RE-EVALUATE: Reproducibility in Evaluating
Reinforcement Learning Algorithms

Khimya Khetarpal; Zafarali Ahmed, Andre Cianflone, Riashat Islam, Joelle Pineau

Reasoning and Learning Lab
Montreal Institute for Learning Algorithms (Mila)
McGill University, Montreal, Canada

Abstract

Reinforcement learning (RL) has recently achieved tremendous success in solving
complex tasks. Careful considerations are made towards reproducible research
in machine learning. Reproducibility in RL often becomes more difficult, due to
the lack of standard evaluation method and detailed methodology for algorithms
and comparisons with existing work. In this work, we highlight key differences in
evaluation in RL compared to supervised learning, and discuss specific issues that
are often non-intuitive for newcomers. We study the importance of reproducibility
in evaluation in RL, and propose an evaluation pipeline that can be decoupled from
the algorithm code. We hope such an evaluation pipeline can be standardized, as a
step towards robust and reproducible research in RL.

1 Introduction

In recent years, reinforcement learning (RL) combined with neural network approximators has
achieved extraordinary success in solving complex tasks: the game of Go [1]]; continuous control
tasks such as locomotion skills [2]; and planning chemical syntheses [3]. The advent of advanced
computing has enabled rapid progress in not only Deep Learning (DL), but also in Deep RL. To ensure
consistent progress in the field, reproducibility in research is a vital tool. Recently, significant steps
have been made towards ensuring reproducible research in machine learninﬂ However, with Deep
RL, reproducible research is often more difficult [4]] due to several factors including intrinsic variance
of the algorithm, stochasticity of the environment [5]] and dependence on several hyperparameters
[6]. Ensuring that RL results are robust and reproducible is vital for future research. One crucial
aspect of reproducible research is the ability to quickly and fairly evaluate and compare algorithms.
Recently, through the efforts of authors and reproducibility challenges, open source implementations
of algorithms are becoming more readily available. However, this is only one part of the puzzle:
in this work we draw the distinction between reproducibility in algorithm vs. reproducibility in
evaluation, and are mainly concerned with the latter.

For a supervised learning task, the evaluation of an algorithm is standard: the dataset is split into
training, validation and testing subsets. The specific held-out portion for the test set is often pre-
portioned by the dataset authors, as with MNIST [[7]], or specified by the paper authors, such as the
section breakdown for the Penn Treebank [8]. Such schemes are often made into “challenges”. For
instance, the MIT Saliency Benchmark [9]] and the Imagenet challenge [10] hold out the labeled
test set for submissions to be evaluated in a uniform and consistent way. In all aforementioned
cases, evaluating a supervised learning algorithm generally consists of simply plotting the negative

*Equal contribution
2ICLR 2018 Reproducibility Challenge, http://goo.gl/XevigV

2nd Reproducibility in Machine Learning Workshop at ICML 2018, Stockholm, Sweden.

http://goo.gl/Xev1qV

log-likelihood training curve and reporting accuracy on the test set. In contrast, for RL, this is not
so obvious. A recent investigation on overfitting in RL has encouraged the use of different training
and testing seeds [L1]: RL agents can overfit quite robustly to training instances of maze games
motivating an evaluation pipeline. We share such a call and provide one instance of such a pipeline.

The Arcade Learning Environment (ALE) [12] was proposed as a framework to assess general
competency of RL agents. While assessment of algorithms on several tasks is key to Artificial
General Intelligence (AGI), our foremost emphasis here is: Given a specific task, how can we
compare algorithms uniformly and consistently? Many published papers in RL provide a wide
variety of results on almost the entire suite of ALE games. However, without access to the exact
evaluation pipeline, comparing algorithms requires reproducing the evaluation pipeline alongside
the implementation itself. In RL, algorithms are often evaluated by learning curves performance,
but not all algorithms mention the key hyper-parameters leading to the highlights in their results.
Hyperparameters in Deep RL can however significantly affect results [4}6]]. RL algorithms are often
evaluated with different number of roll-outs for average returns, random seeds, episodes for each run
and varying repetitions of each experiments, making comparisons across published results difficult.

