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ABSTRACT

The task of recovering nonlinear dynamics and latent structure from a popula-
tion recording is a challenging problem in statistical neuroscience motivating the
development of novel techniques in time series analysis. Recent work has fo-
cused on connections between Variational Inference and Sequential Monte Carlo
for performing inference and parameter estimation on sequential data. Inspired by
this work, we present a framework to develop Smoothed Variational Objectives
(SVOs) that condition proposal distributions on the full time-ordered sequence
of observations. SVO maintains both expressiveness and tractability by sharing
parameters of the transition function between the proposal and target. We apply
the method to several dimensionality reduction/expansion tasks and examine the
dynamics learned with a quantitative metric. SVO performs favorably against the
state of the art.

1 INTRODUCTION

Conductance based models of excitable cells are widely used in neuroscience to describe the spiking
activity of individual neurons. It is thought that neural computation is explained by dynamics and
that these dynamics often exist in a lower or higher dimensionality than that of the recorded neural
populations (Paninski & Cunningham, 2017). To extract the information encoded in firing activity,
it is paramount to develop models that allow for tractable analysis of neural data. For example,
experimentalists who have access to a single-dimensional observation such as a voltage recording
are faced with the task of recovering the multidimensional nonlinear latent dynamics and trajectories
through a higher dimensional space that describe the system of interest.

There is a large body of work for inferring latent trajectories for data governed by nonlinear dy-
namics or observations (Archer et al., 2015; Krishnan et al., 2015; Pandarinath et al., 2017; Diaz
et al., 2019). Variational Inference (VI) and Markov Chain Monte Carlo (MCMC) are two popu-
lar approaches for performing inference in latent variable models. Recently connections have been
established between both methods that allow for performing inference by defining a flexible varia-
tional family of filtered distributions using Sequential Monte Carlo (SMC) (Le et al., 2018; Maddi-
son et al., 2017; Naesseth et al., 2018a). Unlike filtering, smoothing refers to the ability to condition
states and parameters on the full time-ordered sequence of observations. In this framework, we
sketch a method to construct variational objectives using recursive backwards sampling algorithms
(referred to as particle smoothers) in addition to parameterizing the encoding function on the full
time ordered sequence of observations.

Recent literature argues that tighter variational bounds may hurt the proposal learning (Rainforth
et al., 2018). More specifically, in the context of the Importance Weighted AutoEncoder (IWAE),
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the marginal likelihood estimate becomes exact as the number of particles K → ∞. This can lead
to a degenerated gradient estimate for the proposal with the signal-to-noise ratio shrinking at the rate
O(
√

1/K) (Rainforth et al., 2018). (Le et al., 2018) built on this idea to use different objectives
for recognition and generative networks. Here we argue that the theoretical result in the IWAE
setting cannot be directly extended to SMC due to the resampling process. We present theoretical
and empirical evidence to show that the degrading signal-to-noise ratio is addressed by the choice
of biased gradient estimators.

The contributions of this paper are highlighted below. First, we describe a factorized proposal
distribution that (i) disentangles the transition terms from the terms that represent the encoding of
the data and (ii) shares variational parameters of the transition function with the target distribution.
We present results illustrating the positive effect of the number of particles on the signal-to-noise
ratio for the transition, encoder and decoder parameters within our factorization. An important way
to ascertain the quality of the learned dynamics is to use the transition terms in the generative model
to propagate the system forwards without input data and then to make observation predictions. We
show that our smoothed proposal generates an improved estimate of the latent states as measured by
the ability of the target to more accurately predict observations using the dynamics learned.

The remainder of this paper is organized as follows. Section 2 summarizes related work on VI and
SMC. Section 3 gives preliminaries and defines the proposal while analyzing the signal to noise
ratio of the gradient. We then present results on both filtered and smoothed proposal densities with
two benchmark datasets and single cell electrophysiology data from the Allen Institute in Section 4.
Section 5 concludes.

2 RELATED WORK

There is a large body of work on fitting State Space Models (SSMs) of increasing complexity using
VI. These methods can be separated into two classes. Pure VI methods optimize a lower bound
to the log likelihood parameterized by defining a variational family. Hybrid methods use SMC to
construct an estimate for the log marginal likelihood and optimize a surrogate lower bound. We
review the details of both techniques in the preliminaries section and outline the contributions of
related methods below.

Gaussian Process Factor Analysis (Yu et al., 2009) (GPFA) is a statistical model that assumes linear
time invariant transition and emission functions. GfLDS (Gao et al., 2016; Archer et al., 2015) is
a VI scheme that extends the above by positing a linear dynamical system with nonlinear emission
densities. VIND (Diaz et al., 2019) is a VI scheme that permits both transition and emission densities
to be represented as arbitrary nonlinearities. VIND achieves reuse of the exact generative evolution
structure for inference as suggested by the true posterior. Tractability of the variational approxi-
mation is maintained by forming a Laplace approximation to an intractable non Gaussian parent
approximate distribution. The mean and the covariance of the Laplace approximation are obtained
via the Fixed Point Iteration (FPI) and the intractable terms are reused within the approximation. We
define smoothing as a method to infer latent state zt using observations from the complete trial x1:T ,
including points to the future of t < t′ ∈ {t + 1 : T}. GPFA, GfLDS and VIND are all smoothers
in that they use the full sequence of observations to infer the current latent state.

