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ABSTRACT

Model-based reinforcement learning has the potential to be more sample efficient
than model-free approaches. However, existing model-based methods are vulnera-
ble to model bias, which leads to poor generalization and asymptotic performance
compared to model-free counterparts. In this paper, we propose a novel policy
optimization framework using an uncertainty-aware objective function to handle
those issues. In this framework, the agent simultaneously learns an uncertainty-
aware dynamics model and optimizes the policy according to these learned mod-
els. Under this framework, the objective function can represented end-to-end as
a single computational graph, which allows seamless policy gradient computa-
tion via backpropagation through the models. In addition to being theoretically
sound, our approach shows promising results on challenging continuous con-
trol benchmarks with competitive asymptotic performance and sample complexity
compared to state-of-the-art baselines.

1 INTRODUCTION

Popular reinforcement learning (RL) algorithms are divided into two main paradigms: model-free
(MFRL) and model-based (MBRL) types. While achieving good asymtotic performances in many
high dimensional problems (Mnih et al., 2015; Silver et al., 2017; Schulman et al., 2017; Hessel
et al., 2018; Espeholt et al., 2018), MFRL methods suffer from high sample complexity since they
learn state/state-action values only from rewards and do not explicitly exploit the rich information
underlying the transition dynamics data. On the contrary, MBRL approaches, by trying model the
transition dynamics that are in turn used for planning without having to frequently interacting with
real systems, are known to have sample efficiency and thus possess more practicability (Deisenroth
et al., 2013; Finn et al., 2016; Ebert et al., 2018; Sutton & Barto, 2018; Kaiser et al., 2019).

Current MBRL methods, however, still have limitations because the accuracy of the learned dynam-
ics model is usually not satisfied, especially in complex environments (Zhang et al., 2018; Lowrey
et al., 2018). The model error and its compounding effect when planning, i.e. a small bias in
the model can lead to a highly erroneous value function estimate and a strongly-biased suboptimal
policy, make MBRL less competitive in terms of asymptotic performance than MFRL for many
non-trivial tasks. Numerous attempts have been made to tackle with this model bias problem but
none of them have been really successful, such as using Gaussian Process (GP) (Deisenroth & Ras-
mussen, 2011; Gal & Ghahramani, 2016), Bayesian Neural Networks (Gal et al., 2016; Depeweg
et al., 2016a; Kamthe & Deisenroth, 2017), and Emsembling (Kurutach et al., 2018; Clavera et al.,
2018).

Another limitation of many existing MBRL methods is that they rely on the model predictive con-
trol (MPC) framework (Garcia et al., 1989). While being commonly used, MPC has serveral draw-
backs (Atkeson & Schaal, 1997; Thananjeyan et al., 2019). First, each step requires solving a high-
dimensional optimization problem and thus is computationally prohibitive for applications requiring
either real-time or low-latency reaction such as autonomous driving. Second, the policy is only im-
plicit via solving the mentioned optimization problem. Not being able to explicitly represent the
policy makes it hard to transfer the learned policy to other tasks or to initialize agents with an exist-
ing better-than-random policy.
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Contributions. To address those challenges of MBRL, we propose a new framework called Pol-
icy Optimization with Uncertainty-aware Model (POUM) that is able to optimize in the face of
uncertainty. Our policy optimization is based on Policy Gradient, which has been widely adopted in
MFRL (Lillicrap et al., 2015; Schulman et al., 2017; Haarnoja et al., 2018). However, in POUM, the
objective function, a utility function, is formulated around the uncertainty-aware dynamics model.
This utility function takes into account both the mean and the variance of the value function esti-
mate. This helps reducing the model bias while effectively approximating true objective, which is
the value function of the policy. For experiments, we demonstrate the advantages of POUM over
state-of-the-art (SoTA) methods on various RL tasks given training from scratch and all the envi-
ronments are unaltered, and also investigate on how much risk is tolerable in those tasks. And last,
POUM can be represented end-to-end in a single computation graph, which greatly facilitates the
training.

