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ABSTRACT

Data selection methods, such as active learning and core-set selection, are useful
tools for machine learning on large datasets. However, they can be prohibitively
expensive to apply in deep learning because they depend on feature representations
that need to be learned. In this work, we show that we can greatly improve the
computational efficiency by using a small proxy model to perform data selection
(e.g., selecting data points to label for active learning). By removing hidden
layers from the target model, using smaller architectures, and training for fewer
epochs, we create proxies that are an order of magnitude faster to train. Although
these small proxy models have higher error rates, we find that they empirically
provide useful signals for data selection. We evaluate this “selection via proxy”
(SVP) approach on several data selection tasks across five datasets: CIFARI10,
CIFAR100, ImageNet, Amazon Review Polarity, and Amazon Review Full. For
active learning, applying SVP can give an order of magnitude improvement in
data selection runtime (i.e., the time it takes to repeatedly train and select points)
without significantly increasing the final error (often within 0.1%). For core-set
selection on CIFAR10, proxies that are over 10x faster to train than their larger,
more accurate targets can remove up to 50% of the data without harming the final
accuracy of the target, leading to a 1.6 x end-to-end training time improvement.

1 INTRODUCTION

Data selection methods, such as active learning and core-set selection, improve the data efficiency of
machine learning by identifying the most informative training examples. To quantify informativeness,
these methods depend on semantically meaningful features or a trained model to calculate uncertainty.
Concretely, active learning selects points to label from a large pool of unlabeled data by repeatedly
training a model on a small pool of labeled data and selecting additional examples to label based on
the model’s uncertainty (e.g., the entropy of predicted class probabilities) or other heuristics (Lewis
& Gale, |1994; Rosenberg et al., 20055 Settles, 2011} |2012). Conversely, core-set selection techniques
start with a large labeled or unlabeled dataset and aim to find a small subset that accurately approxi-
mates the full dataset by selecting representative examples (Har-Peled & Kushal, 2007; |Tsang et al.,
2005; \Huggins et al.,|2016; |Campbell & Broderick, [2017; 2018} |Sener & Savarese}, [ 2018)).

Unfortunately, classical data selection methods are often prohibitively expensive to apply in deep
learning (Shen et al., 2017} |Sener & Savaresel 2018} |[Kirsch et al.|[2019). Deep learning models learn
complex internal semantic representations (hidden layers) from raw inputs (e.g., pixels or characters)
that enable them to achieve state-of-the-art performance but result in substantial training times. Many
core-set selection and active learning techniques require some feature representation before they can
accurately identify informative points either to take diversity into account or as part of a trained model
to quantify uncertainty. As a result, new deep active learning methods request labels in large batches
to avoid retraining the model too many times (Shen et al.| 2017} |Sener & Savaresel [2018; [Kirsch
et al., 2019). However, batch active learning still requires training a full deep model for every batch,
which is costly for large models (He et al., 2016bj Jozefowicz et al., 2016; [Vaswani et al., [2017)).
Similarly, core-set selection applications mitigate the training time of deep learning models by using
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bespoke combinations of hand-engineered features and simple models (e.g., hidden Markov models)
pretrained on auxiliary tasks (Wei et al., 201352014 Tschiatschek et al.|[2014; N1 et al., 2015)).

In this paper, we propose selection via proxy (SVP) as a way to make existing data selection methods
more computationally efficient for deep learning. SVP uses the feature representation from a separate,
less computationally intensive proxy model in place of the representation from the much larger and
more accurate target model we aim to train. SVP builds on the idea of heterogeneous uncertainty
sampling from [Lewis & Catlett (1994), which showed that an inexpensive classifier (e.g., naive
Bayes) can select points to label for a much more computationally expensive classifier (e.g., decision
tree). In our work, we show that small deep learning models can similarly serve as an inexpensive
proxy for data selection in deep learning, significantly accelerating both active learning and core-set
selection across a range of datasets and selection methods. To create these cheap proxy models,
we can scale down deep learning models by removing layers, using smaller model architectures,
and training them for fewer epochs. While these scaled-down models achieve significantly lower
accuracy than larger models, we surprisingly find that they still provide useful representations to rank
and select points. Specifically, we observe high Spearman’s and Pearson’s correlations between the
rankings from small proxy models and the larger, more accurate target models on metrics including
uncertainty (Settles, [2012), forgetting events (Toneva et al., 2019), and submodular algorithms such
as greedy k-centers (Wolf] [2011)). Because these proxy models are quick to train (often 10x faster),
we can identify which points to select nearly as well as the larger target model but significantly faster.

We empirically evaluated SVP for active learning and core-set selection on five datasets: CIFARI0,
CIFAR100 (Krizhevsky & Hinton, [2009), ImageNet (Russakovsky et al.l[2015), Amazon Review
Polarity, and Amazon Review Full (Zhang et al., |2015). For active learning, we considered both least
confidence uncertainty sampling (Settles|, 2012; |Shen et al., [2017} |Gal et al.| 2017 and the greedy
k-centers approach from [Sener & Savarese| (2018) with a variety of proxies. Across all datasets,
we found that SVP matches the accuracy of the traditional approach of using the same large model
for both selecting points and the final prediction task. Depending on the proxy, SVP yielded up
to a 7x speed-up on CIFAR10 and CIFAR100, 41.9x speed-up on Amazon Review Polarity and
Full, and 2.9x speed-up on ImageNet in data selection runtime (i.e., the time it takes to repeatedly
train and select points). For core-set selection, we tried three methods to identify a subset of points:
max entropy uncertainty sampling (Settles| |2012), greedy k-centers as a submodular approach (Wolf]
2011)), and the recent approach of forgetting events (Toneva et al.,[2019). For each method, we found
that smaller proxy models have high Spearman’s rank-order correlations with models that are 10x
larger and performed as well as these large models at identifying subsets of points to train on that
yield high test accuracy. On CIFAR10, SVP applied to forgetting events removed 50% of the data
without impacting the accuracy of ResNet164 with pre-activation (He et al.| 2016b)), using a 10x
faster model than ResNet164 to make the selection. This substitution yielded an end-to-end training
time improvement of about 1.6x for ResNet164 (including the time to train and use the proxy).
Taken together, these results demonstrate that SVP is a promising, yet simple approach to make data
selection methods computationally feasible for deep learning. While we focus on active learning and
core-set selection, SVP is widely applicable to methods that depend on learned representations.