An approach to increasing model capacity is the development of tighter bounds than the ELBO.
Filtering Variational Objectives (Maddison et al., 2017) (FIVO) and Variational Sequential Monte
Carlo (Naesseth et al., 2018a) are related methods that use SMC to construct a filtered objective
function for VI. Auto-Encoding Sequential Monte Carlo (Le et al., 2018) (AESMC) is a similar
method to learn both proposal distributions for SMC that act as variational approximations and
generative models using deep neural networks. Unlike GfLDS and VIND, these methods do not
require inverting a block-tridiagonal matrix which mixes components of state space through the
inverse covariance. Information from the complete time ordered sequence 1 : T is not applied
directly to the transition function to the future of the current time point t < T to infer the latent state.
TVSMC (Lawson et al.) is a family of variational objectives that augment the target distribution
with a lookahead function to approximate smoothing SMC. Temporal difference learning is used
to estimate the lookahead function, however this method did not produce results comparable with
filtering on complex nonlinear models.
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3 METHODS

3.1 PRELIMINARIES

3.1.1 VI AND IMPORTANCE WEIGHTED AUTO-ENCODERS

Inference in latent variable models requires marginalizing a generative distribution with respect to
hidden variables Z.

log pθ(X) =

∫
log pθ(X,Z)dZ (1)

VI describes family of techniques for approximating a solution to the above. The idea is to define a
tractable distribution qφ(Z|X) and to optimize a lower bound to the log likelihood:

log pθ(X) ≥ LELBO(θ, φ,X,Z) = E
q

[
log

pθ(X,Z)

qφ(Z|X)

]
(2)

Tractability and expressiveness of the variational approximation qφ(Z|X) are contrasting goals. The
distribution qφ(Z|X) must be chosen carefully; a poor choice of the variational family defining
qφ(Z|X) will affect the generative model by pulling the parameters θ towards φ.

θ∗, φ∗ = arg min
θ∈Θ,φ∈Φ

DKL(qφ||pθ) = arg max
θ∈Θ,φ∈Φ

LELBO (3)

Auto Encoding Variational Bayes (Kingma & Welling, 2013) (AEVB) is method to simultaneously
encode and decode the parameters {φ, θ} for both qφ(Z|X) and pθ(X,Z). When the densities
are not in the natural exponential family, it is possible to draw samples from qφ(Z|X) to evaluate
Eqφ [log pθ(X,Z)− log qφ(Z|X)] numerically. We can approximate both LELBO terms reparameter-
izing in order to compute the gradients (Kingma & Welling, 2013; Rezende et al., 2014) as follows:

LAEVB(θ, φ,X(i)) ≈ 1

L

L∑
l=1

log
pθ(X

(i),Z(i,l))

qφ(Z(i,l)|X(i))
(4)

where Z(i,l) = µφ + Σ
1/2
φ ε(i,l) and ε(i,l) ∼ N (0, 1) (5)

Building upon this, the Importance Weighted Auto Encoder (Burda et al., 2015) (IWAE) constructs
tighter bounds than the LAEVB through mode averaging as opposed to mode matching. The idea is
to estimate LAEVB by drawing K samples from a proposal distribution and to average probability
ratios:

LKIWAE(θ, φ,X,Z) ≈ log
1

K

K∑
k=1

pθ(X,Z
(k))

qφ(Z(k)|X)
where Z(k) ∼ qφ(Z|X) (6)

It can be shown that log pθ(X) ≥ Lk+1 ≥ Lk ≥ L1. The LIWAE reduces to the LAEVB when K = 1
and approaches the true log probability of the data as K →∞.

3.1.2 STATE SPACE MODELS

State space models (SSMs) describe a time series of observations X ≡ {x1, . . .xT }, xt ∈ Rdx
dependent upon a time series of latent variables Z ≡ {z1, . . . zT }, zT ∈ Rdz that evolve accord-
ing to stochastic dynamics. We are interested in dynamical systems which exhibit the following
dependency:

pθ(X,Z) = cθ · Fθ(Z)

T∏
t=0

gθ(xt|zt) , (7)

where gθ is an observation model whose parameters are functions of the latent state zt. The normal-
ization constant is denoted cθ and Fθ denotes the latent evolution described with Markov Chain:

Fθ(Z) = f0(z0)

T∏
t=1

fθ(zt|zt−1) , (8)

f0 = N
(
ψ0,Q0

)
, (9)

zt|zt−1 ∼ N
(
ψθ(zt−1), Q

)
, (10)

Marginalization with respect to z becomes intractable when Fθ(Z) is defined by a nonlinear function
or g(xt|zt) is non-Gaussian.
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3.1.3 SEQUENTIAL MONTE CARLO

Sequential Monte Carlo (SMC) methods factorize an intractable distribution pθ(X,Z) (referred to
as the target distribution) into a distribution of increasing probability spaces. Sequential Importance
Sampling (SIS) methods perform importance sampling sequentially by defining importance weights
w

(k)
t at time t for sample k as follows where K samples are drawn from the proposal distribution q:

z
(k)
t ∼ qφ(z

(k)
t |z

(k)
t−1,xt) w

(k)
t :=

fθ(z
(k)
t |z

(k)
t−1)gθ(xt|z(k)

t )

qφ(z
(k)
t |z

(k)
t−1,xt)

(11)

Various resampling schemes exist so that the samples which are referred to as particles are focused
on promising regions of state space. Sequential Importance Resampling and SMC achieve this goal
by resampling particles according to their importance sampling weights:

a
(k)
t−1 ∼ CATEGORICAL(·|w(1:K)

t−1 ) w
(k)
t :=

fθ(z
(k)
t |z

a
(k)
t−1

t−1 )gθ(xt|z
a
(k)
t−1

t )

qφ(z
(k)
t |z

a
(k)
t−1

t−1 ,xt)

(12)

At the last time step, the posterior can be evaluated by averaging over sample trajectories to approx-
imate the functional integral using the empirical measure below:

K∑
k=1

w̄
(k)
T δ

z
(k)
1:T

(z1:T ) where w̄
(k)
T = w

(k)
T /

K∑
j=1

w
(j)
T (13)