2 RELATED WORK

Traditional MBRL. Initial successes of MBRL in continuous control achieved promising results
by learning control policies trained on models of local dynamics using linear parametric approx-
imators (Abbeel et al., 2007; Levine & Koltun, 2013). Alternative methods such as Deisenroth
& Rasmussen (2011); Levine & Koltun (2013) incorporated non-parametric probabilistic GPs to
capture model uncertainty during policy planning and evaluation. While these methods enhance
data efficiency in low-dimensional tasks, their applications in more challenging domains such as
environments involving non-contact dynamics and high-dimensional control remain limited by the
inflexibility of their temporally local structure and intractable inference time. Our approach, on the
contrary, pushes the uncertainty modeling to the objective function and not anywhere else in the ar-
chitecture. Plus, the fact that this objective is designed to propagate all the way to the value function
makes it versatile in capturing uncertainty. What is more, all core components are constructed by
neural networks gives our solution more power in dealing with high-dimensional tasks, thus acquir-
ing asymptotically high performance compared to MFRL methods and, at the same time, retaining
data efficiency in those complex domains.

Deep Neural Networks (DNNs). Recently, there has been a revived interest in using DNNs to
learn predictive models of environments from data, drawing inspiration from ideas in the early lit-
erature on this MBRL field, mainly because the large representational capacity enables them as
suitable function approximators for complex environments, especially that involve images or videos
(Ebert et al., 2018; Kaiser et al., 2019). However, additional care has to be usually taken to avoid
model bias, a situation where the DNNs overfit in the early stages of learning, resulting in inaccurate
models. For example, Depeweg et al. (2016b) modeled a Bayesian type of DNNs to capture uncer-
tainty in transition dynamics. In another approach, Nagabandi et al. (2017) combined a learned
dynamics network with MPC to initialize the policy network to accelerate learning in model-free
deep RL. Chua et al. (2018) extended this idea by introducing a bootstrapped ensemble of proba-
bilistic DNNs to model predictive uncertainty of the learned networks and demonstrating that a pure
model-based approach can attain the asymptotic performance of MFRL counterparts. However, the
use of MPC to define a policy leads to poor run-time execution and hard to transfer policy across
tasks. On the contrary, our framework is much simpler in that we do not employ any extra method
to model the dynamics uncertainty into DNNs that are already complicated itself with numerous
architectures and hyperparameters, but instead formulate a single, new uncertainty-aware objective
for end-to-end optimization.

Ensemble. Another group of work leveraged the learned ensemble of dynamics models to train a
policy network. Kurutach et al. (2018) learned a stochastic policy via trust-region policy optimiza-
tion, and Clavera et al. (2018) casted the policy gradient as a meta-learning adaptation step with
respect to each member of the ensemble. Buckman et al. (2018) proposed an algorithm to learn
a weighted combination of roll-outs of different horizon lengths, which dynamically interpolates
between model-based and model-free learning based on the uncertainty in the model predictions.
To our knowledge, this is the closest work in aside from ours, which learns a reward function in
addition to the dynamics function. But none of the aforementioned work propagates the uncertainty
all the way to the value function and uses the concept of utility function to balance risk and return
as in our model.
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Finally, ensemble of DNNs also provide a straightforward technique to obtain reliable estimates
of predictive uncertainty (Lakshminarayanan et al., 2017) and has been integrated with bootstrap to
guide exploration in MFRL (Osband et al., 2016; Janner et al., 2019). While many of the approaches
mentioned in this section employ bootstrap to train an ensemble of models, we note that their im-
plementations comprise of reconstructing bootstrap datasets at every training iteration, which effec-
tively trains every single data sample and thus diminishes the advantage on uncertainty quantification
achieved through bootstrapping. Except for a novel objective formulation, our model is different in
that, to maintain online bootstrapped datasets across ensembles, it adds each incoming data sam-
ple to a dataset according to a Poisson probability distribution (Park et al., 2007; Qin et al., 2013),
thereby guaranteeing asymptotically consistent those datasets.

