dense
500

Nodes

Dense
500

Nodes

Classify
10

Labels
4 42.08 2.0M 5.57 5 6 7 5
5 43.71 666K 5.52 5 6 6 7 5
6 43.32 949K 5.49 5 5 6 6 7 6
7 42.83 957K 5.74 4 5 6 6 6 7 5
8 41.23 1.2M 5.57 4 5 6 6 6 7 7 5

We selected these layers by hand using intuition and some experimentation. Table 1 shows the results
for the MNIST and CIFAR-10 dataset at the end of 30 and 100 epochs, respectively. First, we observe
that the test error decreases steadily without any evidence of overfitting. Second, we see that the
number of bits for each layer changes with the architecture. Third, we see that the test error is reduced
by additional convolutional as well as dense layers. We observe good anytime performance as each
of these experiments is run for only one hour, in comparison to 20 hours to get state-of-the-art results.

Impact of Hyperparameters. In this experiment, we show the impact of the regularization hyper-
parameters in (4), λ1 and λ2. In this experiment, we train each CNN for 30 epochs only. Figure
4 shows the impact on performance and compression on the MNIST and CIFAR-10 data. In the
figure, the compression ratio is defined as the ratio of the total number of bits used by LeNet32
(= 32× 4) to the total number of bits used by BitNet. In both the datasets, on one hand when λ2 = 0
and λ1 = 1, BitNet uses 32-bits that are evenly spaced between the range of parameter values. We
see that the range preserving linear transform (1) leads to significantly better test error compared
to LeNet32 that also uses 32 bits, which is non-linear and is not sensitive to the range. For MNIST
in Figure 4 (left), BitNet with λ2 = 0, λ1 = 1, thus using 32 bits, achieves a test error of 11.18%,
compared to the 19.95% error of LeNet32, and to the 11% error of BitNet with the best settings of
λ1 = 10−3, λ2 = 10−6. The same observation holds true in the CIFAR-10 dataset. On the other hand,
when λ1 = 0 and λ2 = 1, BitNet uses only 2-bits per layer, with a test error of 13.09% in MNIST,
a small degradation in exchange for a 16x compression. This approach gives us some flexibility in
limiting the bit-width of parameters, and gives an alternative way of arriving at the binary or ternary
networks studied in previous work. For any fixed value of λ1, increasing the value of λ2 leads to
fewer bits, more compression and a slight degradation in performance. For any fixed value of λ2,
increasing the value of λ1 leads to more bits and lesser compression. There is much more variation in
the compression ratio in comparison to the test error. In fact, most of the settings we experimented
led to a similar test error but vastly different number of bits per layer. The best settings were found by
a grid search such that both compression and accuracy were maximized. In MNIST and CIFAR-10,
this was λ1 = 10−3, λ2 = 10−6.
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Figure 4: Sensitivity of the Test Error and Compression Ratio to the hyperparameters for BitNet for
(a) MNIST and (b) CIFAR-10 datasets

6 CONCLUSION

The deployment of deep networks in real world applications is limited by their compute and memory
requirements. In this paper, we have developed a flexible tool for training compact deep neural
networks given an indirect specification of the total number of bits available on the target device.
We presented a novel formulation that incorporates constraints in form of a regularization on the
traditional classification loss function. Our key idea is to control the expressive power of the network
by dynamically quantizing the range and set of values that the parameters can take. Our experiments
showed faster learning measured in training and testing errors in comparison to an equivalent
unregularized network. We also evaluated the robustness of our approach with increasing depth of the
neural network and hyperparameters. Our experiments showed that our approach has an interesting
indirect relationship to the global learning rate. BitNet can be interpreted as having a dynamic
learning rate per parameter that depends on the number of bits. In that sense, bit regularization is
related to dynamic learning rate schedulers such as AdaGrad (Duchi et al., 2011). One potential
direction is to anneal the constraints to leverage fast initial learning combined with high precision
fine tuning. Future work must further explore the theoretical underpinnings of bit regularization and
evaluate BitNet on larger datasets and deeper models.
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