The weights can now be used to construct an unbiased estimate for the marginal likelihood:

ẐSMC :=

T∏
t=1

[ 1

K

K∑
k=1

w
(k)
t

]
(14)

3.1.4 AUTO ENCODING SEQUENTIAL MONTE CARLO

An important insight of (Maddison et al., 2017; Le et al., 2018) is that the SMC algorithm is de-
terministic conditioning on (Z

(1:K)
1:T ,A

(1:K)
1:T−1). As a result, the importance sampling density can be

reparameterized to act as a variational distribution that can be encoded:

QSMC(Z1:K
1:T ,A

1:K
1:T−1) :=

(
K∏
k=1

q1,φ(z
(k)
1 )

)
T∏
t=2

K∏
k=1

qt,φ(z
(k)
t |z

a
(k)
t−1

1:t−1) · CATEGORICAL(a
(k)
t−1|w1:K

t−1)

(15)
This gives a way of constructing a filtered cost function for simultaneous model inference and learn-
ing. The cost is constructed by running SMC to obtain an estimate of the marginal log likeli-
hood. As with the IWAE, the estimate LSMC defined below converges to the true log likelihood
LSMC → log p(x1:T ) as K →∞.

LSMC(θ, φ,Z1:T ) :=

∫
QSMC(Z1:K

1:T ,A
1:K
1:T−1) log ẐSMC(Z1:K

1:T ,A
1:K
1:T−1)dZ1:N

1:T dA
1:K
1:T (16)

3.2 SMOOTHING VARIATIONAL OBJECTIVES

We build upon AESMC and FIVO to design a variational objective based on the marginal likelihood
estimate constructed using SMC. One way to define a Smoothed Variational Objective (SVO) is to
explicitly modify the target density by conditioning latent states on future observations. Our ap-
proach is to smooth the proposal distribution by conditioning on full observations thereby implicitly
modifying the target through its shared factorization with the proposal.

3.2.1 PARAMETERIZING THE PROPOSAL DISTRIBUTION

We begin by considering a proposal distribution of the form:

qφ,ϕ(z
(k)
1:T |x1:T ) ∝ qϕ(z

(k)
1 )︸ ︷︷ ︸

initial state

T∏
t=1

qφ(z
(k)
t |xt)︸ ︷︷ ︸

encoding

T∏
t=2

CATEGORICAL(a
(k)
t−1|w1:K

t−1)︸ ︷︷ ︸
resampling

qϕ(z
(k)
t |z

a
(k)
t−1

t−1 )︸ ︷︷ ︸
evolution

(17)
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where the proposal density factorizes into separate functions for evolution of the latent dynamics
and encodings of the data.

qϕ(zt|zt−1) = N (ψ(zt−1),Σ), (18)
qφ(zt|xt) = N (γ(xt),Λ). (19)

We take ψ : Rdz → Rdz and γ : Rdx → Rdz as nonlinear time invariant functions represented with
deep neural networks. The covariances Σ and Λ can be invariant trainable parameters or nonlinear
functions of the latent space. Unlike QSMC in Eq. (15), Eq. (17) models dynamics that depend on
latent states instead of time. This proposal choice is also advantageous because the transition term
of the recognition model qϕ(z

(k)
t |z

(k)
t−1) can be chosen to share the network parameters ϕ defining

{ψ,Σ} with the target transition term fϕ(zt|zt−1) of the generative model.

pθ,ϕ(z1:T ,x1:T ) ∝ fϕ(z1)︸ ︷︷ ︸
initial state

T∏
t=1

gθ(xt|zt)︸ ︷︷ ︸
decoding

T∏
t=2

fϕ(zt|zt−1)︸ ︷︷ ︸
evolution

(20)

This is analogous to the bootstrap filter (Gordon et al., 1993), however the addition of a new term
permits disentangling the transition function from an encoding of the data. As a result the evolu-
tion term of the variational posterior is exact retaining both tractability and expressiveness. The
generative evolution law is thus specified as follows:

fϕ(zt|zt−1) = N (ψ(zt−1),Σ), (21)

The decoding term is defined using a deterministic nonlinear rate function υ : Rdz → Rdx repre-
sented with a deep network and a noise model that need not be conjugate. Without loss of generality
consider a Gaussian emission density:

gθ(zt|xt) = N (υ(xt),Γ), (22)

The incremental weights are expressed using the following factorization:

w
(k)
t ∝

fϕ(z
(k)
t |z

a
(k)
t−1

t−1 )gθ(xt|z
a
(k)
t−1

t )

qϕ(z
(k)
t |z

a
(k)
t−1

t−1 )qφ(z
(k)
t |xt)

(23)

3.2.2 FORWARD FILTERING BACKWARD SMOOTHING

We consider two solutions for sampling smoothed trajectories, one is a bidirectional encoding ar-
chitecture for smoothing and another is the Forward Filtering Backwards Smoothing (FFBS) for-
mula (Kitagawa, 1996). To smooth the latent states and ensure that q(zt) depends on both zt−1 and
zt+1, we consider the following recursion:

p(zt|x1:T ) = p(zt|x1:t)︸ ︷︷ ︸
filtered

∫ smoothed︷ ︸︸ ︷
p(zt+1|x1:T )

evolution︷ ︸︸ ︷
p(zt+1|zt)∫

p(zt+1|zt)p(zt|x1:t)dzt︸ ︷︷ ︸
state prediction

dzt+1 (24)

FFBS first iterates forward to compute the filtered distribution at each time step, reweighting parti-
cles with the following backward recursion:

w
(k)
t|T = w̄

(k)
t

[
K∑
i=1

w
(i)
t+1|T

fθ(z
(i)
t+1|z

(k)
t )∑K

j=1 w̄
(j)
t fθ,ϕ(z

(i)
t+1|z

(j)
t )