3 UNCERTAINTY-AWARE MODEL-BASED POLICY OPTIMIZATION

3.1 BACKGROUND

Consider a discrete-time Markov Decision Process (MDP) defined by a tuple M = {S,A, f, r, γ},
in which S is a state space, A is an action space, f : S ×A→ S is a deterministic (or probabilistic)
transition function, r : S × A → R is a deterministic reward function, and γ ∈ (0, 1) is a discount
factor. We define the return as sum of the rewards r (st, at) = r (st, π(st)) for t = 0, . . . , T for
the whole trajectory (s0, a0, ..., sT , aT ) induced by a policy π : S → A and discounted by γ. Here
T ∈ Z+ is a task horizon, which may take a value of∞ for non-episodic environments. The goal of
RL is to find an optimal policy π? to maximize the expected return

J(π) = E
s0∼S

[V π(s0)] (1)

where the value function is defined as V π(s0) =
∑T−1
t=0 γt r(st, π(st)), and the state transition is

st+1 = f(st, π(st)), with s0 being randomly chosen from the distribution of s ∈ S. Then if the
dynamics function f and the reward function r are given, solving Equation 1 can be done using the
Calculus of Variations (Young, 2000) or using Policy Gradient (Sutton et al., 2000) when the control
function is parameterized or is finite dimensional.

In RL, however, f and r are often unknown and hence Equation 1 becomes a blackbox optimization
problem with an unknown objective function. Following the Bayesian approach commonly used in
the blackbox optimization literature (Shahriari et al., 2015), we propose to solve this problem by
iteratively learning a probabilistic estimate V̂ of V from data and optimizing the policy according
to this approximate model, as detailed in the next section.

3.2 FORMULATION OF UNCERTAINTY-AWARE OPTIMIZATION OBJECTIVE

It is worth noting that any unbiased method would model V̂ (π) as a probabilistic estimate, i.e.
V̂ (π) would be a distribution (as opposed to a point estimate) for a given policy π. Optimizing a
stochastic objective is, however, not well-defined. Our solution is to transform V̂ into a deterministic
utility function that reflects a subjective measure balancing the risk and return. Following Markowitz
(1952); Sato et al. (2001); Garcıa & Fernández (2015), we propose a risk-sensitive objective criterion
using a linear combination of the mean and the standard deviation of V̂ (π). Formally stated, our
objective criterion, which we also call the utility function, now becomes

U(π)(s0) = E
s0∼S

[
µ
(
V̂ (π)(s0)

)
+ c× σ

(
V̂ (π)(s0)

)]
, (2)

where µ and σ are respectively the mean and the standard deviation of V̂ (π)(s0), and c is a constant
that represents the subjective risk preference of the learning agent. A positive risk preference infers
that the agent is adventurous while a negative risk preference indicates that the agent has a safe
exploration strategy. To our best knowledge, this uncertainty-aware model-based objective function
has not been used in the RL literature.

3.3 EMPIRICAL ESTIMATE OF VALUE FUNCTION

Section 3.2 provides a general framework for policy optimization under uncertainty, assuming the
availability of the estimation model V̂ (π) of the true value function V (π). In this section, we
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describe how to estimate V̂ (π) with a model-based approach. The main idea is to approximate
the functions {f, r} with probabilistic parametric models {f̂ , r̂} and fully propagate the estimated
uncertainty when planning under each policy π from an initial state s0. The value function estimate
V̂ can be formulated as

V̂ (π)(s0) =

T−1∑
t=0

γtr̂ (ŝt, π(ŝt)) , (3)

where ŝ0 = s0 and ŝt+1 = f̂(ŝt, π(ŝt)) for t = 0, . . . , T − 1. Next, we describe how to efficiently
model {f, r} with well-calibrated uncertainty and a rollout technique that allows the uncertainty to
be faithfully propagated into V̂ (π).