While there are many RL tool-kits which provide a suite of environments [12,|13]14], it is not always
straightforward to evaluate several RL algorithms on a same specific task. In RL, due to various
intrinsic and external factors, comparisons to baseline algorithms from existing work is often an
onerous task. OpenAl Baselines [[15] is an effort to implement high quality versions of RL algorithms
for the community to re-use and allow comparisons. Moreover, the choice of metric for the evaluation
is subject to the subtle details of the proposed algorithm and the task at hand. This makes it difficult
to reproduce results exactly [4], or to match the evaluation protocol across algorithms [16]. The
closest to standard evaluation pipelines are competitions such as Pommermalﬂ and Learning to Ru

Previously, a standard evaluation scheme existed for OpenAl Gym in the form of a leader boar

where algorithms could be evaluated using a public pipeline. We speculate the project was no longer
maintained due to the high number of submissions and the difficulty in comparing quality research.

In this work, we highlight the challenges for newcomers to the field, in terms of reproducing and
comparisons to existing results. We propose the need for a pipeline that can provide consistent
evaluations and provide a proof of concept for how we could potentially develop tools for enhancing
reproducible RL research. While we do not address the issue of algorithms tested across several tasks,
we believe our evaluation pipeline can be extended to transfer learning. Our key contributions:

* We illustrate a case-study to highlight the importance of reproducibility in evaluation, by
emphasizing the challenges in comparing across different algorithms.

* We define an evaluation pipeline and demonstrate via a prototype how RL algorithms can be
evaluated fairly and consistently. We propose that authors should either re-use or release
such an evaluation pipeline which will ensure uniform comparison of RL algorithms.

* We show that given a further layer of abstraction, algorithms can be comparable even in the
absence of open source code.

2 Illustrative Study

In existing work, evaluating an algorithm usually consists of measuring average return achieved
in a given number of time steps, or the sample efficiency (especially when evaluating off-policy
algorithms). However, evaluation of RL algorithms greatly vary across different works. For instance,
some authors report performance during the learning phase itself after every n rollouts, while others
report average score over k once training is stopped, whereas some report scores on variations of the
environment not seen during training [17]]. In this paper, we argue that such differences in protocol
often makes comparison across algorithms difficult. We emphasize that, while sample efficiency as an
evaluation metric may be required, few standard metrics should always be used for a fair comparison
against baselines. A detailed discussion on how to evaluate algorithms in an environment is important,
for example Bellemare et al. [12] provide a thorough analysis of evaluation methodology for the
ALE suite of games, along with insights on ways to analyze performance of an algorithm. Here we
attempt to present an environment agnostic discussion.

*https://www.pommerman. com/
*https://www.crowdai.org/challenges/nips-2017-learning-to-run
https://github.com/openai/gym/wiki/Leaderboard

https://www.pommerman.com/
https://www.crowdai.org/challenges/nips-2017-learning-to-run
https://github.com/openai/gym/wiki/Leaderboard

Training/Learning | Testing/Evaluation

B*

A*
. A* Grid world Env 1
Algorithm A C*
“
Algorithm A(Env, B*
| Algorithm B |—>| Grid world Env 1 | & Env) Test Seeds

Same #lterations

Algorithm C HyperParameters A Same #Plotting

Same metrics

Figure 1: Overview of the evaluation pipeline: During the training phase, algorithms are compared
against each with out-of-the box settings and weights of the learned model. At test time, the evaluation
pipeline provides the ability to feed in a common choice of metric for evaluation and accessibility to
the existing algorithms in a reproducible abstraction.

