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Abstract

Generative adversarial networks have been widely explored for generating photo-
realistic images but their capabilities in multimodal image-to-image translations
in a conditional generative model setting have been vaguely explored. Moreover,
applying such capabilities of GANs in the context of facial expression generation
conditioning on the emotion of facial expression and in absence of paired examples,
to our knowledge, is almost a green field. Thus, the novelty of this study consists
in experimenting the synthesis of conditional facial expressions and we present a
novel approach (CCycleGAN) for learning to translate an image from a domain (e.g.
the face images of a person) conditioned on a given emotion of facial expression
(e.g. joy) to the same domain but conditioned on a different emotion of facial
expression (e.g. surprise), in absence of paired examples. Our goal is to learn a
mapping such that the distribution of generated images is indistinguishable from
the distribution of real images using adversarial loss and cycle consistency loss.
Qualitative results are presented, where paired training data does not exist, with a
quantitative justification of optimal hyperparameters. The code for our model is
available at https://github.com/gtesei/ccyclegan.

1 Introduction
The detection of human emotions has been long explored thanks to its applicability in various domains
such as assisted living, health monitoring, real time crowd behavior tracking, and emotional security.
Moreover, photo-realistic facial expression synthesis can be widely applied to face recognition,
entertainment, virtual and augmented reality, computer graphics, data augmentation for emotion
recognition, but such problem is much more challenging than the former, in part due to the scarcity
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of large labeled paired datasets, i.e. where the same person is observed with different emotions of
facial expressions.

2 Related Work
Generative modeling focus on observing data and learning a model to infer how this data was
generated. Generative Adversarial Networks (GANs) [23, 3] achieved excellent results in image
generation [19, 3], image editing [25] and representation learning [13, 16, 19]. Conditional GANs
[14] extended GANs conditioning the generator or the discriminator on some extra information, e.g.
class labels. Recent methods adopt the same idea for conditional image generation [11], translating
visual concepts from characters to pixels [17], image inpainting [15], and future prediction [12].

2.1 Cycle Consistency
The idea to use transitivity to regularize structured data has been long used in different domain,
e.g. in visual tracking enforcing forward-backward consistency [7, 20], in machine translation
verifying and improving translations via back translation [22] and unsupervised machine translation
[9, 1, 10], in monocular depth estimation supervising CNN training [2]. In the context of unpaired
image-to-image translation, cycle consistent GANs proved to be effective in learning to translate an
image from a source domain X to a target domain Y in the absence of paired examples [26, 27] but
such domains never include facial expressions1, and different facial expressions of the same person
could be hardly modeled as different domains for unpaired image-to-image translation2. On the other
hand, conditional difference adversarial autoencoder (CDAAE) [24] proved to be effective for facial
expression synthesis but they were trained on paired datasets.

2.2 Facial Conditional Image-to-Image Translation
Recent methods of facial conditional image-to-image translation [11] and attribute editing on CelebA
dataset [5] achieved impressive results, but they generate output images from input images with
identical emotions of face expressions, while changing emotions of face expressions requires usually
changing the shape of the face (e.g. surprise→ disgust) along with a set of consistent changes of the
facial expression not just related to color (e.g. brown hair→ blond hair), texture (e.g. old→ not
old), the presence or absence of a given detail (e.g. beard→ no beard).

3 Dataset
FER2013 [4], available online at Kaggle (accessed on 12 April 2019), consists of 28,709/7,178
train/test 48x48 pixel grayscale images of faces annotated with the emotion of facial expression as
one of seven categories (0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral). It is
a dataset of unpaired images and thanks to its resolution led to a good trade-off between accuracy
and model complexity allowing us to iterate quickly many times. For data preprocessing we have
normalized the input images from [0, 255] to [0, 1] .

4 Methods
4.1 Conditional Cycle-Consistent GANs
Let’s condition the GAN on the emotion of the facial expression, following the approach [14]. Our
goal is to learn a mapping function between a domain X and itself conditioned on the emotions of
facial expressions Y = {0, 1, ..., k}. Hence, given an image x0 ∈ X annotated with y0 ∈ Y and
given a desired emotion of facial expression y1, we want to translate x0 into x1 having expression
y1, i.e. x1 = G (x0|y1), where G is the conditional mapping we want to learn or generator. Also,
we split such generator into Genc, the encoder responsible to encode a face image into its latent
representation, i.e. z0 = Genc (x0), andGdec, i.e. decoder responsible to perform the image-to-image
translation given the desired facial expression label and the latent representation of the image, i.e.

1Examples of such domain pairs are horse→ zebra, winter Yosemite→ summer Yosemite, apple→ orange,
where shapes of objects are usually preserved.

