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Abstract

We develop end-to-end learned reconstructions for lensless mask-based cameras,
including an experimental system for capturing aligned lensless and lensed images
for training. Various reconstruction methods are explored, on a scale from classic
iterative approaches (based on the physical imaging model) to deep learned methods
with many learned parameters. In the middle ground, we present several variations
of unrolled alternating direction method of multipliers (ADMM) with varying
numbers of learned parameters. The network structure combines knowledge of
the physical imaging model with learned parameters updated from the data, which
compensate for artifacts caused by physical approximations. Our unrolled approach
is 20× faster than classic methods and produces better reconstruction quality than
both the classic and deep methods on our experimental system.

1 Introduction

Mask-based lensless cameras can be small, light-weight, and capture higher-dimensional information,
such as 3D and video, from a single shot [1–3, 8, 13]. Instead of using a lens, lensless cameras
use a phase or amplitude mask which maps points in the world to a unique multiplexed pattern on
the sensor (Fig. 1(a)). Typically, a reconstruction method based on convex optimization is used
to iteratively solve for the scene from the multiplexed sensor data. In practice, iterative methods
can be slow and the reconstruction quality is sensitive to errors from model mismatch, imperfect
calibration, hand-tuned parameters, and hand-picked priors which are not necessarily representative
of the data. Solving the inverse problem with deep methods offers a favorable alternative due to the
decreased computation and the ability to directly optimize image quality. However, this comes at the
price of thousands of training pairs, a loss of interpretability, and the inability to explicitly add prior
knowledge, such as the imaging system physics, into the network.

Unrolled optimization has emerged as a promising middle-ground approach between classic and
deep methods for a variety of inverse problems [5–7, 11, 12]. In unrolled optimization, a fixed
number of iterations from a classic algorithm is interpreted as a deep network, with each iteration
serving as a layer in the network. In each layer, if the parameters of the algorithm are differentiable
with respect to the output, they can be optimized for a given loss function through backpropagation.
Following this framework, we unroll the iterative alternating direction method of multipliers (ADMM)
algorithm with a variable splitting specific for lensless imaging [1, 4]. This allows us to incorporate
knowledge of the image formation process into the neural network as well as directly optimize
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Figure 1: (a) Experimental Setup. We display images on a computer screen and use a beamsplitter to
simultaneously record measurements on both a lensed and lensless camera, for training. (b) Unrolled
network architecture. The input measurement and the calibration PSF are first fed into N layers of
unrolled ADMM. At each layer, the updates corresponding to Sk+1 in Eq. (3) are applied. The output
of this can be fed into an optional denoiser network such as a U-Net [10]. The network parameters
are updated based on a loss function comparing the output image to the lensed image. Red arrows
represent backpropagation through the network parameters.

image reconstruction quality based on training examples. We present and experimentally test several
variations of networks along the spectrum between classic and deep methods, by varying the number
of trainable parameters.

To train our networks, we experimentally capture a large dataset of 25,000 aligned lensed and lensless
images ( Fig. 1(a)). Our full dataset and models are publicly available. We demonstrate a 20×
speedup and 3× improvement in perceptual similarity for lensless imaging reconstructions, showing
that our unrolled method outperforms both the classic and deep approaches in terms of visual quality.
Finally, we demonstrate the generalization of our network to measurements taken in the wild.

2 Methods

To formulate our unrolled network, we first describe our imaging forward model and classic recon-
struction algorithm. Our lensless imaging model can be approximated as a cropped convolution
between the scene and the point spread function (PSF) of the system. The PSF is measured experi-
mentally using an LED placed at the desired focal distance of the system. Assuming all points in the
scene are incoherent with each other, our sensor measurement, b, can be described as:

b(x, y) = crop[h(x, y) ∗ x(x, y)]

= CHx,
(1)

where h is the system PSF, x represents the scene, and (x, y) are the sensor coordinates. Here, ∗
denotes 2D discrete linear convolution, which returns an array that is larger than both the scene and
the PSF. Therefore, a crop operation restricts the output to the physical sensor size. This relation is
represented compactly in matrix-vector notation with crop denoted as C and convolution with the
PSF denoted as H.

To efficiently solve the inverse problem, we use ADMM with a variable splitting that leverages the
structure of the problem. The inverse problem is formulated as:

x̂ = arg min
w≥0,u,v

1

2
‖b−Cv‖22 + τ‖u‖1,

s.t. v = Hx, u = Ψx, w = x,

(2)

where Ψ is a sparsifying transform, such as finite differences for total variation (TV) denoising, and τ
is a tuning parameter that adjusts the sparsity level. The update equations for each iteration become:

2



Sk+1 ←



uk+1 ← Tτk(Ψ(xk) + αk2/µ
k
2) sparsifying soft-thresholding

vk+1 ← (CTC + µ1I)−1(αk1 + µk1Hxk + CTb) least-squares update
wk+1 ← max(αk3/µ

k
3 + xk, 0) enforce non-negativity

xk+1 ← (µk1HTH + µk2ΨTΨ + µk3I)−1rk least-squares update
αk+1
1 ← αk1 + µk1(Hxk+1 − vk+1) dual for v
αk+1
2 ← αk2 + µk2(Ψ(xk+1)− uk+1) dual for u
αk+1
3 ← αk3 + µk3(xk+1 − wk+1) dual for w

where rk = ((µk3w
k+1 − αk3) + ΨT(µk2u

k+1 − αk2) + HT(µk1v
k+1 − αk1)).