To investigate the issues in evaluation, let us look at a minimal illustrative study here. In the cart-pole
domain, the task is considered solved once a cumulative reward of 200 is achieved. Assume we
propose a new variant of REINFORCE [[18]]. We want to compare our proposed algorithm with other
open-source baselines, such as the Deep-Q network (DQN) [19] from Keras-RL [20]. We start by
setting up the codebases, and running them out-of-the-box. The foremost challenge is each algorithm
saves the results in different formats. For instance, at the first glance, by default DQN-Keras-RL
saves the weights of the trained model and outputs command line logs comprised of episode rewards,
mean rewards and timesteps. On the other hand, our REINFORCE algorithm saves the return for
episodes into a json format. A logging standard is required to facilitate comparison across these
two results and enable fair evaluation. In both implementations, return per episode is logged and
each episode terminates after a fixed number of timesteps. However, there are additional differences
such as action-repetition (number of times the agent repeats the same action without observing the
environment again), which used in DQN-Keras-RL and may impact results. Ths tool-kit implements
a standalone test function independent of the evaluations made during the training phase. This results
in metrics such as the average return logged in a different way across algorithms.

If we extended this analysis to also include an algorithm from OpenAl Baselines [15]], the above
mentioned inconsistencies are even more stark: results are saved into a csv format; further investi-
gation will be made to check for evaluation consistency. This may require us to adapt our code to
fit both libraries. After examining many open-source implementations, we found that collecting the
required results from multiple algorithms into a common file format may require not only extensive
code rewrite, but also significant efforts to comb through the codebases to find out how exactly the
evaluation metrics are collected. For a fair comparison of algorithms with baselines, such as by
plotting learning curves, we need to develop a tool which takes the output of the specific algorithms
and evaluates them. Furthermore, it is not clear what specific hyperparameters were used in the
different algorithms, which may make the evaluation and comparison even more difficult.

3 Evaluation Pipeline

In section [2] we illustrated subtle variations in different approaches to evaluating RL algorithms,
highlighting the need for an explicit evaluation phase which follows a standard protocol. The key
problem lies in how and when performance is reported. Generally, performance is evaluated by
plotting average return over a number of episodes. However, the way in which these returns are
collected for plotting purposes throughout the learning varies from one work to another. Moreover,
there is no standard way in which the average return is collected for evaluating the algorithm. In
other words, different open-source implementations use different standards for collecting the average
return during the policy evaluation phase as seen in section[2] Furthermore, often the average return
achieved during training phase is shown as a metric of performance.

In this work, we introduce an evaluation pipeline as shown in figure [} The key to our proposed
method is an evaluation mechanism with clear distinction between train and test phases. Our proposed
evaluation pipeline works as follows: consider algorithms A, B and C that need to be compared
against each other. These algorithms would be handed off to our evaluation mechanism, along with
the environment to test it on. Our proposed mechanism would evaluate these algorithms over a large
number of known random seeds for the environment generator and would record standardized metrics.
The pipeline would then output the learning performance of each of these algorithms to ensure a fair

comparison where all other metrics remain the same. All that is required is that the algorithm exposes
an act (state) method.

Input :Environment, F; Algorithm, A; Evaluation Scheme ,M.
Output : Consistent evaluations
7 <— Initialize Policy; / m must expose an act method.
while True do

Atrainstep(r, F)

M .evaluate(n); // M uses act to record metrics in a uniform way.
end

Algorithm 1: Separating Training and Evaluation in Reinforcement Learning

We propose a simple prototype of our evaluation pipeline as shown in Algorithm [T} and hope
that such an approach can be standardized in RL to ensure reproducibility and fair comparison
across algorithms. We present our evaluation pipeline as follows: When releasing open-source
implementations of algorithms, we suggest each algorithm to be wrapped in a format acceptable to the
pipeline. Our pipeline takes 3 key objects as input. The first is the Environment E. This could be a
certain Gym [13]] or other commonly used environment over which our pipeline can iterate. £’ would
also include seeds, or seed strategy (such as purely random), which the pipeline would report for ease
of reproducibility. The second object is the algorithm A being evaluated, such as our REINFORCE
implementation. A also includes a configuration file of hyperparameters. Finally, the evaluation
metric M specifying how to analyze the algorithm is provided. We propose that the training and
evaluation metrics should be done explicitly separately using the trainstep and evaluate modules
as shown in the algorithm. We emphasize here that the trainstep is the universal module which is
provided by algorithm A as input. The evaluation scheme is provided by the pipeline which would
evaluate algorithm A with a given number of rollouts and log all relevant metrics to further analyze
algorithm performance. Similarly, this pipeline can also take other baseline algorithms B and C as
inputs, and produce consistent evaluations across all algorithms A, B, and C for a fair comparison.
We provide a framework agnostic pseudo code depicting this scenario in the appendix. An advantage
of the pipeline is that M can be easily swapped for other evaluation schemes. The proposed pipeline
along with the implementations of our case study in section is available on our repository.