2 METHODS

In this section, we describe SVP and show how it can be incorporated into active learning and core-set
selection. Figure [1{shows an overview of SVP: in active learning, we retrain a proxy model Af in
place of the target model A} after each batch is selected, and in core-set selection, we train the proxy

Af;] rather than the target A[T;L] over all the data to learn a feature representation and select points.

2.1 ACTIVE LEARNING

Pool-based active learning starts with a large pool of unlabeled data U = {x;};c[,,) Where [n] =
{1,...,n}. Each example is from the space X’ with an unknown label from the label space ) and is
sampled i.i.d. over the space Z = X x Y as (x;,¥;) ~ pz. Initially, methods label a small pool of
points s = {s(; € [n]};ejm) chosen uniformly at random. Given U, a loss function £, and the labels
{Z/sg }je[m) for the initial random subset, the goal of active learning is to select up to a budget of b

points s = s U {s; € [n] \ s°} je[p—, to label that produces a model A, with low error.
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Figure 1: SVP applied to active learning (left) and core-set selection (right). In active learning,
we followed the same iterative procedure of training and selecting points to label as traditional
approaches but replaced the target model with a cheaper-to-compute proxy model. For core-set
selection, we learned a feature representation over the data using a proxy model and used it to select
points to train a larger, more accurate model. In both cases, we found the proxy and target model
have high rank-order correlation, leading to similar selections and downstream results.

Baseline. In this paper, we apply SVP to least confidence uncertainty sampling (Settles, 2012} |Shen
et al.,2017;|Gal et al.l 2017) and the recent greedy k-centers approach from Sener & Savarese| (2018)).
Like recent work for deep active learning (Shen et al., 2017; |Sener & Savarese] |2018} Kirsch et al.|
2019)), we consider a batch setting with /& rounds where we select % points in every round. Following
Gal et al.|(2017); [Sener & Savarese| (2018); Kirsch et al.| (2019), we reinitialize the target model
and retrain on all of the labeled data from the previous k rounds to avoid any correlation between
selections (Frankle & Carbinl, 2018} Kirsch et al.|[2019). We denote this trained model as A%,

s0U...Usk
or just A7 for simplicity. Then using A}, we either calculate the model’s confidence as:

fconﬁdence(x§ AZ) =1- mgaX P(Q|X, AZ)

and select the examples with the lowest confidence or extract a feature representation from the model’s
final hidden layer and compute the distance between examples (i.e., A(x;,x;; A7 )) to select points
according to the greedy k-centers method from |Wolf| (2011); |Sener & Savarese|(2018)) (Algorithm .
The same model is trained on the final b labeled points to yield the final model, A}( which is then
tested on a held-out set to evaluate error and quantify the quality of the selected data.

Although other selection approaches exist, least confidence uncertainty sampling and greedy k-centers
cover the spectrum of uncertainty-based and representativeness-based approaches for deep active
learning. Other uncertainty metrics such as entropy or margin were highly correlated with confidence
when using the same trained model (i.e., above a 0.96 Spearman’s correlation in our experiments on
CIFAR). Query-by-committee (Seung et al.,|1992) can be prohibitively expensive in deep learning,
where training a single model is already costly. BALD (Houlsby et al.,[2011) has seen success in
deep learning (Gal et al.,|2017; |Shen et al., [2017) but is restricted to Bayesian neural networks or
networks with dropout (Srivastava et al.l 2014)) as an approximation (Gal & Ghahramanil, 2016)).

Algorithm 2 FORGETTING EVENTS

Algorithm 1 GREEDY K-CENTERS (TONEVA ET AL, 2019)

(WOLF, 2011} [SENER & SAVARESE, [2018)) 1: Initialize prev_acc; = 0,4 € [n]

: Initialize forgetting_events, = 0,7 € [n]
: while training is not done do

Input: data x;, existing pool s, trained model
AT, and a budget b

until [s| = b + |s°]

rev_acc; = acc;
return s \ s° p : !

Gradient update classifier on B
. return forgetting_events

1- Tnitialize s — s° Sample mini-batch B from L
2: repeat for example 7 € B do

3 u = argmaxie, mijes A (X %;: A7) if prev_acc; > acc; then
: s =sU{u} forg_ettinlg_eventlsi +=1
6:

2
3
4
5
6: Compute acc;
7
8
9
0
1
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2.2 CORE-SET SELECTION

Core-set selection can be broadly defined as techniques that find a subset of data points that maintain
a similar level of quality (e.g., generalization error of a trained model or minimum enclosing ball) as
the full dataset. Specifically, we start with a labeled dataset L = {x;, ¥; };c[] sampled i.i.d. from Z
with pz and want to find a subset of m < n points s = {s; € [n]};c[m] that achieves comparable

quality to the full dataset: ming;|sj=m Ex y~pz [€(X,¥; As)] — Ex ypz [é(x, y; A[n])}

Baseline. To find s for a given budget m, we implement three core-set selection techniques: greedy k-
centers (Wolf, |2011;Sener & Savarese, 2018)), forgetting events (Toneva et al.,[2019), and max entropy
uncertainty sampling (Lewis & Gale,|1994; Settles, 2012). Greedy k-centers is described above and in
Algorithm[I] Forgetting events are defined as the number of times an example is incorrectly classified
after having been correctly classified earlier during training a model, as described in Algorithm 2} To
select points, we follow the same procedure as[Toneva et al.|(2019): we keep the points with the m
highest number of forgetting events. Points that are never correctly classified are treated as having an
infinite number of forgetting events. Similarly, we rank examples based on the entropy from a trained
target A[T;L] as:

Fenwopy (3 Afp) = = D P33 Afpy) log P(glx: Af)
g
and keep the m examples with the highest entropy. To evaluate core-set quality, we compare the
performance of training the large target model on the selected subset A” to training the target model
on the entire dataset A%;ﬂ by measuring error on a held-out test set.