3.3.1 BOOTSTRAP SETUP FOR MODEL LEARNING

Following the traditional bootstrap methodology, the empirical model function f̂ is represented as
{f̂φk

(st, at) → st+1}Bk=1. For simplicity of implementation, we model each bootstrap replica
as deterministic and rely on the ensemble as the sole mechanism for quantifying and propagating
uncertainty. Each bootstrapped model f̂φk

, which is parameterized by φk, learns to minimize the L2
one-step prediction loss over the respective bootstrapped dataset Dk:

min
φk:=17→B

E(st,at,st+1)∼Dk
‖st+1 − f̂φk

(st, at)‖22. (4)

The training dataset D, from which the bootstrapped datasets {Dk}Bk=1 are sampled, stores the
transitions on which the agent has experienced. Since each model observes its own subset of the
real data samples, the predictions across the ensemble remain sufficiently diverse in the early stages
of the learning and will then converge to their true values as the error of the individual networks
decreases.

In addition to model estimation and unlike many other model-based approaches, we also learn the
reward function along the same design of classical MBRL algorithms Sutton (1991). But in POUM,
we use a deterministic model (also parameterized by a DNN) for the reward function to simplify the
policy evaluation.

3.3.2 BOOTSTRAP ROLLOUT

In this section, we describe how to propagate the estimates with uncertainty from the dynamics
model to evaluate a policy π. We represent our policy πθ : S → A as a neural network parame-
terized by θ . Note that we choose to represent our policy as deterministic. We argue that while all
estimation models, including that of the dynamics and of the value function, need to be stochastic
(i.e. uncertainty-aware), the policy does not need to be. The policy is not an estimator and determin-
istic policy simply means that the agent is consistent when taking an action, no matter how uncertain
it may know about the world.

Given a deterministic policy πθ and an initial state s0 ∈ D, we can estimate the distribution of
V (π)(s0) by simulating πθ through each each bootstrapped dynamics model. And since each boot-
strap model is an independent approximator of the dynamics function, by expanding the value func-
tion via these dynamics approximators, we eventually obtain independent estimates of that value
function. Finally, those separate and independent trajectories collectively form an ensemble estima-
tor of V .

In practice, we sample these trajectories with a finite horizon H < T . It is still a challenge to
expand the value function estimation for a very long horizon due to a few reasons. First, DNNs
training becomes harder when the depth increases. Second, despite our best effort to control the
uncertainty, we still do not have a guarantee that our uncertainty modeling is perfectly calibrated,
which in turn may be problematic if the planning horizon is too large. Finally, policy learning time
is proportional to the rollout horizon.
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3.4 POLICY GRADIENT

Based on Equation 2, the optimization target to optimize based on policy gradient method is:

argmax
θ

J(θ) = Es∼S [Uθ(s)] , (5)

where Uθ(s) = µ(V̂θ(s)) + c × σ(V̂θ(s)). Using the ensemble method and the rollout technique
described above, we can naturally compute µ(V̂θ(s)) and σ(V̂θ(s)) for a given policy πθ and for a
given state s. Therefore, the policy πθ can be updated using the SGD or a variance of it.

Importantly, in terms of implementation, it is worth noting that the aforementioned rollout method
also allows for easily expressing U(θ) in Equation 5 as a single computational graph of θ. This
makes it straightforward to compute the policy gradient ∇θUθ(s) using automatic differentiation, a
feature provided by default in most popular deep learning toolkits.

4 ALGORITHM SUMMARY

Algorithm 1 Policy Optimization with Uncertainty-aware Model (POUM)

1: Initialize a training dataset D, bootstrapped datasets {Di}Bi=1, parameterized bootstrapped mod-
els {f̂i}Bi=1, a parameterized reward model r̂φ, and a parameterized deterministic policy πθ.