]
(25)

with w(k)
T |T = w̄

(k)
T . This allows us to sample from a smoothed posterior. When applying FFBS,

we find two drawbacks. In contrast to the O(TK) complexity of particle filter, the complexity
of FFBS is O(TK2), scaling quadratically with the number of particles through the through the
(i, k) pairwise interactions. Another limitation includes the fact that the backwards recursion to
update weights does not change the support of the sampled particles which may be disjoint from the
smoothed posterior.
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Figure 1: Summary of the Fitzhugh-Nagumo results: (top left) ground truth dynamics and trajectories for the
original system; (bottom left) latent variables zt = (Vt,Wt) from a single trial in the plane; (top center) latent
dynamics and trajectories inferred by SVO; (bottom center) noisy 1D observation xt = N (Vt, σ

2) from a
single trial; (right) R2

k for various models on the dimensionality expansion task.

3.2.3 ENCODING ARCHITECTURES FOR SMOOTHED VARIATIONAL OBJECTIVES

We augment the encoding term of the proposal in Eq. (17) using the full time ordered sequence of
observations:

QSVO(z
(k)
1:T |x1:T ) ∝ qϕ(z

(k)
1 |x1:T )

T∏
t=1

qφ(z
(k)
t |x1:T )

T∏
t=2

CATEGORICAL(a
(k)
t−1|w1:K

t−1)qϕ(z
(k)
t |z

a
(k)
t−1

t−1 )

(26)

For the case where qt,φ(z1|x1) and qt,φ(zt|x1:t) are factorized Gaussians with conditionals param-
eterized by time varying networks, simply expanding the network inputs from xt to x1:T would be
expensive. As a result, we extract features from the full time series x1:T and redefine the input to
our encoder function. To achieve this, an RNN is run both forward and backward,

ef,t = RNNf (ef,t−1,xt) (27)
eb,t = RNNb(eb,t+1,xt) (28)

where ef,t and eb,t are states containing information of x1:t and xt:T respectively. Then the concate-
nation of [ef,T , eb,1] is used to parameterize the initial state distribution qφ(z1|x1:T ), and [ef,t, eb,t]
is fed into the term of the proposal defining the encoder qφ(zt|x1:T ). The nonlinear time invariant
evolution function is then applied to transition between states.

z1 = γ([ef,T , eb,1]) (29)
zt = ψ(zt−1) (30)

The cost of the feature extraction with the bidirectional RNN is O(T ), independent of the number
of particles unlike the FFBS. This is similar to an approach in FIVO with the exception of a shared
parameterization between proposal and target transition. The objective and marginal likelihood
estimate are defined below.

LSVO := EQSVO

[
log ẐSVO

]
where ẐSVO :=

T∏
t=1

1

K

K∑
k=1

fϕ(z
(k)
t |z

a
(k)
t−1

t−1 )gθ(xt|z
a
(k)
t−1

t )

qϕ(z
(k)
t |z

a
(k)
t−1

t−1 )qφ(z
(k)
t |x1:T )

(31)

3.2.4 NONLINEAR EVOLUTION OF THE COVARIANCE MATRIX.

For many nonlinear dynamical systems, the evolution of the latent state may depend on a noise
term which itself may evolve stochastically. In order to model a covariance matrix that expresses
nonlinear z-dependence on the latent space, we face a challenge. It is important to ensure that the
latent paths are smooth. This is equivalent to stating that the difference between the covariance
matrix and a constant matrix C is small.

max |Q(zt)− C| . 0.1 (32)
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Figure 2: ELBO convergence across epochs for SVO using exclusive parameters θ, φ and shared parameters
θ, ϕ, φ; (left) log ZSV O across epochs as K increases using shared evolution network; (center) log ZSV O

across epochs as K increases using independent evolution networks; (right) log ZSV O convergence for shared
vs independent evolution networks with K = 16 highlighting faster convergence to a higher ELBO.

An expressive model should permit the covariance to undergo nonlinear evolution. One solution
is to parameterize the covariance with a constant plus a scalar times a symmetric matrix whose
components are a nonlinear function of the latent state.

Q(zt) = C + α ·Σ(zt) (33)

In the experiments we take α = 1e − 1, C = I · σ2 where σ2 is a trainable variable and the
components of Σ(zt) as the output of a deep network. This permits dynamic proposal distributions
whose entropy evolves as the Markov chain transitions between states. At different positions in
latent space, the system can suppress or enhance its sensitivity to noise. We refer to this as a Locally
Linear Covariance Matrix (LLCM).

3.3 GRADIENT ESTIMATORS AND SIGNAL-TO-NOISE RATIO

Because LSVO converges to the true log marginal likelihood, one would naturally think about in-
creasing the number of particles K to get a better surrogate objective. However, (Rainforth et al.,
2018) points out the detrimental effect of large K on learning the inference network by reducing the
signal-to-noise-ratio of the gradient estimator. Formally, for a gradient estimator ∆K constructed
by K particles, the signal-to-noise ratio (SNR) is defined as:

SNRK =

∣∣∣∣∣ E[∆K ]√
Var[∆K ]

∣∣∣∣∣. (34)

Intuitively, a vanishing SNR implies that the gradient estimator reduces to pure noise, hence provid-
ing no information to learning. In the IWAE setting, the SNR of the inference network decreases
with rate O(1/

√
K) (Rainforth et al., 2018); (Le et al., 2018) extends the result to the SMC setting

without providing the theoretical evidence. Here, we argue that (Le et al., 2018) neglects that they
are using a biased gradient estimator, which in fact addresses the issue of degrading SNR.

We consider the following three stochastic gradient estimators. A full description would be given in
the Appendix.