2.3 APPLYING SELECTION VIA PROXY

In general, SVP can be applied by replacing the models used to compute data selection metrics such
as uncertainty with proxy models. In this paper, we applied SVP to the active learning and core-set
selection methods described in Sections 2. 1]and 2.2 as follows:

e For active learning, we replaced the model trained at each batch (A}) with a proxy (A},),
but then trained the same final model A% once the budget b was reached.
e For core-set selection, we used a proxy Af; ] instead of A[j;l] to compute metrics and select s.

We explored two main methods to create our proxy models:

Scaling down. For deep models with many layers, reducing the dimension or the number of hidden
layers is an easy way to trade-off accuracy to reduce training time. For example, deep ResNet
models come in a variety of depths (He et al.l|2016bfja) and widths (Zagoruyko & Komodakis| [2016)
that represent many points on the accuracy and training time curve. As shown in Figure 4ain the
Appendix, a ResNet20 model achieves a top-1 error of 7.6% on CIFAR10 in 26 minutes, while a larger
ResNet164 model takes 4 hours and reduces error by 2.5%. Similar results have been shown for many
other tasks, including neural machine translation (Vaswani et al., 2017), text classification (Conneau
et al.,|2016), and recommendation (He et al.,|2017). Looking across architectures gives even more
options to reduce computational complexity. We exploit the limitless model architectures in deep
learning to trade-off between accuracy and complexity to scale down to a proxy that can be trained
quickly but still provides a good approximation of the target’s decision boundary.

Training for fewer epochs. Similarly, a significant amount of training is spent on a relatively small
reduction in error. While training ResNet20, almost half of the training time (i.e., 12 minutes out of
26 minutes) is spent on a 1.4% improvement in test error, as shown in Figure a]in the Appendix.
Based on this observation, we also explored training proxy models for a smaller number of epochs to
get good approximations of the decision boundary of the target model even faster.

3 RESULTS

We applied SVP to data selection methods from active learning and core-set selection on five datasets.
After a brief description of the datasets and models in Section[3.1] Section[3.2)evaluates SVP’s impact
on active learning and shows that across labeling budgets SVP achieved similar or higher accuracy
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and up to a 41.9x improvement in data selection runtime (i.e., the time it takes to repeatedly train
and select points). Next, we applied SVP to the core-set selection problem (Section [3.3)). For all
selection methods, the target model performed nearly as well as or better with SVP than the oracle
that trained the target model on all of the data before selecting examples. On CIFAR10, a small proxy
model trained for 50 epochs instead of 181 epochs took only 7 minutes compared to the 4 hours
for training the target model for all 181 epochs, making SVP feasible for end-to-end training time
speed-ups. Finally, Section [3.4]illustrates why proxy models performed so well by evaluating how
varying models and methods rank examples.

3.1 EXPERIMENTAL SETUP

Datasets. We focused on classification as a well-studied task in the active learning literature (see
Section[A.T|for more detail). Our experiments included three image classification datasets: CIFAR10,
CIFAR100 (Krizhevsky & Hinton, |2009), and ImageNet (Russakovsky et al.l 2015)); and two text
classification datasets: Amazon Review Polarity and Full (Zhang & LeCun|2015;|Zhang et al., 2015).
CIFAR10 is a coarse-grained classification task over 10 classes, and CIFAR100 is a fine-grained task
with 100 classes. Both datasets contain 50,000 images for training and 10,000 images for testing.
ImageNet has 1.28 million training images and 50,000 validation images that belong to 1 of 1,000
classes. Amazon Review Polarity has 3.6 million reviews split evenly between positive and negative
ratings with an additional 400,000 reviews for testing. Amazon Review Full has 3 million reviews
split evenly between the 5 stars with an additional 650,000 reviews for testing.

Models. For CIFAR10 and CIFARI100, we used ResNet164 with pre-activation from He et al.
(2016b) as our large target model. The smaller, proxy models are also ResNet architectures with pre-
activation, but they use pairs of 3 x 3 convolutional layers as their residual unit rather than bottlenecks.
For ImageNet, we used the original ResNet architecture from He et al.| (2016a) implemented in
PyTorch |'| (Paszke et al., |2017) with ResNet50 as the target and ResNetl8 as the proxy. For
Amazon Review Polarity and Amazon Review Full, we used VDCNN (Conneau et al., [2017) and
fastText (Joulin et al., 2016) with VDCNN?29 as the target and fastText and VDCNNO as proxies. In
general, we followed the same training procedure as the original papers (more details in Section [A.2)).

3.2 ACTIVE LEARNING

We explored the impact of SVP on two active learning techniques: least confidence uncertainty
sampling and the greedy k-centers approach from |Sener & Savarese|(2018). Starting with an initial
random subset of 2% of the data, we selected 8% of the remaining unlabeled data for the first round
and 10% for subsequent rounds until the labeled data reached the budget b and retrained the models
from scratch between rounds as described in Section[2.1] Across datasets, SVP sped up data selection
without significantly impacting the final predictive performance of the target.

CIFAR10 and CIFAR100. For least confidence uncertainty sampling and greedy k-centers, SVP
sped-up data selection by up to 7x and 3.8 respectively without impacting data efficiency (see
Tables[T]and[3) despite the proxy achieving substantially higher top-1 error than the target ResNet164
model (see Figure[6]in the Appendix). The speed-ups for least confidence were a direct reflection
of the difference in training time between the proxy in the target models. As shown in Figures 4]
and [5]in the Appendix, ResNet20 was about 8x faster to train than ResNet164, taking 30 minutes
to train rather than 4 hours. Larger budgets required more rounds of selection and, in turn, more
training, which led to larger speed-ups as training became a more significant fraction of the total time.
Training for fewer epochs provided a significant error reduction compared to random sampling but
was not as good as training for the full schedule (see Table din the Appendix). For greedy k-centers,
the speed-ups increased more slowly because executing the selection algorithm added more overhead.