2: while not done do
3: • Step in the environment, collect new data point (s, a, s′, r) and push into D,
4: • Sample from D and push data into the bootstrapped replay buffers: for each member ith

in the ensemble, add zi ∼ Poisson(1) copies of that data point to Di,
5: • Update {f̂i}Bi=1 on Di and r̂φ on D using SGD,
6: • Evaluate V̂θ(s) and Uθ(s) by simulating through the learned models {f̂i}Bi=1 and r̂φ,
7: • Update πθ using SGD with the policy gradient being backpropagated on Es [Uθ(s)] through

the learned models.
8: end while

We summarize our framework POUM in Algorithm 1 and later in this section, we will also highlight
some important details in our implementation.

4.1 DYNAMICS MODEL LEARNING WITH ONLINE BOOTSTRAP

As discussed in Section 1, there are several prior attempts to learn uncertainty-aware dynamics
models such as GPs, Bayesian neural networks (NNs), dropout NNs and ensemble of NNs. In this
work, however, we employ an ensemble of bootstrapped DNNs. Bootstrap is a generic, principled
and statistical approach for uncertainty quantification. Furthermore, as will be also later explained
in Section 3.4, this ensembling approach also gives rise to easy gradient computation.

4.1.1 ONLINE BOOTSTRAP FOR TRAINING DATA

Bootstrap learning is often studied in the context of batch learning. However, since our agent updates
its empirical model F̂ after each physical step for the best possible sample efficiency, we follow an
online bootstrapping method by sampling from Poisson distribution (Oza, 2005; Qin et al., 2013).
This is a very effective online approximation to batch bootstrapping, and can be easily done by this
simple rule: bootstrapping a dataset D with n examples means sampling n examples from D with
replacement. In detail, each example i will appear zi times in the bootstrapped sample where zi is a
random variable whose distribution is Binom(n, 1/n) because during resampling, the ith example
will have n chances to be picked, each with probability 1/n. This Binom(n, 1/n) distribution
converges to Poisson(1) when n → ∞. Therefore, for each new data point, this method adds zk
copies of that data point to the bootstrapped dataset Dk, where zk is sampled from a Poisson(1).

Online off-policy learning. Except for the initialization step (we may initialize the models with
batch training from off-policy data), our model learning is an online learning process. For each time
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step, the learning cost stays constant and does not grow over time, which is required for lifelong
learning. Despite being online, the learning is off-policy because we maintain a bootstrapped replay
buffer for each model in the ensemble. For each model update, we sample a minibatch of training
data from the respective replay buffer. In addition, as mentioned, the models can also be initialized
from existing data even before the policy optimization starts.

4.1.2 LINEARLY-WEIGHTED SAMPLING FROM BOOTSTRAPPED TRAINING DATA

Since our replay buffers are accumulated online, a naive uniformly sampling strategy would lead to
early data being sampled more frequently than the later ones. We thus propose a linearly weighted
random sampling scheme to mitigate this early-data bias issue. In this sampling scheme, example
ith is randomly sampled with weight i, i.e. higher weights for the fresher examples in each online
update step. Despite its simplicity, this scheme plays an important role in data bias removal, as
shown in Appendix A.1.

5 EXPERIMENT

Our experiments are designed to help 1) compare our POUM framework with other SoTA ap-
proaches and 2) investigate the impact of the risk factor in our utility function on guiding agents.

5.1 COMPARISON TO BASELINE ALGORITHMS

Experimental Design. We evaluate the performance of our POUM algorithm on four continuous
control tasks including: one classic control task (Pendulum-v0) and three other tasks in the MuJoCo
simulator (Todorov et al., 2012) from OpenAI Gym (Brockman et al., 2016). It is important to note
that, we keep the default configurations prodived by OpenAI Gym (See Appendix A.2.1) and also
does not assume access to the reward function as some recent works in model-based reinforcement
learning (Chua et al., 2018; Clavera et al., 2018; Kurutach et al., 2018).