1. The unbiased estimator, denoted by ∇LK + CATEGORICAL, which takes into account the
gradient in the resampling procedure.

2. The biased estimator without resampling gradient∇LK
3. The relaxed gradient estimator,∇LK+CONCRETE(λ), which replaces the CATEGORICAL

distribution in the resampling step with CONCRETE distribution. Note that as λ → 0, the
CONCRETE distribution approaches the CATEGORICAL. (Jang et al., 2016), (Maddison
et al., 2016).

For the SNR of∇LK , we have the following proposition:

7
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Figure 3: Summary of the Lorenz results: (left) inferred latent paths from noisy 10D observations; (center) the
R2

k=10 plot for ten step forward interpolation as latent dimension dz increases; (right) theR2
k for dz = 3 across

various models on the dimensionality reduction task.

Proposition 1. Assume that the first four moments of w(1)
t and ∇w(1)

t are all finite and their vari-
ances are non-zero for t ∈ 1 : T , then the signal-to-noise ratio converges at the following rate:

SNRK(θ, ϕ, φ)

=

∣∣∣∣∣∣∣∣∣∣∣∣
∇ logZ +

∑T
t=2

∑T
t′≥t+1 E

[
∇w1

t−1

Zt−1
· (w1

t′−Zt′ )
2

2Z2
t′

∣∣∣ (a1
t−1 = 1

)]
+O(1/K)√√√√1/K

{
T∑
t=1

E
[
(∇w1

t

Zt
)2
]

+
T∑

t′ 6=t,t′=1

T∑
t=1

√
Var

[
∇w1

t

Zt

]
Var

[
∇w1

t′
Zt′

]}
+O(T

2
/K2)

∣∣∣∣∣∣∣∣∣∣∣∣
(35)

where Z = pθ(x1:T ) and Zt = pθ(xt|x1:t−1) for t ∈ 1 : T .

Further assuming the resampling bias
∑T
t=2

∑T
t′≥t+1 E

[
∇w1

t−1

Zt−1
· (w1

t′−Zt′ )
2

2Z2
t′

∣∣∣ (a1
t−1 = 1

)]
= O(1)

leads to SNRK(θ, φ, ϕ) = O(
√
K).

The formal proof is provided in the Appendix. We add empirical evidence to this result in Section
4. For the rest of experiments, we use∇LK to estimate the gradient.

4 EXPERIMENTAL RESULTS

It is important to quantify the performance of the hidden evolution in order to understand the quality
of the dynamics learned. The k-step MSE and its normalized version, the R2

k are computed by
applying the transition function to the system over a rolling window k steps into the future without
any input data. The emission function is then used to form a predicted reconstruction x̂t+k and an
error term using the corresponding observation window xt+k (below x̄k is the average of xk:T ).
This ensures that the evaluation criteria is dependent upon the both evolution term as well as the
emission term.

MSEk =

T−k∑
t=0

(xt+k − x̂t+k)
2

R2
k = 1− MSEk∑T−k

t=0 (xt+k − x̄k)
2

(36)

We note that the ELBO is not a performance statistic that generalizes across models. In contrast,
the R2

k provides a metric to quantify the inferred dynamics. Fig. 6 in the Appendix emphasizes the
above by highlighting the difference between the ELBO and the R2

k for the IWAE and SVO.

4.1 FITZHUGH-NAGUMO

The Fitzhugh-Nagumo system is a two dimensional reduction of the Hodgkin-Huxley model. It is
described by two independent variables with cubic and linear functions.

V̇ = V − V 3/3−W + Iext ,

Ẇ = a(bV − cW ) (37)

8
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Figure 4: Summary of the Allen results: (left) two trials from the dataset; (center) the data against the predicted
observation value using the dynamics learned over a rolling window ten steps ahead. Hyperpolarization and
depolarization nonlinearities are predicted by the inferred dynamics; (right) R2

k for various models.

The system was integrated over 200 time points with Iext = 1 held constant and a = 0.7, b =
0.8, c = 0.08. The initial state was sampled uniformly over [−3, 3]2 and 100 trials were generated
with 66 for training, 17 for validation and 17 for testing. One dimensional Gaussian observations
were produced with a linear observation model acting on a single variable. Dimensionality expan-
sion is intrinsically harder than dimensionality reduction due to the loss of information. For this
reason we choose zt = (Vt,Wt) and xt = N (Vt, σ

2) where σ2 = 0.01.

Fig. 1 shows the results of the Fitzhugh-Nagumo experiment. The top left panel displays the phase
space and trajectories of the original system. The bottom left panel displays latent variables from
a single trial in the plane. The top center panel displays the inferred two-dimensional dynamics
and trajectories. We find that the limit cycle is recovered correctly and the topology of the space
is preserved. Initial points located both inside and outside of the cycle in the original system are
invariant in the reconstruction. The bottom center panel displays an observation from a single trial.
The right panel shows the R2

k comparison across models.

4.2 ELBO CONVERGENCE WITH SHARED EVOLUTION

We explore the effect of sharing the evolution parameters between the proposal and target distribu-
tion on model convergence by examining the ELBO. Fig. 2 displays the ELBO convergence across
epochs as we increase the number of particles (K). The left panel illustrates the ELBO convergence
sharing network parameters ϕ = {ψ,Σ} between proposal and target. Larger values ofK result in a
faster convergence and lower stochastic gradient noise. The center panel displays the ELBO conver-
gence for separate evolution networks for the proposal and the target. Note that for the same value
of K, separate evolution networks require a larger number of epochs to converge and the ELBO
obtains a lower value with larger stochastic gradient noise. The right panel displays both shared
and independent evolution terms for K = 16 particles highlighting the difference between the two
parameterizations.