ImageNet. For least confidence uncertainty sampling, SVP sped-up data selection by up to 1.6 %
(Table [T)) despite ResNet18’s higher error compared to ResNet50 (Figure [6g| in the Appendix).
Training for fewer epochs increased the speed-up to 2.9x without increasing the error rate of
ResNet50 (Table[d)). Greedy k-centers was too slow on ImageNet due to the quadratic complexity of
Algorithm 1]

'https://pytorch.org/docs/stable/torchvision/models.html
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Table 1: SVP performance on active learning. Average (£ 1 std.) data selection speed-ups from 3
runs of active learning using least confidence uncertainty sampling with varying proxies and labeling
budgets on four datasets. Bold speed-ups indicate settings that either achieve lower error or are within
1 std. of the mean top-1 error for the baseline approach of using the same model for selection and the
final predictions. Across datasets, SVP sped up selection without significantly increasing the error of
the final target. Additional results and details are in TableE}

Data Selection Speed-up

Budget (b/n) 10% 20% 30% 40% 50%

Dataset Selection Model
CIFAR10 ResNet164 (Baseline) 1.0x 1.0x 1.0x 1.0x 1.0x
ResNet110 1.8x 1.9x 1.9x 1.8 x 1.8x
ResNet56 2.6 x 2.9 3.0x 3.1x 3.1x
ResNet20 3.8x 5.8 6.7x 7.0 7.2%
CIFAR100 ResNetl164 (Baseline) 1.0x 1.0x 1.0x 1.0x 1.0x
ResNet110 1.5x 1.6 x 1.6x 1.6 x 1.6x
ResNet56 2.4x 2.7x 3.0x 2.9x 3.1x
ResNet20 4.0x 5.8x 6.6 < 7.0 x 7.2%
ImageNet  ResNet50 (Baseline) 1.0x 1.0x 1.0x 1.0x 1.0x
ResNet18 1.2x 1.3x 1.4x 1.5x 1.6 x
Amazon VDCNN?29 (Baseline) 1.0x 1.0x 1.0x 1.0x 1.0x
Review VDCNN9 1.9x 1.8 1.8x 1.8x 1.8x
Polarity fastText 10.6x 20.6x 322x 419x 513x

Amazon Review Polarity and Amazon Review Full. On Amazon Review Polarity, SVP with a
fastText proxy for VDCNN?29 led to up to a relative error reduction of 14% over random sampling for
large budgets (Table 3], while being up to 41.9x faster at data selection than the baseline approach
(Table [T)). Despite fastText’s architectural simplicity compared to VDCNN29 and higher error
(Figure [o€)), the calculated confidences signaled which examples would be the most informative. For
all budgets, VDCNNO was within 0.1% top-1 error of VDCNN?29, giving a consistent 1.8 x speed-up.
On Amazon Review Full, neither the baseline least confidence uncertainty sampling approach nor
the application of SVP outperformed random sampling (see Table [3]in the Appendix), so the data
selection speed-ups were uninteresting even though they were similar to Amazon Review Polarity.
For both datasets, greedy k-centers was too slow as mentioned above in the ImageNet experiments.

3.3 CORE-SET SELECTION

CIFAR10 and CIFAR100. For all methods on both CIFAR10 and CIFAR100, SVP proxy models
performed as well as or better than an oracle where ResNet164 itself is used as the core-set selection
model, as shown in Figure 2] (and Figure [7)in the Appendix). Using forgetting events on CIFAR10,
SVP with ResNet20 as the proxy removed 50% of the data without a significant increase in error
from ResNet164. The entire process of training ResNet20 on all the data, selecting which examples
to keep, and training ResNet164 on the subset only took 2 hours and 20 minutes (see Table[6]in the
Appendix), which was a 1.6 x speed-up compared to training ResNet164 over all of the data. If we
stopped training ResNet56 early and removed 50% of the data based on forgetting events from the
first 50 epochs, SVP achieved an end-to-end training time speed-up of 1.8x with only a slightly
higher top-1 error from ResNet164 (5.4% vs. 5.1%) as shown in Table[7)in the Appendix. In general,
training the proxy for fewer epochs also maintained the accuracy of the target model on CIFAR10
because the ranking quickly converged (Figure[ITaland[12a]in the Appendix). On CIFAR100, partial
training did not work as well for proxies at large subset sizes because the ranking took longer to
stabilize and were less correlated (Figure[ITbjand Figure[I2b]in the Appendix). On small 30% subsets
with forgetting events, partial training improved accuracy on CIFAR100.

ImageNet. Neither the baseline approach nor SVP was able to remove a significant percentage of the
data without increasing the final error of ResNet50, as shown in Table[5]in the Appendix. However,
the selected subsets from both ResNet18 and ResNet50 outperformed random sampling with up to a
1% drop in top-1 error using forgetting events. Note, due to the quadratic computational complexity
of Algorithm[I} we were unable to run greedy k-centers in a reasonable amount of time.
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Figure 2: SVP performance on core-set selection. Average (£ 1 std.) top-1 error of ResNet164 over
5 runs of core-set selection with different selection methods, proxies, and subset sizes on CIFAR10.
We found subsets using forgetting events (left), entropy (middle), and greedy k-centers (right) from a
proxy model trained over the entire dataset. Across datasets and selection methods, SVP performed
as well as an oracle baseline but significantly faster (speed-ups in parentheses).
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Figure 3: Comparing selection across model sizes and methods on CIFAR10. Average Spear-
man’s correlation between different runs of ResNet (R) models and at varying depths. We computed
rankings based on forgetting events (left), entropy (middle), and greedy k-centers (right). We saw a
similarly high correlation across model architectures (off-diagonal) as between different runs of the
same architecture (on-diagonal), suggesting that small models are good proxies for data selection.

