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Abstract

The alternating direction method of multipliers (ADMM) is one of the most widely
used first-order methods in the literature owing to its simplicity, flexibility and
efficiency. Over the years, numerous efforts are made to improve the performance
of ADMM, such as the inertial technique. By studying the geometric properties
of ADMM, we discuss the limitations of current inertial accelerated ADMM, then
present and analyze an adaptive acceleration scheme for the method. Numerical
experiments on problems arising from image processing, statistics and machine
learning demonstrate the advantages of the proposed acceleration approach.

1 Introduction
Consider the following constrained and composite optimisation problem

min
x∈Rn,y∈Rm

R(x) + J(y) such that Ax+By = b, (PADMM)

where the following basic assumptions are imposed
(A.1) R ∈ Γ0(Rn) and J ∈ Γ0(Rm) are proper convex and lower semi-continuous functions.
(A.2) A : Rn → Rp and B : Rm → Rp are injective linear operators.
(A.3) ri(dom(R) ∩ dom(J)) 6= ∅, and the set of minimizers is non-empty.

Over the past years, problem (PADMM) has attracted a great deal of interests as it covers many
problems arising from data science, machine learning, statistics, inverse problems and imaging, etc.;
See Section 5 for examples. In the literature, different methods are proposed to handle the problem,
among them the alternating direction method of multipliers (ADMM) is the most prevailing one.

Earlier works of ADMM include [16, 15, 14, 11], and recently it has gained increasing popularity, in
part due to [6]. To derive ADMM, first consider the augmented Lagrangian associated to (PADMM)
L(x, y;ψ)

def
= R(x) + J(y) + 〈ψ, Ax+By − b〉+ γ

2 ||Ax+By − b||2, where γ > 0 and ψ ∈ Rp is
the Lagrangian multiplier. To find a saddle-point of L(x, y;ψ), ADMM applies the iteration

xk = argminx∈Rn R(x) + γ
2 ||Ax+Byk−1 − b+ 1

γψk−1||2,

yk = argminy∈Rm J(y) + γ
2 ||Axk +By − b+ 1

γψk−1||2,
ψk = ψk−1 + γ(Axk +Byk − b).

(1)

By defining zk
def
= ψk−1 + γAxk, we can rewrite ADMM iteration (1) into the following form

xk = argminx∈Rn R(x) + γ
2
||Ax− 1

γ (zk−1 − 2ψk−1)||2,
zk = ψk−1 + γAxk,

yk = argminy∈Rm J(y) + γ
2
||By + 1

γ (zk − γb)||2,
ψk = zk + γ(Byk − b).

(2)
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For the rest of the paper, we will consider the above four-point formulation.

Contributions The contribution of our paper is threefold. First, for the sequence {zk}k∈N of (2),
we show that it has two different types of trajectory:
• When bothR, J are non-smooth functions, under the assumption that they are partly smooth (see

Definition 2.1), we show that the eventual trajectory of {zk}k∈N is approximately a spiral which
can be characterized precisely if R, J are moreover locally polyhedral around the solution.
• When at least one of R, J is smooth, we show that depends on the choice of γ, the eventual

trajectory of {zk}k∈N can be either straight line or spiral.
Second, based on trajectory of {zk}k∈N, we discuss the limitations of the current combination of
ADMM and inertial acceleration technique. In Section 3, we distinguish the situations where inertial
acceleration will work and when it fails. More precisely: inertial technique will work if the trajectory
of {zk}k∈N is or close to a straight line, and will fail if the trajectory is a spiral.

Our core contribution is an adaptive acceleration for ADMM, which is inspired by the trajectory of
ADMM and dubbed “A3DMM”. The limitation of inertial technique, particularly its failure, implies
that the right acceleration scheme should be able to follow the trajectory of the iterates. In Section 4,
we propose an adaptive linear prediction scheme to accelerate ADMM which is able to following
the trajectory of the method. Our proposed A3DMM belongs to the realm of extrapolation method,
and provides an alternative geometrical interpretation for polynomial extrapolation methods such as
Minimal Polynomial Extrapolation (MPE) [9] and Reduced Rank Extrapolation (RRE) [12, 20].

Related works Over the past decades, owing to the tremendous success of inertial acceleration [21,
5], the inertial technique has been widely adapted to accelerate other first-order methods. In terms of
ADMM, related work can be found in [22, 17, 13], either from proximal point algorithm perspective or
continuous dynamical system. However, to ensure that inertial acceleration works, strong assumptions
are imposed on R, J in (PADMM), such as smooth differentiability or strong convexity. When it
comes to general non-smooth problems, these works will fail to provide acceleration.