For the baselines, we compare POUM to the following SoTA algorithms designed for continuous
control: MBPO (Janner et al., 2019), DDPG (Lillicrap et al., 2015), SAC (Haarnoja et al., 2018),
STEVE (Buckman et al., 2018). For each one of them, we evaluate the learned policy after every
episode. The evaluation is done by running the current policy on 20 random episodes and then
computing the average return over them.

Results. Figure 5.1 shows that POUM has a sample efficiency compared to the baseline algo-
rithms across a wide range of environments. Furthermore, it also has the asymptotic performance
competitive to or even better than that of the model-free counterparts. Note that, there are horizontal
parts at the beginning of evaluation curves in some algorithms and environments, that because these
algorithms take random exploration at the beginning of training (as their default configuration) to
initialize dynamics. For simple environments: Pendulum-v0, Reacher-v2, Push-v2, our POUM can
get a good performance without initialized dynamics1.

However, Figure 5.1 also shows that the performance of POUM in more complex environment like
HalfCheetah-v2 is sensitive to random seeds. We hypothesize that this is due to the impact of risk-
preference value on policy optimization framework and our strategy of aggressive online learning
and linearly weighted batch sampling. The ablation study below validates our current analysis on
these hypotheses.

5.2 ABLATION STUDY

To obtain a better understanding about the role of the subjective risk preference in the utility function,
we conduct an ablation study on the parameter c that controls this risk factor (Equation 2) and make
the following observations.

As illustrated in Figure 5.2, as the first observation, complete zero risk is not a good choice. This
behavior is expected because no risk means no uncertainty is quantified properly, leading to agents

1MBPO failed to attain a good performance for Reacher-v2 and Pusher-v2, regardless our best effort to
produce the results based on the authors’ official repository.
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Figure 1: Average return of POUM model over 3 different randomly selected random seeds com-
pared with SoTA appoaches. Solid lines indicate the mean and shaded areas indicate one standard
deviation. POUM beats all other solutions on environments tested, except for HalfCheetah-v2 where
it has a competitive performances compared to MBPO.

Figure 2: POUM with different subjective risk preference values on HalfCheetah-v2 environment.
The moderate risk yields the best return while too much risk (either too high or too low) will harm the
agent in getting good results. We use the same settings of HalfCheetah-v2 environment as presented
in Appendix A.2.3 excluding risk-preference values

could not learn well to model the dynamics, as well as optimize an efficient policy. In another
observation, POUM performs best with the risks c = −1, follows by c = −2 and c = −3, while it
gets worse and worse at both directions, the risk factor goes either higher or lower. This phenomenon
is because the risk factor controls the scale of standard deviation, and hence the variance. Too low or
too high risks, consequently, imply too much variance which is not favorable in many cases because
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it indudes agents to explore more aggressively and hence suffer more potential failures, while not
exploiting current, safer experiences. Finally and interestingly, as the scale of the risk changes,
both directions are not behaving the same. In particular, POUM gets bad results with positive risk-
preference value, and even can not learn with high positive value. That is because in current work, we
use fixed the subjective risk preference value and at the beginning of learning process, the dynamics
models are unstable and high variance, with high positive risk-preference values, policy learning
strange decisions. In contrast, with negative risk-preference, our utility function work as lower
confidence bound that keep policy in a safe region. The figure indicates that with lower negative
risk-preference value, the learning curve is more stable. However, lower risk-preference value means
that less exploration, and results in lower final reward.