Amazon Review Polarity and Amazon Review Full. On Amazon Review Polarity, we were able
to remove 20% of the dataset with only a 0.1% increase in VDCNN29’s top-1 error using fastText
as the proxy (see Table[5). In comparison to VDCNN29, which took 16 hours and 40 minutes to
train over the entire dataset on a Titan V GPU, fastText was two orders of magnitude faster, taking
less than 10 minutes on a CPU to train over the same data and compute output probabilities. This
difference allowed us to train VDCNN29 to nearly the same error in 13 and a half hours. However,
on Amazon Review Full, both the baseline approach and SVP failed to outperform random sampling.
Similar to ImageNet, we were unable to run greedy k-centers in a reasonable amount of time, and
additionally, Facebook’s fastText implementation || did not allow us to compute forgetting events.

3.4 RANKING CORRELATION BETWEEN MODELS

Models with fewer layers. Figure 3] (and Figure [9]in the appendix) shows the Spearman’s rank-
order correlation between ResNets of varying depth for three selection methods on CIFAR10 (and
CIFAR100). For greedy k-centers, we started with 1,000 randomly selected points and ranked the
remaining points based on the order they are added to set s in Algorithm[I} Across models, there was
a positive correlation similar to the correlation between runs of the same model. For forgetting events
and entropy, we ranked points in descending order based on the number of forgetting events and the
entropy of the output predictions from the trained model, respectively. Both metrics had comparable
positive correlations between different models and different runs of the same model. We also looked
at the Pearson correlation coefficient for the number of forgetting events and entropy in Figure [I3]in
the Appendix and found a similar positive correlation. The consistent positive correlation between
varying depths illustrates why small models are good proxies for larger models in data selection.

https://github.com/facebookresearch/fastText
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Models with different architectures. We further investigated different model architectures by cal-
culating the Spearman’s correlation between pretrained ImageNet models and found that correlations
were high across a wide range of models (Figure [§]in the Appendix). For example, MobileNet
V2’s (Sandler et al.| [2018) entropy-based rankings were highly correlated to ResNet50 (on par with
ResNet18), even though the model had far fewer parameters (3.5M vs. 25.6M). In concert with our
fastText and VDCNN results, the high correlations between different model architectures suggest that
SVP might be widely applicable. While there are likely limits to how different architectures can be,
there is a wide range of trade-offs between accuracy and computational complexity, even within a
narrow spectrum of models.

4 RELATED WORK

Active learning. There are examples in the active learning literature that address the computational
efficiency of active learning methods by using one model to select points for a different, more
expensive model. For instance, Lewis & Catlett| (1994) proposed heterogeneous uncertainty sampling
and used a Naive Bayes classifier to select points to label for a more expensive decision tree target
model. Tomanek et al.| (2007) uses a committee-based active learning algorithm for an NLP task
and notes that the set of selected points are “reusable” across different models (maximum entropy,
conditional random field, naive Bayes). In our work, we showed that this can be generalized to deep
learning by either using smaller models or fewer training epochs, where it can significantly reduce
the running time of uncertainty-based (Settles| 2012} [Shen et al.,[2017; |Gal et al.,|2017) and recent
representativeness-based (Sener & Savarese), [2018) methods.

Core-set selection. Core-set selection attempts to find a representative subset of points to speed up
learning or clustering; such as k-means and k-medians (Har-Peled & Kushal,2007), SVM (Tsang
et al.,[2005)), Bayesian logistic regression (Huggins et al., [2016)), and Bayesian inference (Campbell
& Broderick, 2017} 2018)). However, these examples generally require ready-to-use features as input,
and do not directly apply to deep neural networks unless a feature representation is first learned,
which usually requires training the full target model itself. There is also a body of work on data
summarization based on submodular maximization (Wei et al.| 2013;/2014; Tschiatschek et al., 2014}
Ni et al., 2015), but these techniques depend on a combination of hand-engineered features and
simple models (e.g., hidden Markov models and Gaussian mixture models) pretrained on auxiliary
tasks. In comparison, our work demonstrated that we can use the feature representations of smaller,
faster-to-train proxy models as an effective way to select core-sets for deep learning tasks.

Recently, [Toneva et al.| (2019) showed that a large number of “unforgettable” examples that are
rarely incorrectly classified once learned (i.e., 30% on CIFAR10) could be omitted without impacting
generalization, which can be viewed as a core-set selection method. They also provide initial evidence
that forgetting events are transferable across models and throughout training by using the forgetting
events from ResNet18 to select a subset for WideResNet (Zagoruyko & Komodakis|, [ 2016) and by
computing the Spearman’s correlation of forgetting events during training compared to their final
values. In our work, we evaluated a similar idea of using proxy models to approximate various
properties of a large model, and showed that proxy models closely match the rankings of large models
in the entropy, greedy k-centers, and example forgetting metrics.

5 CONCLUSION

In this work, we introduced selection via proxy (SVP) [ to improve the computational efficiency
of active learning and core-set selection in deep learning by substituting a cheaper proxy model’s
representation for an expensive model’s during data selection. Applied to least confidence uncertainty
sampling and [Sener & Savarese|(2018))’s greedy k-centers approach, SVP achieved up to a 41.9x and
3.8x improvement in runtime respectively with no significant increase in error (often within 0.1%).
For core-set selection, we found that SVP can remove up to 50% of the data from CIFAR10 in 10x
less time than it takes to train the target model, achieving a 1.6 x speed-up in end-to-end training.