2This is an experiment actually attempted in this project but there are several disadvantages in this approach.
For example, if we have n classes, the cardinality of the set of all possible image-to-image translations from
a domain to another, i.e. Tn = {i→ j|1 ≤ i, j ≤ n ∧ i 6= j}, becomes |Tn| = n(n − 1), that in our case
(as n = 7) implies |T7| = 42 distinct generators and 7 discriminators. This proliferation of generators and
discriminators has the main downside of highly reducing parameters sharing (by a quadratic factor).
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Figure 1: U-NET generator [18]. Genc has four convolutional layers, denoted as C-LR-N-#, com-
posed by 4× 4 unpadded convolutions (64/128/256/512 filters, strides 2), LeakyReLU and instance
normalization [21], where the last 1× 1× 512 feature map is the latent vector. Gdec takes as inputs
the latent vector and the one-hot label vector, reshaping the latter as a 1× 1× 7 vector, concatenates
it to the latent vector obtaining a 1× 1× 519 vector and applying a 1× 1 convolution to reduce the
number channels to 512, as it should be according to the U-NET scheme. Then three deconvolutional
layers are applied, denoted as CT-N-#, composed by transposed convolution (256/128/64 filters, size
4, no stride, and no padding, except for the first one where it is used padding one), ReLU, instance
normalization and concatenation with the correspondingly cropped feature map from the contracting
path as described in [18].

x1 = Gdec (z0|y1) = Gdec (Genc (x) |y). During experimentation we found this split very beneficial
compared to a monolithic design without encoder/decoder. In addition, we would like to introduce
one adversarial discriminatorD(x|y) to distinguish true images conditioned on true facial expressions
and translated images conditioned on desired facial expressions. During experimentation we found
out this design, although conceptually correct, has the main disadvantage of back-propagating to the
whole network both the error due to lack of realistic image generation and the error due to incorrect
translation of facial expression, leading the network to learn one of these two sub-tasks but not both.
Hence, we model the discriminator as two-tasks learning function, i.e. D : X → {0, 1}×Y , denoting
for conceptual convenience the first task as Drf : X → {0, 1} and as Dcl : X → Y the second one.
To achieve parameters sharing, part of the network should be in common between these two tasks
but the upper layers should be distinct. In section 4.2 the details of how to split the discriminator are
reported. Regarding activations functions, the activation function of the last layer for Drf is sigmoid
while for Dcl could be either sigmoid or softmax. Although softmax may seem a good choice (and
it was actually our first guess), during experimentation sigmoid proved to be a much better choice.
Our explanation is that constraining the predicted probabilities of facial expressions to have sum
one is conceptually incorrect. For example, although there are cases like happy vs. sad mutually
exclusive, there are also fuzzier cases like disgust vs. angry not so clearly exclusive. Even for a
human annotator for many of such cases it is not so clear whether the person is more disgusted than
angry and, probably, the correct label should be both3. Applying adversarial losses, we can express
the first objective term as a classical adversarial objective term, i.e. as

LRF (G,Drf , X, Y )= Ex∼p(x) [logDrf (x)] + Ex,y∼p(x,y) [log (1−Drf (G (x|y)))] (1)

where G tries to generate images Gdec (Genc (x) |y) that look similar to images from domain X ,
while Drf aims to distinguish between generated samples and real samples form domain X . Genc

and Gdec aim to minimize this objective against an adversary Drf that tries to maximize it, i.e.,
minGdec,Genc

maxDcl
LRF (G,Drf , X, Y ). In the same way, we can express the second term

LCL (G,Dcl, X, Y )= −Ex,y∼p(x,y) [lcl (x, y)]− Ex∼p(x),y∼p(y) [lcl (G (x|y) , y)] , where (2)

3FER2013 is not a multi-label dataset but probably it should have been. In real world people having complex
cognitive states are usually holding different and maybe conflicting emotions at the same time.
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(a) For the multi-task discriminator we use four
convolutional layers, composed by 4× 4 unpadded
convolutions (64/128/256/512 filters, strides 2),
LeakyReLU and instance normalization (except for
the first layer). This is the part of the network
shared by the two tasks. Then, for Drf and Dcl we
have two distinct fully connected blocks followed
by LeakyReLU and sigmoid activations.