4 Discussion

In this work, we highlight the challenges in evaluating RL algorithms. We argue that a broad spectrum
of evaluation metrics ranging from sample efficiency to average return over last 100 episodes are often
used to highlight the usefulness of a certain algorithm, which may make comparisons of it with other
baselines more difficult. Evaluation protocols used for RL algorithms vary across published works,
especially when there is no distinction between training and test phases in RL. We emphasize that
this raises few challenges for newcomers in RL, when implementing and comparing their algorithms
with other state of the art methods. To ensure a fair comparison to baseline methods, the use of
standardized evaluation metrics, are often key steps towards reproducible research in RL.

In this work, we propose that the community follow a standard evaluation pipeline decoupling the
algorithm from the evaluation. We demonstrate one way of doing this could be with set arguments
(Environment F, Algorithm A, and Evaluation Scheme M) in terms of standard abstractions such as
trainstep(), learn(), act() as depicted in the framework agnostic evaluation pipeline. We emphasize
that authors should release careful details about evaluation schemes used in their work, which can
often lead to new contributions [21, 22]. For instance, time steps at which return is logged, exact
specifics of evaluation, detailed description of hyper parameters such as specific seeds, the n in n-step
rollouts, would help in reproducing results. As demonstrated by our proof-of-concept, we encourage
that each open sourced algorithm should either reuse or release an evaluation pipeline. This allows
authors to reuse configurations and results file, while not necessarily having access to algorithm code.
It would then become feasible to evaluate a new algorithm and reproduce exiting baselines, thereby
bringing consistency in comparisons across algorithms

Shttps://github.com/kkhetarpal /prototypedevaluation

https://github.com/kkhetarpal/prototype4evaluation

References

[1] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. nature, 529(7587):484—489,
2016.

[2] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
CoRR, abs/1509.02971, 2015.

[3] Marwin HS Segler, Mike Preuss, and Mark P Waller. Planning chemical syntheses with deep
neural networks and symbolic ai. Nature, 555(7698):604, 2018.

[4] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David
Meger. Deep reinforcement learning that matters. arXiv preprint arXiv:1709.06560, 2017.

[5] Shimon Whiteson, Brian Tanner, Matthew E. Taylor, and Peter Stone. Protecting against
evaluation overfitting in empirical reinforcement learning. In ADPRL 201 1: Proceedings of
the IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning, pages
120-127, April 2011.

[6] Riashat Islam, Peter Henderson, Maziar Gomrokchi, and Doina Precup. Reproducibility of
benchmarked deep reinforcement learning tasks for continuous control. CoRR, abs/1708.04133,
2017.

[7] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

[8] Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated
corpus of english: The penn treebank. Computational linguistics, 19(2):313-330, 1993.

[9] Zoya Bylinskii, Tilke Judd, Ali Borji, Laurent Itti, Frédo Durand, Aude Oliva, and Antonio
Torralba. Mit saliency benchmark, 2015.

[10] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International Journal of Computer Vision, 115(3):211-252, 2015.

[11] Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on overfitting in deep
reinforcement learning. arXiv preprint arXiv:1804.06893, 2018.

[12] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253-279, 2013.

[13] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[14] Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich
Kiittler, Andrew Lefrancq, Simon Green, Victor Valdés, Amir Sadik, et al. Deepmind lab. arXiv
preprint arXiv:1612.03801, 2016.

[15] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec
Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. Openai baselines. https://github|
com/openai/baselines| 2017.