For more generic acceleration techniques, there are extensive works in numerical analysis on the topic
of convergence acceleration for sequences. The goal of convergence acceleration is, given an arbitrary
sequence {zk}k∈N ⊂ Rn with limit z?, finding a transformation Ek : {zk−j}qj=1 → z̄k ∈ Rn such
that z̄k converges faster to z?. In general, the process by which {zk} is generated is unknown, q
is chosen to be a small integer, and z̄k is referred to as the extrapolation of zk. Some of the best
known examples include Richardson’s extrapolation [23], the ∆2-process of Aitken [1] and Shank’s
algorithm [25]. We refer to [7, 8, 26] and references therein for a detailed historical perspective on
the development of these techniques. Much of the works on the extrapolation of vector sequences was
initiated by Wynn [28] who generalized the work of Shank to vector sequences. In the appendix, the
formulation of some of these methods are provided. In particular, minimal polynomial extrapolation
(MPE) [9] and Reduced Rank Extrapolation (RRE) [12, 20] (which is also a variant of Anderson
acceleration developed independently in [3]), which are particularly relevant to this present work (see
Section 4.2 for brief discussion).

More recently, there has been a series of work on a regularised version of RRE stemming from
[24]. We remark however the regularisation parameter in these works rely on a grid search based on
objective function, their applicability to the general ADMM setting is unclear.

Notations Denote Rn a n-dimensional Euclidean space equipped with scalar product 〈·, ·〉 and norm
|| · ||. Id denotes the identity operator on Rn. Γ0(Rn) denotes the class of proper convex and lower-
semicontinuous functions on Rn. For a nonempty convex set S ⊂ Rn, denote ri(S) its relative interior,
par(S) the smallest subspace parallel to S and PS the projection operator onto S. The sub-differential
of a functionR ∈ Γ0(Rn) is defined by ∂R(x)

def
=
{
g ∈ Rn|R(x′) ≥ R(x)+〈g, x′−x〉,∀x′ ∈ Rn

}
.

The spectral radius of a matrix M is denoted by ρ(M).

2 Trajectory of ADMM
In this section, we discuss the trajectory of the sequence {zk}k∈N generated by ADMM based on the
concept “partial smoothness” which was first introduced in [18].

2.1 Partial smoothness

LetM⊂ Rn be a C2-smooth submanifold, denote TM(x) the tangent space ofM at a point x ∈M.
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Definition 2.1 (Partly smooth function [18]). A functionR ∈ Γ0(Rn) is partly smooth at x̄ relative
to a setMx̄ if ∂R(x̄) 6= ∅ andMx̄ is a C2 manifold around x̄, and moreover

Smoothness R restricted toMx̄ is C2 around x̄.
Sharpness The tangent space TMx̄(x̄) = par(∂R(x̄))⊥.
Continuity The set-valued mapping ∂R is continuous at x relative toMx̄.

The class of partly smooth functions at x̄ relative toMx̄ is denoted as PSFx̄(Mx̄). Popular examples
of partly smooth functions can be found in [19, Chapter 5]. Loosely speaking, a partly smooth
function behaves smoothly as we move alongMx̄, and sharply if we move transversal to it.

2.2 Trajectory of ADMM
The iteration of ADMM is non-linear in general owing to the non-smoothness and non-linearity of
R and J . However, if they are partly smooth, the local C2-smoothness allows us to linearize the
ADMM iteration, and hence enables us to study the trajectory of sequence generated by the method.
We denote (x?, y?, ψ?) a saddle-point of L(x, y;ψ) and let z? = ψ? + γAx?.

To discuss the trajectory of ADMM, we rely on sequence {zk}k∈N. Define vk
def
= zk − zk−1 and

θk
def
= arccos( 〈vk, vk−1〉

||vk||||vk−1|| ) the angle between vk, vk−1. We use {θk}k∈N to characterize the trajectory
of {zk}k∈N. Given (x?, y?, ψ?), the first-order optimality condition entails −ATψ? ∈ ∂R(x?) and
−BTψ? ∈ ∂J(y?), below we impose

−ATψ? ∈ ri
(
∂R(x?)

)
and −BTψ? ∈ ri

(
∂J(y?)

)
. (ND)

Both R, J are non-smooth LetMR
x? ,MJ

y? be two smooth manifolds around x?, y? respectively,
and suppose R ∈ PSFx?(MR

x?), J ∈ PSFy?(MJ
y?) are partly smooth. Denote TRx? , T Jy? the tangent

spaces ofMR
x? ,MJ

y? at x?, y?, respectively. Let AR
def
= A ◦ PTR

x?
, BJ

def
= B ◦ PTJ

y?
and TAR

, TBJ

be the range of AR, BJ respectively. Denote (αj)j=1,... the Principal angles (see Section D.2 in the
supplementary for definition) between TAR