4.3 LORENZ ATTRACTOR

The Lorenz attractor is a chaotic nonlinear dynamical system defined with 3 independent variables.

ż1 = σ(z2 − z1) , ż2 = z1(ρ− z3)− z2 , ż3 = z1z2 − βz3 (38)

The system of equations is integrated over 250 time points using σ = 10, ρ = 28, β = 8/3 by
generating randomized initial states in [−10, 10]3. Ten dimensional Gaussian observations were
produced with a mean specified by a z-dependent neural network. The final dataset consists of 100
trials with 66 for training, 17 for validation and 17 for testing.

The results of the Lorenz experiment are shown in Fig. 3. The inferred latent paths are put together
in the left panel illustrating the two cycles. The center panel displays how R2

k=10 scales as the latent
dimension dz increases. The R2

k stops improving once the correct number of independent variables
in the system is reached. The right panel displays the R2

k comparison with dz = 3.
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Figure 5: Convergence of SNRs of gradient estimators in the encoder network (left), transition network (center)
and decoder network (right) with increasing K. Distinct lines correspond to gradient estimators. The black
dashed line with slope 1 illustrates a signal-to-noise-ratio of convergence rate O(

√
K).

4.4 SINGLE CELL ELECTROPHYSIOLOGY DATA

Electrophysiology data was downloaded from the Allen Brain Atlas (Jones et al., 2009). Intracellular
voltage recordings were collected from primary Visual Cortex of the mouse, area layer 4. The dataset
consists of 40 trials from 5 different cells. The input current in the experiments is a step-function
with an amplitude between 80 and 151pA. There were 30 trials reserved for training and 10 for
validation. Each trial was divided into five parts and down-sampled from 10,000 time bins to 1,000
in equal-time intervals. Trials were normalized dividing each by its maximal value.

Fig. 4 displays the result of the Allen experiment. The left panel illustrates two trials of 1D observa-
tions from the training set. We find that three latent variables provides the best fit. The center panel
displays the predicted observation value using the dynamics learned over a rolling window ten steps
ahead. Hyperpolarization and depolarization nonlinearities are accurately reconstructed by appying
the inferred dynamics. The right panel displays the R2

k comparison with dz = 3.

4.5 SIGNAL-TO-NOISE RATIO OF GRADIENT ESTIMATORS

In this section, we focus on SNRs of gradient estimators in the encoder network (φ), evolution
network (ϕ) and decoder network (θ), where the gradient is taken with respect to φ, ϕ and θ cor-
respondingly. Fig. 5 presents the empirical results for SNRs of four different gradient estimators.
The expectation and variance in the SNR are calculated using N = 100 gradient samples, which are
collected in the middle training stage of running SVO on Fitzhugh-Nagumo data. The l2 norm is
used to compute a scalar quantity to define the SNR. We find that the three panels share similar pat-
terns: (1) The gradient estimator without resampling and the relaxed one with temperature λ = 0.2
possess an SNR of convergence rate O(

√
K), which aligns with the theoretical result. Although ig-

noring or relaxing the gradient from the resampling procedure adds a bias to the gradient estimator,
it produces a positive effect of K on SNR; (2) The unbiased CATEGORIAL resampling gradient and
relaxed gradient with small bias (λ = (K − 1)−1) suffer from large variance which increases at a
rate of O(

√
K), leading to a relatively low and even decreasing SNR for increasing K.

5 CONCLUSION

We have sketched a method to construct Smoothed Variational Objectives (SVOs) using Sequential
Monte Carlo to perform both inference and parameter estimation in nonlinear dynamical systems.
By sharing parameters of the transition function between the proposal and target, SVO forgoes ex-
changing expressiveness for tractability. We find that the use of a biased gradient estimate can help
address the issue of a degraded signal-to-noise ratio. Using the smoothed proposal density improves
the computational complexity with a cost independent of the number of particles, and the predic-
tion performance, quantified by the k-step reconstruction error across dimensionality reduction and
expansion tasks. Future work includes parameterizing an input term to model non-autonomous dy-
namical systems.
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APPENDIX

A. IWAE VS SVO COMPARISON

Figure 6: Summary of the IWAE vs SVO comparison on the Lorenz task: (left) ELBO across epochs for the
smoothed IWAE vs SVO. The latter exhibits larger stochastic gradient noise due to the resampling process;
(right) R2

k for the smoothed IWAE vs SVO on the test set.

The smoothed IWAE achieves a higher ELBO and lower zero-step reconstruction error than SVO,
however the R2

k is significantly lower illustrating the inability of the dynamics learned to predict fu-
ture observations. We emphasize the relevance of the R2

k as opposed to the ELBO in quantifying the
inferred dynamics. In the comparison above, both models were trained using three layer networks
for encoder, shared transition and decoder functions and using 64 particles.

B. GRADIENT ESTIMATORS

1. The unbiased gradient estimator,
∇LK + CATEGORICAL = ∇ log

∏T−1
t=1

∏K
k=1 CATEGORICAL(a

(k)
t |w1:K

t ) · LK +∇LK .
The derivation could be found in (Le et al., 2018) or (Maddison et al., 2017).

2. The biased gradient estimator without resampling ∇LK is implemented by simply taking
the gradient of the estimated variational objective, ẐSVO.

3. For the relaxed gradient estimator,
∇LK + CONCRETE(λ) = ∇ log

∏T−1
t=1

∏K
k=1 CONCRETE(a

(k)
t |w1:K

t , λ) · LK +∇LK
We use the CONCRETE distribution to resample particles, and then directly evaluate the
gradient of the objective.

C. PROOF OF PROPOSITION 1

Proof. It suffices to show the convergence rate of expectation and variance of gradient estimate with
respect to K. Throughout the analysis, we will extensively apply the result from (Rainforth et al.,
2018), and exploit the factorization of the SVO objective: Ẑ =

∏T
t=1 Ẑt where Ẑt = 1

K

∑K
k=1 w

k
t .