(3)

Here, α1, α2, and α3 are the Lagrange multipliers, or dual variables, respectively associated with u,
v, and w, and µ1, µ2, and µ3 are scalar penalty parameters. Tτ/µ2

denotes vectorial soft-thresholding
with parameter τ/µ2. To unroll the network, we model each kth iteration of ADMM as a layer in a
neural network. We denote the collection of update equations at the kth step of ADMM as Sk.

We analyze three variations of unrolled ADMM, each having a different number of learned parameters,
denoted by Θ (Fig. 1(b)). The three variations are summarized as:

• Le-ADMM (20 parameters, Θ = {µk1 , µk2 , µk3 , τk}) - Learned ADMM has trainable tuning
and hyper-parameters.

• Le-ADMM* (32,135 parameters, Θ = {µk1 , µk2 , µk3 ,N }) - extends Le-ADMM by adding a
trainable convolutional neural network (CNN) instead of a hand-tuned sparsifying transform.
N represents a learnable network and replaces the uk+1 update of Eq. (3).

• Le-ADMM-U (10,605,927 parameters, Θ = {µk1 , µk2 , µk3 , τk,U}) - adds a trainable deep
denoiser based on a CNN as the last layer of the Le-ADMM network, learning both the
hyper-parameters of Le-ADMM as well as the denoiser.

For training, we simultaneously collect a set of lensless and ground truth (lensed camera) image pairs
using an experimental setup with a beamsplitter to send the light to both, and computer monitor to
display training images (see Fig. 1(a)). We use two Basler Dart (daA1920-30uc) sensors; our lensed
camera has a 6mm focal length S-mount lens (lensed), and our lensless camera has an off-the-shelf
phase mask (Luminit 0.5◦) and laser-cut aperture (lensless). To achieve pixel-wise alignment between
the image pairs, we first optically align the two cameras, then perform a digital calibration process to
co-align both cameras’ coordinate systems. We capture 25,000 images from the MirFlickr dataset [9].
After down-sampling and cropping, the final images are 380×210 pixels, separated into 24,000
training images and 1,000 test images. We use a combination of mean-squared error (MSE) and
LPIPS from [14] for training.

3 Results

Figure 2 summarizes the performance of our networks on the test set. We compare against ADMM
run to convergence (100 iterations), ADMM bounded to 5 iterations (similar run time to our unrolled
network), as well as against an end-to-end trained U-Net [10]. All of our networks perform better
or comparably to converged ADMM, with the best networks operating 20× faster. Le-ADMM-U
has the most learned parameters out of our networks and also has the best performance, achieving a
better MSE and LPIPS score than traditional ADMM as well as the U-Net. Figure 3 shows several
sample reconstructions from our test set as well as some reconstructions of images taken in the wild
without the beamsplitter and computer monitor.

Our work presents a preliminary analysis of using unrolled, model-based neural networks on a real
experimental lensless imaging system. We show that it is favorable to use a network that incorporates
both knowledge of the imaging system physics and trainable parameters to optimize the network
performance. We can perform comparably to classic algorithms at a fraction of the speed using only
a few learned parameters, but can greatly improve image quality when increasing the number of
learned parameters. Our learned network is fast enough for interactive previewing of the scene and
also produces visually appealing images, addressing two of the big limitations of lensless imagers.
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a) Test Set Performance
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Figure 2: Network Performance on test set. On average, reconstructions from our learned networks
(green) are more similar to the ground truth lensed images (lower MSE and LPIPS) than those from
5 iterations of ADMM. Furthermore, our networks have comparable or better performance than
bounded ADMM (100 iterations), which takes 20× longer than Le-ADMM and Le-ADMM-U. The
data fidelity term is higher for the learned methods, indicating that these reconstructions are less
consistent with the image formation model. This suggests that the models are compensating for our
simple forward model and are able to produce higher quality images.
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Figure 3: Reconstruction results for methods along the spectrum from classic to deep, with the raw
lensless measurement (contrast stretched) and the ground truth images from the lensed camera for
reference. Le-ADMM has similar image quality to converged ADMM and better image quality than
bounded ADMM (5 iter). Le-ADMM* and Le-ADMM-U have noticeably better visual image quality.
The fully deep U-Net by itself is unable to reconstruct the appropriate colors and lacks detail.
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