(b) Results with λcyc = λcl = 1, Adam solver,
learning rate = 0.0002, β1 = 0.5, β2 = 0.999.
On the top-left corner the original image with
emotion of facial expression (“Orig:Sad”), next
on the right the first translation (“Trans:Angry”),
and so on. On the bottom left corner, the recon-
structed image. Additional results are available at
https://github.com/gtesei/ccyclegan

Figure 2: Multi-task discriminator architecture (a) and results with optimal hyperparameters (b).

lcf (x, y) =
∑

0≤i≤k

−1{yi=i} log (Dcl (x)i)

where k + 1 is the number of class labels, Dcl (x)i is the i-th element of the output vector Dcl (x).
Hence, G tries to generate images Gdec (Genc (x) |y) that look similar to images from domain X
with the desired facial expression y ∈ Y , while Dcl aims to classify images with the correct facial
expression label y ∈ Y . Genc and Gdec aim to minimize this objective against an adversary Dcl that
tries to maximize it, i.e., minGdec,Genc maxDcl

LCL (G,Dcl, X, Y ). Also, following the approach
[26], to further reduce the space of possible mapping functions, the learned mapping functions
should be cycle-consistent, i.e. the image translation cycle should be able to bring x back to the
original image, i.e. Gdec (Genc (x0) |y0) ≈ x0. This behavior can be incentivated by using a cycle
consistency loss term:

Lcyc (G,X, Y )= Ex,y∼p(x,y) ‖Gdec (Genc (x) |y)− x‖1 (3)

Hence, our full objective is:

L (G,D,X, Y ;λcyc, λcl) = LRF (G,Drf , X, Y ) + λclLCL (G,Dcl, X, Y ) + λcycLcyc (G,X, Y )
(4)

where λcyc, λcl controls the relative importance of the three objective terms. Hence, the general
optimization problem can be formulated as:

G∗enc, G
∗
dec = arg min

Genc,Gdec

max
Drf ,Dcl

L (G,D,X, Y ;λcyc, λcl) . (5)

4.2 Network Architecture
We adopt U-NET generator [18] where for Genc encodes face images into latent vectors through
four convolutional layers and Gdec takes as inputs 1 × 1 × 512 latent vectors and one-hot label
vectors to decode them through three deconvolutional layers. Further details on fig. 1. For the
multi-task discriminator we use four convolutional layers followed by fully connected layers and
sigmoid activations both for Drf and Dcl. Further details on fig. 2a.

4.3 Training Details
For each train image x0 ∈ X annotated with facial expression y0 ∈ Y , we extract the latent vector
z0 = Genc (x0), and then generate all the possible 6 face images conditioning on the remaining 6
class labels, i.e. G0 = {Gdec(z0, y

′)|y′ ∈ Y ∧ y′ 6= y0} to train the discriminator and the generator.
Notice that this procedure is different from [14] as we don’t use any prior noise distribution. We use
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Figure 3: Frechet Inception Distance (FID) [6] is used to to find the best mix of learning rate (top
x-axis), λcyc, λcl (right y-axis) as measure of dissimilarity between the distributions of generated face
images and real face images. Values have been smoothed adopting exponential smoothing average
with bias correction (β = 0.4). We can see that disgust is the most difficult emotion to synthesis
in all configurations (not surprisingly, it has the lowest class frequency of 1.5%). The three best
configurations are the ones with lowest FID for a given epoch and class label, i.e. learning rate =
0.0002 (confirming [26]), λclyc = 1 ∧ λcl = 1 or λclyc = 0.5 ∧ λcl = 1 or λclyc = 0.5 ∧ λcl = 0.5.
These configurations are confirmed by qualitative evaluation of generated facial images (see fig. 2b ).

mirroring as augmentation method and random shuffle of train data is applied both to generator and
discriminator. Also, we use Adam solver [8] with batch size of 64 and to find the best mix of learning
rate, λcyc, λcl we use grid search on a restricted but convenient set of candidates as better explained
in section 5.

5 Experiments

The model described by eq. 1, 2, 3, 4, 5 is the 26th successful tentative after 24 failures (see
project repository for full list of experiments). We found out that monitoring the three losses of
eq. 1, 2, 3 is not enough. For example, a typical problem we encountered is that to minimize
the general optimization objective, the network could learn the identity transformation optimizing
the losses LRF (eq. 1) and Lcyc (eq. 3) and sacrificing the loss LCL (eq. 2), reaching a better
overall equilibrium than trying to do its job, i.e. performing the translation. To prevent this behavior,
instead of increasing λcl, splitting the generator and the discriminator (section 4.1) and adopting
the training procedure described in section 4.3 are key points. Following [26], we use Adam solver
with β1 = 0.5, β2 = 0.999. For remaining hyperparameters, we use Frechet Inception Distance [6],
applying an Inception-v3 network pretrained on ImageNet (converting grayscale images to RGB)
to real and generated samples, to find optimal values of learning rate, λcyc, λcl as better explained
in fig. 3. The optimal hyperparameters found in this way are confirmed by qualitative evaluation of
generated facial images (fig. 2b), with ≈ 150 epochs.

6 Conclusion

We introduce CCycleGAN, a novel approach for the synthesis of realistic face images conditioning on
the emotion of facial expression and in absence of paired examples. Qualitative results are presented
and a quantitative justification is provided for optimal hyperparameters.
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