Code available athttps://github.com/stanford-futuredata/selection-via-proxy
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A APPENDIX

A.1 CHOICE OF DATASETS

For our experimental evaluation in Section (3] we focused on classification because it is a widely
studied task in active learning (Lewis & Galel [1994; |Lewis & Catlett, [1994; Settles| [2012; |Sener|
& Savaresel, 2018}, [Kirsch et al.,[2019; Mussmann & Liang, [2018; |Gal et al., [2017; Houlsby et al.,
2011). While there are a few bespoke solutions for machine translation (Peris & Casacubertal 2018)
and named entity recognition (Shen et al.| 2017, we wanted to compare against the broader body
of active learning research. Many popular active learning methods like uncertainty sampling (e.g.,
entropy, least confidence, and max-margin) assume a single categorical probability distribution for
each example, which makes it hard to adapt to other domains. Instead of tackling open challenges for
active learning like machine translation, we applied SVP to many classification datasets; however, the
simplicity of SVP means that the core ideas of this paper can be applied more broadly in future work.

Specifically, we performed experiments on three image classification datasets: CIFAR10, CI-
FAR100 (Krizhevsky & Hinton, |2009), and ImageNet (Russakovsky et al., [2015); and two text
classification datasets: Amazon Review Polarity and Full (Zhang & LeCun, 2015} |Zhang et al., 2015)).
While multiple tasks on roughly the same data distribution may seem redundant, the data efficiency of
active learning depends on error (Mussmann & Liang} 2018)). We included both CIFAR10 (low-error)
and CIFAR100 (high-error) to demonstrate that our approach performs as well as standard active
learning at different points on the error and data efficiency curve. The same rationale is also valid for
Amazon Review Polarity (low-error) and Full (high-error). However, the Amazon Review dataset
adds a medium (text) and a much larger scale (3.6M and 3M examples, respectively). Adding
ImageNet further allows us to investigate scale in the number of examples, but also the number of
classes and the dimension of the input. To the best of our knowledge, we are the first active learning
paper to present results on the full ImageNet classification task.

A.2 IMPLEMENTATION DETAILS

CIFAR10 and CIFAR100. We used ResNet164 with pre-activation from He et al.|(2016b)) as our
large target model for both CIFAR10 and CIFAR100. Note that as originally proposed in|He et al.
(20164a)), the smaller, proxy models are also ResNet architectures with pre-activation, but they use
pairs of 3 x 3 convolutional layers as their residual unit rather than bottlenecks and achieve lower
accuracy as shown in Figure As with [He et al.| (2016Db), the ResNets we used were much narrower
when applied to CIFAR rather than ImageNet (256 filters rather than 2048 in the final layer of the
last bottleneck) and have fewer sections, which means far fewer weights despite the increased depth.
For example, ResNet50 on ImageNet has ~25M weights while ResNet164 on CIFAR has ~1.7M
(see Table[2). More recent networks such as Wide Residual Networks (Zagoruyko & Komodakis|,
2016), ResNeXt (Xie et al.,|2017)), and DenseNets (Huang et al.l [2017) use models with more than
25M parameters on CIFAR10, making ResNet164 relatively small in comparison. Core-set selection
experiments used a single Nvidia P100 GPU, while the active learning experiments used a Titan
V GPU. We followed the same training procedure, initialization, and hyperparameters as [He et al.
(2016b) with the exception of weight decay, which was set to 0.0005 and decreased the model’s
validation error in all conditions.

ImageNet. we used the original ResNet architecture from |[He et al.| (2016a) implemented in Py-
TorchE] (Paszke et al.,[2017)) with ResNet50 as the target and ResNet18 as the proxy. For training, we
used a custom machine with 4 Nvidia Titan V GPUs and followed Nvidia’s optimized implemen-
tation [z_f] with a larger batch size, appropriately scaled learning rate (Goyal et al.,[2017), a 5-epoch
warm-up period, and mixed precision training (Micikevicius et al.,|2017) with the apexlibrary. For
active learning, we used the same batch size of 768 images for both ResNet18 and ResNet50 for
simplicity, which was the maximum batch size that could fit into memory for ResNet50. However,
ResNet18 with a batch size of 768 underutilized the GPU and yielded a lower speed-up. With separate
batch sizes for ResNet18 and ResNet50, we would have seen speed-ups closer to 2.7 x.

*https://pytorch.org/docs/stable/torchvision/models.html
*nttps://github.com/NVIDIA/DeeplLearningExamples
Shttps://github.com/NVIDIA/apex/tree/master/examples/imagenet
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Table 2: Number of parameters in each model.

Dataset Model Number of Parameters (millions)
CIFAR10 ResNet164 1.7
ResNet110 1.73
ResNet56 0.86
ResNet20 0.27
ResNetl14 0.18
ResNet8 0.08
CIFAR100 ResNet164 1.73
ResNet110 1.74
ResNet56 0.86
ResNet20 0.28
ResNet14 0.18
ResNet8 0.08
ImageNet ResNet50 25.56
ResNet18 11.69
Amazon Review Polarity VDCNN29 16.64
VDCNN9 14.17
Amazon Review Full VDCNN29 16.64
VDCNN9 14.18

Amazon Review Polarity (2-classes) and Full (5-classes). For Amazon Review Polarity and Ama-
zon Review Full, we used VDCNN (Conneau et al., 2017) and fastText (Joulin et al., [2016) with
VDCNN?209 as the target and fastText and VDCNNDY as proxies. For Amazon Review Polarity, core-set
selection experiments used a single Nvidia P100 GPU, while the active learning experiments used
a Nvidia Titan V GPU to train VDCNN models. For Amazon Review Full, core-set selection and
active learning experiments both used a Nvidia Titan V GPU. In all settings, we used the same
training procedure from |Conneau et al.|(2017) for VDCNN9 and VDCNN?29. For fastText, we used
Facebook’s implementationE] and followed the same training procedure from Joulin et al.[(2016).

A.3 MOTIVATION FOR CREATING PROXIES
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(a) Top-1 test error and training time on CIFAR10 for
ResNet with pre-activation and a varying number of
layers. There is a diminishing return in accuracy by
increasing the number of layers.
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(b) Top-1 test error during training of ResNet20 with
pre-activation. In the first 14 minutes, ResNet20
reaches 9.0% top-1 error, while the remaining 12 min-
utes are spent on decreasing error to 7.6%

Figure 4: Top-1 test error on CIFAR10 for varying model sizes (left) and over the course of training a
single model (right), demonstrating a large amount of time is spent on small changes in accuracy.

