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Abstract
Many models based on the Variational Autoencoder are proposed to achieve disentan-
gled latent variables in inference. However, most current work is focusing on designing
powerful disentangling regularizers, while the given number of dimensions for the latent
representation at initialization could severely influence the disentanglement. Thus, a prun-
ing mechanism is introduced, aiming at automatically seeking for the intrinsic dimension of
the data while promoting disentangled representations. The proposed method is validated
on MPI3D and MNIST to be advancing state-of-the-art methods in disentanglement, re-
construction, and robustness. The code is provided on the https://github.com/WeyShi/
FYP-of-Disentanglement.
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1. Introduction

To advance disentanglement, models based on the Variational Autoencoder (VAE) (Kingma
and Welling, 2014) are proposed in terms of additional disentangling regularizers. However,
in this paper, we introduce an orthogonal mechanism that is applicable to most state-of-the-
art models, resulting in higher disentanglement and robustness for model configurations—
especially the choice of dimensionality for the latent representation.

Intuitively, both excessive and deficient latent dimensions can be detrimental to achieving
the best disentangled latent representations. For excessive dimensions, powerful disentan-
gling regularizers, like the β-VAE (Higgins et al., 2017), can force information to be split
across dimensions, resulting in capturing incomplete features. On the other hand, having too
few dimensions inevitably leads to an entangled representation, such that each dimension
could capture enough information for the subsequent reconstruction.

2. Methods

In this paper, we introduce an approximated L0 regularization (Louizos et al., 2018) to prune
the dimension of the latent representation vector. Consequently, our Pruning Variational
Autoencoders (PVAE) framework is applicable to most state-of-the-art VAE-based models
due to its orthogonality with current approaches. But in this challenge, we choose to put
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the pruning mechanism onto the DIP-VAE (for Disentangled Inferred Prior VAE) (Kumar
et al., 2018) due to its decent performance on MPI3D (Gondal et al., 2019). In the context
of pruning, the aim of L0 is to compress the network, while here the goal is seeking for the
intrinsic dimension for the latent representation, which is achieved by the balance between
several terms.

2.1. The Masked Base Model: Masked DIP-VAE

Basically, we desire to achieve binary masks m, depending on some learnable parameters
α, to control each dimension. Thus, the DIP-VAE loss term with masks can be formulated
as follow:

LDIP(θ, φ,α) = Ep(x)

[
−Eqφ(z|x) [log pθ(x|m ◦ z)] +

∑
i

miDKL(qφ(zi|x)‖p(zi))

]
+ λod

∑
i 6=j

C2
ij + λd

∑
i

(Cii − 1)2,
(1)

where x, p(x), z, and p(z) are the input images, the data distribution, the latent variables
(the output of the encoder), and their prior, respectively, and µφ(·), and pθ(·), qφ(z|·)
denote the function of the encoder’s mean path, the decoder, and the encoder. Meanwhile,
C = Covp(x)[m◦µφ(x)] denotes the covariance matrix of the pruned mean representations.

There are two points to note about the Kullback–Leibler (KL) divergence terms. Firstly,
they decompose across dimensions (zi) because we assumed factorized prior and variational
posterior distributions. Secondly, the KL term for each dimension is multiplied by the mask
for consistency when that dimension is forced to zero, which can be understood in terms of
inference with spike-and-slab distributions (see Louizos et al., 2018, Appendix A).

2.2. Approximate L0 Regularization

With a second term denoting L0 regularization over e, the samples drawn from the qφ(z|x),
the total loss can be formulated as

Ltotal(θ, φ,α) = LDIP(θ, φ,α) + τEp(m|α)

[
Ep(x)

[
Eqφ(z|x) [‖m ◦ z‖0]

]]
, (2)

where ‖m ◦ z‖0 =
∑|z|

j=1 I[mjzj 6= 0] =
∑|z|

j=1mj .

To solve the difficulty of L0 computation, the L0 loss is reformulated as
∑|α|

j=1(1 −
p(m(αj) ≤ 0|αj)), which is the sum of the probability of mj being positive.

Ltotal(θ, φ,α) = LDIP(θ, φ,α) + τ

|α|∑
j=1

p(mj > 0|αj),

p(mj > 0|αj) = sigmoid
(

logαj − β log
−γ
ζ

)
, (3)

where γ < 0 and ζ > 1 are the lower and upper bounds for the stretched range, and β is
the temperature coefficient of the masks generation process introduced in Section 2.3. The
given formulation is slightly different from Louizos et al. (2018) for clarity. The mask vector
m is clamped such that mj ∈ [0, 1].
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2.3. Realization of Pruning for VAE: The L0Pair Layer

The binary masks m are modelled as following Bernoulli distributions with parameters α:
mi ∼ Bern(αi). Louizos et al. (2018) proposed to obtain these masks in a differentiable
fashion, feeding uniform random variables through a sigmoid-like function whose location
depends on α. Furthermore, to ensure that masks are likely to be exactly 0 or 1, they stretch
the value range of the sigmoid-like function to be [ζ, γ] and then clamp it to be [0, 1]. This
process can be formulated as below, and is illustrated in Appendix A:

ui ∼ U(0, 1), si = sigmoid((log ui − log(1− ui) + logαi)/β),

s̄i = si(ζ − γ) + γ, mi = min(1,max(0, s̄i)).
(4)