Assume that z1:K
1:T are obtained by passing the Guassian noise ε1:K

1:T through the reparameterization
function.

1. Expectation.

E
[
∇ log Ẑ

]
= ∇E

[
log Ẑ

]
− E

[
∇ log

T∏
t=2

K∏
k=1

CATEGORICAL(akt−1|w1:K
t−1) · log Ẑ

]
(39)
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The expectation decomposes into two terms, where the convergence rate for the first di-
rectly follows the result from (Rainforth et al., 2018):

∇E
[
log Ẑ

]
= ∇

T∑
t=1

E
[
log Ẑt

]
(40)

= ∇ logZ − 1

2K

[ T∑
t=1

∇(Var[w1
t ]/Z2

t )
]

+O(T/K2) (41)

For the remaining term that includes the resampling gradient, we apply a thorough analysis
as follows.

E
[
∇ log

T∏
t=2

K∏
k=1

CATEGORICAL(akt−1|w1:K
t−1) · log Ẑ

]
=

T∑
t=2

K∑
k=1

E
[
∇ log CATEGORICAL(akt−1|w1:K

t−1) · log Ẑ
]

(42)

= K

T∑
t=2

T∑
t′=1

E
[
∇ log CATEGORICAL(a1

t−1|w1:K
t−1) · log Ẑt′

]
(43)

Taylor expand log Ẑt′ about Zt′ :

= K

T∑
t=2

T∑
t′=2

E
[
∇ log CATEGORICAL(a1

t−1|w1:K
t−1)

·
(

logZt′ +
Ẑt′ − Zt′
Zt′

− (Ẑt′ − Zt′)2

2Z2
t′

+R3(Ẑt′)
)]

(44)

where R3(Ẑt′) denotes the remainder in the Taylor expansion of log Ẑt′ about Zt′ .

For t′ ≤ t− 1, we have

E

[
∇ log CATEGORICAL(a1

t−1|w1:K
t−1) · (Ẑt′ − Zt′)

Zt′

]

= Eε1:K1:t−1,a
1:K
1:t−2

[
Ẑt′ − Zt′
Zt′

· Ea1t−1

[
∇ log CATEGORICAL(a1

t−1|w1:K
t−1)

]]

= Eε1:K1:t−1,a
1:K
1:t−2

[
Ẑt′ − Zt′
Zt′

· 0

]
= 0.

(45)

For t′ ≥ t, we have

E

[
∇ log CATEGORICAL(a1

t−1|w1:K
t−1) · (Ẑt′ − Zt′)

Zt′

]

= Eε1:K1:t−1,a
1:K
1:t−1

[
∇ log CATEGORICAL(a1

t−1|w1:K
t−1) · Eε1:K

t:t′ ,a
1:K
t:t′−1

[
Ẑt′ − Zt′
Zt′

]]
= Eε1:K1:t−1,a

1:K
1:t−1

[
∇ log CATEGORICAL(a1

t−1|w1:K
t−1) · 0

]
= 0

(46)

Hence, it suffices to compute the convergence rate of the following:

K

T∑
t=2

T∑
t′=2

E

[
∇ log CATEGORICAL(a1

t−1|w1:K
t−1) · (Ẑt′ − Zt′)2

2Z2
t′

]
(47)
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Note that when t′ ≤ t− 1, we obtain similar results as Eq. (45). Thus, we turn to the case
when t′ ≥ t.
For t′ ≥ t+ 1, each wkt′ has dependence on a1

t−1, hence

K · E

[
∇ log CATEGORIAL(a1

t−1|w1:K
t−1) · (Ẑt′ − Zt′)2

2Z2
t′

]
(48)

= K · E

[
∇ log CATEGORICAL(a1

t−1|w1:K
t−1) ·

(
1/K

∑K
k=1(wkt′ − Zt′)

)2

2Z2
t′

]
(49)

= E

[
∇ log CATEGORICAL(a1

t−1|w1:K
t−1) · (w1

t′ − Zt′)2

2Z2
t′

]
(50)

=

K∑
i=1

Eε1:K1:t−1a
1:K
1:t−2

[
Eε1t

[
∇

w1
t−1

KẐt−1

· (w1
t − Zt)2

2Z2
t

∣∣∣∣∣ (a1
t−1 = i

)]]
(51)

= K · Eε1:K1:t−1a
1:K
1:t−2

[
Eε1t

[
∇

w1
t−1

KẐt−1

· (w1
t − Zt)2

2Z2
t

∣∣∣∣∣ (a1
t−1 = 1

)]]
(52)

Applying the Taylor expansion of 1
Ẑt−1

around Zt−1: 1
Ẑt−1

= 1
Zt−1

+R2(Ẑt−1)

= Eε1:K1:t−1a
1:K
1:t−2

[
Eε1t

[
∇
w1
t−1

Zt−1
· (w1

t′ − Zt′)2

2Z2
t′

∣∣∣∣∣ (a1
t−1 = 1

)]]

+ Eε1:K1:t−1a
1:K
1:t−2

[
Eε1t

[
∇(w1

t−1R2(Ẑt−1)) · (w1
t′ − Zt′)2

2Z2
t′

∣∣∣ (a1
t−1 = 1

)]]
(53)

For t′ = t, only w1
t depends on a1

t−1, consequently we have

K · E

[
∇ log CATEGORICAL(a1

t−1|w1:K
t−1) · (Ẑt′ − Zt′)2

2Z2
t′

]
(54)

=
1

K
· Eε1:K1:t−1a

1:K
1:t−2

[
Eε1t

[
∇
w1
t−1

Zt−1
· (w1

t′ − Zt′)2

2Z2
t′

∣∣∣(a1
t−1 = 1)