®https://github.com/facebookresearch/fastText
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(a) Top-1 test error and training time on CIFAR100
for ResNet with pre-activation and a varying number
of layers. There are diminishing returns in accuracy
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(b) Top-1 test error during training of ResNet20 with
pre-activation. In the first 15 minutes, ResNet20
reaches 33.9% top-1 error, while the remaining 12
minutes are spent on decreasing error to 31.1%

Figure 5: Top-1 test error on CIFAR100 for varying model sizes (left) and over the course of training
a single model (right), demonstrating a large amount of time is spent on small changes in accuracy.
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A.4 ADDITIONAL ACTIVE LEARNING RESULTS
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Figure 6: Quality of proxies compared to target models. Average (4 1 std.) top-1 error from 3
runs of active learning with varying proxies, selection methods, and budgets on five classification
datasets. Dotted lines show the top-1 error of the proxy models, while solid lines show the top-1 error
of the target models. CIFAR10 and CIFAR100 experiments used varying depths of pre-activation
ResNet (R) models as proxies and ResNet164 (R164) as the target model (e.g., R20-R164 is ResNet20
selecting for ResNet164). ImageNet used ResNet18 (R18) as the proxy and ResNet50 (R50) as the
target. Amazon Review Polarity and Amazon Review Full used VDCNN9 (V9) and fastText (FT) as
proxies and VDCNN29 (V29) as the target. Across datasets, proxies, methods, and budgets, smaller
proxies had higher top-1 error than the target model, but selecting points that were nearly as good as
the points selected by the target that did not harm the final target model’s predictive performance.
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A.5 ADDITIONAL CORE-SET SELECTION RESULTS

Full Dataset Random —e— ResNetl164 (Baseline) —4#— ResNet110 (1.7x)
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(c) CIFAR100 greedy k-centers

Figure 7: SVP performance on core-set selection. Average (£ 1 std.) top-1 error of ResNet164 over
5 runs of core-set selection with different selection methods, proxies, and subset sizes on CIFAR100.
We found subsets using forgetting events (left), entropy (middle), and greedy k-centers (right) from a
proxy model trained over the entire dataset. Across datasets and selection methods, SVP performed
as well as an oracle baseline but significantly faster (speed-ups in parentheses).

Table 5: Average top-1 error (£ 1 std.) from 3 runs of core-set selection with varying selection
methods on ImageNet, Amazon Review Polarity, and Amazon Review Full.

Top-1 Error (%)

Subset Size 40% 60% 80% 100%
Dataset Method Selection Model
ImageNet Random - 32.2+0.12 28.0+0.15 25.8+0.06 23.3£0.11
Entropy ResNet50 (Baseline) 34.9+0.08 28.8+0.03 25.9+0.04 -
Entropy ResNet18 32.2+£0.04 27.04£0.01 25.1£0.07 -
Forgetting Events  ResNet50 (Baseline) 31.9+0.07 26.7£0.06 24.8+0.03 -
Forgetting Events ResNet18 31.6 £0.07 27.1£0.10 25.3+0.18 -
Amazon Review Polarity Random - 4.94+0.02 4.54+0.05 4.3+0.01 4.1+0.04
Entropy VDCNN?29 (Baseline) 4.440.03 4.240.02 4.24+0.02 -
Entropy VDCNN9 444002 424+0.01 4.240.00 -
Entropy fastText 444002 424002 4.240.02 -
Amazon Review Full Random - 38.4+£0.03 37.6+0.03 37.0£0.05 36.6=+0.06
Entropy VDCNN29 (Baseline) | 42.7+1.14 39.3+£0.14 37.6£0.10 -
Entropy VDCNN9 41.1+£0.24 38.8+£0.03 37.7+0.09 -
Entropy fastText 39.0£0.18 37.8+0.06 37.1+0.06 -
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A.6 ADDITIONAL CORRELATION RESULTS

ResNeXt50-32x4d (25.0M)
ResNeXt101-32x8d (88.8M) | 082
ResNet18 (11.7M) | 066 056 075
ResNet34 (21.8M) | 076 067 083
ResNet50 (25.6M) | 082 074 079 084
ResNet101 (445M) 083 079 073 081 085
ResNet152 (GOZM) 0.84 080 071 080 084 087

DenseNet121 (8.0M) | 0.75 067 081 084 084 080 079 0.25

DenseNet169 (14.1M) | 079 074 075 081 083 082 082 084
DenseNet201 (20.0M) | 0.80 075 072 079 082 082 08 081 084
DenseNetl61 (28.7M) | 081 077 072 079 083 083 083 081 085 084
MobileNet V2 (3.5M) [ 070 060 086 084 081 076 074 083 078 075 075
GoogleNet (13.0M) | 0.60 050 079 075 072 066 064 076 069 067 066 078 ~025
VGG-11 w/ BatchNorm (132.9M) | 065 054 085 081 078 072 070 081 074 071 070 085 076
VGG-13 w/ BatchNorm (133.1M) | 067 057 o085 08 079 074 072 081 075 072 072 08 076 091
-0.50

VGG-16 w/ BatchNorm (138.4M) | 072 063 084 083 082 078 077 083 078 076 076 085 075 089 090

VGG-19 w/ BatchNorm (143.7M) | 074 065 083 084 084 079 079 084 080 077 078 084 074 087 088 090
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SqueezeNet 1.0 (1.2M) | 040 ~0.75