To align it with VAE, we need the encoder to output means µφ(x) and variances σ2
φ(x)

of q(z|x) instead of means µφ(x) and logσ2
φ(x) such that after pruning we have a N (0, 0)

rather than N (0, 1) for a specific dimension. In detail, a mask is multiplied with each pair
of mean and variance and the KL divergence for the corresponding dimension, such that
dimensions can effectively be ‘switched off’ and not affect training. To avoid numerical
instability in the KL divergence, we add a small positive constant to σ2

φ(x). Given the
outputs of the last layer of the original encoder, the L0Pair layer can be expressed as

fL0Pairφ (x;m) = [m ◦ µφ(x);m ◦ σ2
φ(x)]. (5)

3. Experiments

In terms of the structure of the encoder and the decoder, we adopt the default settings given
in the starter kit1, which is based on row 3 of Table 1 on page 13 of Higgins et al. (2017).
We list our choices of hyperparameters in Appendix B.

The L0 regularization in the pruning mechanism facilitates the performance and the ro-
bustness of vanilla DIP-VAE on MPI3D (Gondal et al., 2019) by approaching the intrinsic
dimension during training. In Appendix B, we additionally present results on MNIST (Le-
Cun and Cortes, 2010) with a JointVAE (Dupont, 2018) extension of the proposed PVAE
(PJVAE), which further validates the disentanglement benefits of pruning.

4. Conclusion

A pruning mechanism that is complementary to most current state-of-the-art VAE-based
disentangling models is introduced and validated on MPI3D and MNIST. The approximated
L0 regularization facilitates the model to capture better-disentangled representations with
optimal size and increases the robustness to initialization. Moreover, with the same hy-
perparameters, the model approaches the intrinsic dimension for several datasets including
MNIST and MPI3D, even with an extra-large number of dimensions at initialization. Even
given the intrinsic dimension, the PVAE still outperforms other SOTA methods in terms of
disentanglement and reconstruction.

1. https://github.com/google-research/disentanglement_lib/blob/master/disentanglement_lib
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Appendix A. Mask Generation Details

The main process of calculating masks is applying the formula

s = sigmoid((log u− log(1− u) + logα)/β), (6)

where α, β are the parameters that control the position and the extent of the approximation
to pulse function. During training, the model will adjust α only, which can be interpreted
as the π of the Bernoulli distribution. As we can see Figure 1

When α increases, the function moves towards left, enabling more x area to produce
non-zero output. Thus, α is learned to decide how many pairs are activated. According to
the experiments, even initially we set 64 or 32 pairs for MNIST, our pruning VAE can prune
it to around 16 with the same hyperparameters.

Another parameter, the temperature β, of the function is set to be a constant here. The
effect is shown in Figure 2
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Figure 1: The Role of α

Figure 2: The Role of β
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Table 1: Default values of parameters

Parameters Default Values

β 0.05
τ 0.1
λod 20
λd 2
ζ 1.1
γ -0.1

Appendix B. Further Experiments on MNIST

The default parameters are given in Table 1.
As for the optimizer and its Learning rate, we select Adam optimizer with 10−4. More-

over, the τ = 0.1 generalizes well on both MNIST and CelebA2. To capture the discrete
features like Digits (Dupont, 2018), we adopt one additional discrete variable and the model
becomes Pruning Joint VAE (PJVAE). Since there is only one discrete variable, it is unnec-
essary to impose further disentanglement on it (the disentanglement on discrete variables is
beyond the scope of this report).

In Figure 3, we can see the advantage of pruning on MNIST, especially when the ini-
tialization far deviates from the intrinsic dimension (which is still unknown for MNIST, but
is estimated to be around 10 by several methods). However, the PJVAE is robust to the
initialization as long as it is given enough latent space at initialization.

Surprisingly, with appropriate initialization, its reconstruction occasionally becomes bet-
ter than the VAE, with consistent higher disentanglement performance. Furthermore, on
this dataset PJVAE outperforms DIP-VAE in both metrics. Inspecting the variation be-
tween different initialization, we can validate the robustness of PJVAE versus the other two
methods.

In general, in terms of TC, PJVAE possesses obvious advantages. And reconstruction
performance is the same, PJVAE also showing a consistent lower error. Note that both VAE
and DIP-VAE are initialized with one additional 10-value categorical (discrete) variable for
a fair comparison. The only difference between this DIP-VAE (actually, DIP-JointVAE)
and PJVAE, is the approximated L0.

2. http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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Figure 3: Comparison between VAE, DIP-VAE, and PJVAE with different initialization on
MNIST. The number denotes the total dimensionality of the latent variables at
initialization. TC stands for Total Correlation.
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