]]
+

1

K
· Eε1:K1:t−1a

1:K
1:t−2

[
Eε1t

[
∇(w1

t−1R2(Ẑt−1)) · (w1
t′ − Zt′)2

2Z2
t′

∣∣∣(a1
t−1 = 1)

]]
(55)

2. Variance.

Var
[
∇ log Ẑ

]
= Var

[ T∑
t=1

∇ log Ẑt

]
(56)

=

T∑
t=1

Var
[
∇ log Ẑt

]
+ 2

T∑
t=1

T∑
t′ 6=t,t′=1

Cov
(
∇ log Ẑt,∇ log Ẑt′

)
(57)

Decomposing the variance into the sum of variance at each time points, and the pairwise
covariance across different time point, we will show that both terms are O(1/K).

(1) Variance at each time step. ∀t = 1 : T ,

Var
[
∇ log Ẑt

]
=

1

K
· E

[(
Zt∇w1

t − w1
t∇Zt

Z2
t

)2
]

+O(1/K2) (58)

=
1

K
· E

[(
∇w1

t

Zt

)2
]

+O (1/K2) (59)
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(2) Covariance between different time steps.
For t 6= t′ ∈ 1 : T , we first apply Taylor theorem to log Ẑt around Zt, and then exploit
the fact that Ẑt is an unbiased estimation of Zt, and exploit the definition of covariance
to expand and collapse terms, as follows:

Cov
(
∇ log Ẑt,∇ log Ẑt′

)
(60)

= Cov

(
∇

(
logZt +

Ẑt − Zt
Zt

+R1(Ẑt)

)
,∇

(
logZt′ +

Ẑt′ − Zt′
Zt′

+R1(Ẑt′)

))

= Cov

(
∇

(
Ẑt − Zt
Zt

+R1(Ẑt)

)
,∇

(
Ẑt′ − Zt′
Zt′

+R1(Ẑt′)

))
(61)

= E

[
∇

(
Ẑt
Zt

)
· ∇

(
Ẑt′

Zt′

)]
+ E

[
∇

(
Ẑt′

Zt′

)
· ∇R1(Zt)

]

+ E

[
∇

(
Ẑt
Zt

)
· ∇R1(Zt′)

]
+ Cov

(
∇R1(Ẑt),∇R1(Ẑt′)

)
(62)

(i) For the first term in Eq. (62), since z
(k)
t are i.i.d. for fixed t, we have

E

[
∇

(
Ẑt
Zt

)
· ∇

(
Ẑt′

Zt′

)]
= E

[
1

K

K∑
k=1

∇
(
wkt
Zt

)
· 1

K

K∑
k′=1

∇

(
wk
′

t′

Zt′

)]
(63)

=
1

K2
·
K∑
k=1

K∑
k′=1

E

[
∇
(
wkt
Zt

)
· ∇

(
wk
′

t′

Zt′

)]
(64)

= E
[
∇w

1
t

Zt
· ∇w

1
t′

Zt′

]
(65)

= Cov

(
∇w

1
t

Zt
,∇w

1
t′

Zt′

)
(66)

Without loss of generality, we assume t′ > t. First, when t′ = t+ 1,

Pr
(
z1
t+1 depends on z1

t

)
= E

[
w1
t∑K

k=1 w
k
t

]
=

1

K
(67)

When t′ > t+ 1, using chain rule and by induction we also have,

Pr(z1
t′ depends on z1

t ) =
1

K
(68)

Hence,

Cov

(
∇w

1
t

Zt
,∇w

1
t′

Zt′

)
=

1

K
· Cov

(
∇w

1
t

Zt
,∇w

1
t′

Zt′

∣∣∣∣∣ (z1
t′ depends on z1

t

))
(69)

≤ 1

K

√
Var

[
∇w

1
t

Zt

]
Var

[
∇
w1
t′

Zt′

]
(70)

(ii) For the second and third term in Eq. (62), without loss of generality, we analyze
the second term E

[
∇
(
Ẑt′/Zt′

)
· ∇R1(Zt)

]
, and assume t′ > t.

Using the i.i.d. property of particles at fixed time step, we have

E

[
∇

(
Ẑt′

Zt′

)
· ∇R1(Zt)

]
=

1

K3
· E

[
K∑
k=1

∇w
k
t′

Zt′
O

(
K∑
k=1

(wkt − Zt)2

)]
(71)

=
1

K
· E
[
∇w

1
t′

Zt′
O
(
(w1

t − Zt)2
)]

(72)
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Similar to the previous analysis on covariance, we can show that

E
[
∇w

1
t′

Zt′
· O
(
(w1

t − Zt)2
)]

= O
(

1

K

)
(73)

Hence,

E

[
∇

(
Ẑt′ − Zt′
Zt′

)
· ∇R1(Zt)

]
= O

(
1

K2

)
(74)

(iii) For the last term in Eq. (62), note that |Cov(A,B)| ≤
√

Var(A)Var(B), and
Var[∇R1(Ẑt)] = O (1/K2), hence we obtain

Cov
(
∇R1(Ẑt),∇R1(Ẑt′)

)
= O

(
1

K2

)
(75)

Substituting Eq. (59), Eq. (62) and Eq. (66) into Eq. (57), we arrive at the final
expression for the variance of gradient estimate:

Var
[
∇ log Ẑ

]
(76)

=
1

K


T∑
t=1

E

[(
∇w

1
t

Zt

)2
]

+

T∑
t′ 6=t,t′=1

T∑
t=1

√
Var

[
∇w

1
t

Zt

]
Var

[
∇
w1
t′

Zt′

]+O
(
T 2

K2

)
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