6 DISCUSSION AND CONCLUSION

In summary, this paper proposed a new approach in MBRL in which we developed a novel objec-
tive function that balances the mean and variance in the estimation of the value function, which is
induced by the model. Our experiments suggest that our POUM algorithm not only can achieve the
asymptotic performance of model-free methods in challenging continuous control tasks and com-
pared to other SoTA approaches, it does so in much fewer samples. We further demonstrate that
the model bias issue in model-based RL can be dealt with effectively with principled and careful
uncertainty quantification, by guiding agents with a subjective risk factor. Unlike other methods,
quantifying and controlling the uncertainty with a novel uncertainty-aware objective function, and
without any complex designs for other components is an advantage, of being simple yet efficient,
compared with others.

Nonetheless, we acknowledge that our current implementation for POUM still has several limi-
tations, such as high variance in the empirical performance, which still depends on many hyper-
parameters (plan horizon, risk sensitivity, and all hyper-parameters associated with neural networks
training techniques) and even depends on random seeds. It is, however, worth noting that these traits
are not unique to our methods. In spite of this limitation, the results indicate that if implemented
properly, MBRL methods can be both sample efficient and have better asymptotic performances
than the MFRL counterparts on challenging tasks. In addition, by explicitly representing both the
dynamics model and the policy, POUM enables transfer learning, not just for the world (dynamics)
model but also for the policy.

To sum up, we identify that sample efficiency, off-policy learning, and transferability are three nec-
essary, albeit not sufficient, properties for real-world reinforcement learning. We claim that our
method meets these criteria and hence is a step towards real-world reinforcement learning.
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A APPENDIX

A.1 WHY LINEARLY WEIGHTED RANDOM SAMPLING IS A FAIRER SAMPLING SCHEME

Consider the following online learning process: for each time step, we need to randomly sample
an example from the accumulating dataset. Suppose that at time t, each example ith is randomly
sampled with weight w(t, i). Note that at each time t, we have a total of t examples in the dataset.
Then the probability of that example being sampled is

w(t, i)∑t
k=1 w(t, k)

.

If we use uniformly random sampling then the expected number of times an example ith gets se-
lected until time t is

Cti =

t∑
k=i

1

k
.

Hence, for all t, for i > j, Cti is larger than Ctj by
∑j
k=i

1
k . Now, if we use a linearly weighted

random sampling scheme, in which w(t, i) = i, then the expected number of times an example ith
gets selected until time t is

Cti =

t∑
k=i

2i

k(k + 1)
= 2

t∑
k=i

(
i

k
− i

k + 1

)
= 2− 2

i

t
.

We can see that at time t, Cti is still larger than Ctj for i < j but by weighting recent examples more
in each online update step, we reduce the overall early-data bias.

A.2 EXPERIMENTAL SETTINGS

A.2.1 ENVIRONMENTS

Table 1: Description of the environment used for testing
Environment State dimension Action dimension Task horizon

Reacher-v2 11 2 50
Pusher-v2 23 27 100
Pendulum-v0 3 1 200
HalfCheetah-v2 23 6 1000

A.2.2 NETWORK ARCHITECTURE

A.2.3 HYPER-PARAMETER SETTINGS
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Table 2: Network layer configurations
Environment bootstrap model: f̂i Reward model: r̂φ Policy: πθ

Reacher-v2 [13, 256, 128, 11] [13, 256, 128, 1] [11, 128, 128, 2]
Pusher-v2 [30, 1024, 512, 256, 23] [30, 1024, 512, 256, 1] [23, 512, 256, 7]
Pendulum-v0 [4, 64, 64, 3] [4, 64, 64, 1] [3, 8, 1]
HalfCheetah-v2 [23, 1024, 512, 256, 17] [23, 1024, 512, 256, 1] [17, 512, 256, 6]

Network format: [ input size, hidden layers size, output size ]

Table 3: Hyper-parameter settings
Hype-parameter Pendulum-v0 Reacher-v2 Pusher-v2 HalfCheetah-v2

Bootstrap size 16 8 16 16
Plan horizon 20 30 35 20
Risk preference -0.25 -0.25 0 -1
Policy updates 8 4 16 2
(per environment step)
Dynamics update 8 6 6 6
(per environment step)
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