[16] Adrien Lucas Ecoffet. Paper repro: Deep neuroevolution, 2018.

[17] J. Oh, V. Chockalingam, S. Singh, and H. Lee. Control of Memory, Active Perception, and
Action in Minecraft. ArXiv e-prints, May 2016.

[18] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. In Reinforcement Learning, pages 5-32. Springer, 1992.

https://github.com/openai/baselines
https://github.com/openai/baselines

[19] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015.

[20] Matthias Plappert. keras-rl. https://github.com/keras-rl/keras-rl, 2016.

[21] G. Tucker, S. Bhupatiraju, S. Gu, R. E. Turner, Z. Ghahramani, and S. Levine. The Mirage of
Action-Dependent Baselines in Reinforcement Learning. ArXiv e-prints, February 2018.

[22] Martin Riedmiller, Jan Peters, and Stefan Schaal. Evaluation of policy gradient methods and
variants on the cart-pole benchmark. In Approximate Dynamic Programming and Reinforcement
Learning, 2007. ADPRL 2007. IEEE International Symposium on, pages 254-261. IEEE, 2007.

https://github.com/keras-rl/keras-rl

Appendix
Framework agnostic example scripts

Example 1

Alice implements 3A (Alice Amazing Algorithm) and tests her hyperparameters on grid worlds of
size (1, 10)

import temnsorflow as tf

some tensorflow code

class AliceAmazingAlgorithm():

def __init__(self, hyperparameters):

i
The 34 algorithm, the best RL algorithm ever (for gridworlds)
:param hyperparameters: the hyperparameters for the algorithm
self.state = tf.placeholder()
Linear_layer = tf.linear()
self .policy_result = Linear_layer(state)

def learn(self, environment, iterations):
Action = sess.run(results, feed_dict={state}
environment.step(action)
policy learning here

def Act(self, state):
Return sess.run(results, feed_dict={state}

Example 2

Bob implements 2BP (Bob Builds Policies) and tests his hyperparameters on grid worlds of size (10,
20)

import torch
some pytorch code
class BobBuildsPolicies():
def __init__(self, hyperparameters):
The 2B0 algorithm, the best RL algorithm ever (for gridworlds)
:param hyperparameters: the hyperparameters for the algorithm

mnn

Self.policy = torch.nn.Linear(bla, bla)

def learn(self, environment, iterations):
Loss = do_rollout(environment, self.policy)
optimizer.zero_grad()
los.backward()
optimizer.step()

def Act(self, state):
Return self.policy(state)

Evaluation Pipeline

How would one benchmark these two algorithms on a set of grid worlds? Both Alice and Bob
claim that their algorithms are the best grid world solvers for a specific task in a specific grid world.
Without having access to each others evaluation and source code scripts, how would they compare
their algorithms one-to-one? In addition to this, it is likely that each use their own crazy ways to
plot data. What if there was an agreed upon a standard evaluation script that they could use made
available by the makers of a grid world environment?

Grid world evaluation pipeline

1. User edits the configuration file

file mame: config.json

{

Algo_path: "path/to/your/algorithm/file’’ # user algorithm file path

Algorithm: "main(train_ddpg, ‘Algorithm’) # bind user algo with benchmark algo
Hyperparameters = load_txt(E@ath/to/hyperparametersﬂ)

}

2. User launches the benchmarking script
minimal exzample of the benchmark script (user cannot edit this)
For env_seed in LIST_OF_AGREED_UPON_SEEDS_FOR_ENV:
Env = env(env_seed, env_characteristics) # make a new environment
Alg = Algorithm(Hyperparameters)
Alg.learn(Env, 10000)
Reward_curve, other_metrics = do_test_rollout(Alg.act, Env)
np.save([reward_curve, other_metrics], Bevaluation_on_env{n}.npyﬂ.format(env_seed))

Now the authors only have to make available the evaluation on env npy files to allow one to one
comparison. Therefore, Bob, with access to this script and the evaluated curves can recreate plots to
compare with Alice!

	Introduction
	Illustrative Study
	Evaluation Pipeline
	Discussion