SqueezeNet 1.1 (1.2M) | 041 030 073 062 057 049 047 062 052 049 048 071 066 075 073 068 066 087
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Figure 8: Comparing selection across model architectures on ImageNet. Spearman’s correlation
between max entropy rankings from PyTorch (Paszke et al.,[2017) pretrained models on ImageNet.
Correlations are hlgh across a wide range of model archltectures Xie et al.| [2017; [He et al., 20164
Sandler et al.} 2018}, [Huang et al.}, 2017} [Szegedy et al., 2015} [Simonyan & Zisserman, [2014; Tandola
et al., 2016} | rlzhevsky et al., 2012). For example, MobileNet V2’s entropy-based rankings were
highly correlated to ResNet50, even though the model had far fewer parameters (3.5M vs. 25.6M).
In concert with our fastText and VDCNN results from Section [3.2] the high correlations between
different model architectures suggest that SVP might be widely applicable.
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1.0 1.0 1.0
R20|0.78 R20|0.71 R20|0.45

0.5 0.5 0.5
R56|0.78 0.84 R56(0.53 0.49 R56|0.37 0.59

0.0 0.0 0.0
R110|0.78 0.85 0.85 R110|0.35 0.38 0.35 R110|0.33 0.60 0.63

-0.5 -0.5 -0.5
R164|0.77 0.83 0.84 0.89 R164(0.39 0.40 0.35 0.41 R164|0.38 0.58 0.61 0.63

R20 R56 R110 R164 10 R20 R56 R110 R164 10 R20 R56 R110 R164 10

(a) CIFAR100 forgetting events (b) CIFAR100 entropy (c) CIFAR100 greedy k-centers

Figure 9: Comparing selection across model sizes and methods on CIFAR100. Average Spear-
man’s correlation between different runs of ResNet (R) models and a varying depths. We computed
rankings based on forgetting events (left), entropy (middle), and greedy k-centers (right). We saw
a similarly high correlation across model architectures (off-diagonal) as between runs of the same
architecture (on-diagonal), suggesting that small models are good proxies for data selection.

1.0 1.0
R200.38 R20| 0.44

05 05
R56(0.38 0.47 R56/ 036 0.59

0.0 0.0
R110|0.37 0.46 0.46 R110/ 033 059 0.63

-05 ~05
R164|0.40 0.46 0.45 0.50 R164| 0.37 0.58 0.60 0.63

R20 R56 R1l0 Ri64 L0 R20 R56 R1l0 Ries 0

(a) CIFARI1O0 facility location (b) CIFAR100 facility location

Figure 10: Spearman’s rank-order correlation between different runs of ResNet (R) with pre-activation
and a varying number of layers on CIFAR10 (left) and CIFAR100 (right). For each combination,
we compute the average from 20 pairs of runs. For each run, we compute rankings based on the
order examples are added in facility location using the same initial subset of 1,000 randomly selected
examples. The results are consistent with Figure [3c|and Figure[9c| demonstrating that most of the
variation is due to stochasticity in training rather than the initial subset.

4
©

—— ResNet20

08 o | — ResNets6
2 2 —— ResNet110
©0.7 %06
-4 £ 0.
506 £
H E
§0° 504
§os3 —— ResNet20 §o2
€02 —— ResNet56 <
@ Y- ©
o« —— ResNet110 <

01 0.0

0 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175
Epoch Epoch
(a) CIFARI1O forgetting events (b) CIFAR100 forgetting events

Figure 11: Average (£ 1 std.) Spearman’s rank-order correlation with ResNet164 during 5 training
runs of varying ResNet architectures on CIFAR10 (left) and CIFAR100 (right), where rankings were
based on forgetting events.
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Figure 12: Average (& 1 std.) Spearman’s rank-order correlation with ResNet164 during 5 training
runs of varying ResNet architectures on CIFAR10 (left) and CIFAR100 (right), where rankings were
based on entropy.
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Figure 13: Average (£ 1 std.) Spearman’s rank-order correlation between epochs during 5 training
runs of varying ResNet architectures on CIFAR10 (left) and CIFAR100 (right), where rankings were
based on forgetting events.
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Figure 14: Average (£ 1 std.) Spearman’s rank-order correlation between epochs during 5 training
runs of varying ResNet architectures on CIFAR10 (left) and CIFAR100 (right), where rankings were
based on entropy.
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Figure 15: Pearson correlation coefficient between different runs of ResNet (R) with pre-activation
and a varying number of layers on CIFAR10 (top) and CIFAR100 (bottom). For each combination,
we compute the average from 20 pairs of runs. For each run, we compute rankings based on the
number of forgetting events (left), and entropy of the final model (right). Generally, we see a similarly
high correlation across model architectures (off-diagonal) as between runs of the same architecture
(on-diagonal), providing further evidence that small models are good proxies for data selection.

deer dog  fog hose ship truck

]
2

(a) ResNet164 forgetting events (b) ResNet164 entropy (c) ResNet164 greedy k-centers

H

truck

deer dog  fog hose ship truck
deer dog  fog hose ship

deer dog  fog hose ship

bird

pane  cor  bid

plane car

(d) ResNet20 forgetting events (e) ResNet20 entropy (f) ResNet20 greedy k-centers

Figure 16: 2D t-SNE plots from the final hidden layer of a fully trained ResNet164 model on
CIFAR10 and a 30% subset selected (black). The top row uses another run of ResNet164 to select
the subset and the bottom row uses ResNet20. Rankings are computed using forgetting events (left),
entropy (middle), and greedy k-centers (right).

24



Published as a conference paper at ICLR 2020

s T e T e woe e e |

R T ]

=

e

[ o D@ e a e e e o]
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Figure 17: 2D t-SNE plots from the final hidden layer of a fully trained ResNet164 model on
CIFAR10 and a 30% subset selected (black) with ResNet20 trained after a varying number of epochs.
Rankings are calculated with forgetting events (top) and entropy (bottom). Notably, the ranking
from forgetting events is much more stable because the model’s uncertainty is effectively averaged
throughout training rather than a single snapshot at the end like entropy. For t-SNE plots of the
entire training run, please see http://bit.ly/svp-cifarlO-tsne-entropyland http:
//bit.ly/svp-cifarlO-tsne-forget|for entropy and forgetting events respectively.
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