, TBJ
, and let αF , α′ be the smallest and 2nd smallest of

αj which are larger than 0.
Theorem 2.2. For problem (PADMM) and ADMM iteration (1), assume that conditions (A.1)-(A.3)
are true, then (xk, yk, ψk) converges to a saddle point (x?, y?, ψ?) of L(x, y;ψ). Suppose that
R ∈ PSFx?(MR

x?), J ∈ PSFy?(MJ
y?) and condition (ND) holds, then

(i) There exists a matrix M such that vk = Mvk−1 + o(||vk−1||) holds for all k large enough.
(ii) If moreover, R, J are locally polyhedral around x?, y?, then vk = Mvk−1 with M being

normal and having eigenvalues of the form cos(αj)e
±iαj , and cos(θk) = cos(αF ) +O(η2k)

with η = cos(α′)/ cos(αF ).
Remark 2.3. The result indicates that, when both R, J are locally polyhedral, the trajectory of
{zk}k∈N is a spiral. For the case R, J being general partly smooth function, though we cannot prove,
numerical evidence shows that the trajectory of {zk}k∈N could be either straight line or also a spiral.

R or/and J is smooth Now we consider the case that at least one function out of R, J is smooth.
For simplicity, consider that R is smooth and J remains non-smooth.
Proposition 2.4. For problem (PADMM) and ADMM iteration (1), assume that conditions (A.1)-
(A.3) are true, then (xk, yk, ψk) converges to a saddle point (x?, y?, ψ?) of L(x, y;ψ). Suppose R
is locally C2 around x?, J ∈ PSFy?(MJ

y?) is partly smooth and condition (ND) holds for J , then
Theorem 2.2(i) holds for all k large enough. If moreover, A is full rank square matrix, then all the
eigenvalues of M are real for γ > ||(ATA)−

1
2∇2R(x?)(ATA)−

1
2 ||.

Remark 2.5. The real spectrum of M , numerical evidence shows that the eventual trajectory of
{zk}k∈N is a straight line, which is different from the case where both functions are non-smooth. If
o(||vk−1||) is vanishing fast enough, we can also prove that θk → 0.

It should be emphasized that the trajectory is determined by the property of the leading eigenvalue of
M . Therefore, for γ ≤ ||(ATA)−

1
2∇2R(x?)(ATA)−

1
2 ||, though M will have complex eigenvalues,

the leading one is not necessarily to be complex. As a result, the trajectory of {zk}k∈N could be
either spiral (complex leading eigenvalue) or straight line (real leading eigenvalue).

In Figure 1 (a) and (c), we present two examples of the trajectory of ADMM. Subfigure (a) shows a
spiral trajectory in R2 which is obtained from solving a polyhedral problem, while subfigure (c) is an
eventual straight line trajectory in R3.
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(a) Spiral
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(c) Eventual straight line
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(d) γ = ||K||2 + 0.1

Figure 1: Trajectory of sequence {zk}k∈N and effects of inertial on ADMM. (a) Spiral trajectory of
ADMM; (b) failure of inertial ADMM on spiral trajectory; (c) Eventual straight line trajectory; (d)
success of inertial ADMM on straight line trajectory.

3 The failure of inertial acceleration
One simple approach for combining inertial technique with ADMM is described below

xk = argminx∈Rn R(x) + γ
2 ||Ax−

1
γ (z̄k−1 − 2ψk−1)||2,

zk = ψk−1 + γAxk,

z̄k = zk + ak(zk − zk−1),

yk = argminy∈Rm J(y) + γ
2 ||By + 1

γ (z̄k − γb)||2,
ψk = z̄k + γ(Byk − b),

(3)

which considers only the momentum of {zk}k∈N without any stronger assumptions on R, J . The
above scheme can reformulated as an instance of inertial Proximal Point Algorithm, guaranteed to be
convergent for ak < 1

3 [2]; We refer to [22] or [19, Chapter 4.3] for more details. To our knowledge,
there is no acceleration guarantee for (3).

Remark 3.1. Besides (3), other combinations of inertial technique and ADMM are also proposed,
see for instance [22, 17, 13]. However, to ensure acceleration guarantees, stronger assumptions, such
as Lipschitz smoothness and strong convexity, are needed.

We use LASSO problem to demonstrate the combination of the above inertial technique and ADMM,
especially when it failures. The formulation of LASSO in the form of (PADMM) reads

min
x,y∈Rn

µ||x||1 + 1
2
||Ky − f ||2 such that x− y = 0, (4)

where K ∈ Rm×n, m < n is a random Gaussian matrix. Since 1
2 ||Ky − f ||

2 is quadratic, owing to
Proposition 2.4, the eventual trajectory of {zk}k∈N is a straight line if γ > ||K||2, and a spiral for
some γ ≤ ||K||2. Therefore, we consider two different choices of γ which are γ = ||K||2/10 and
γ = ||K||2 + 0.1, and for each γ, four different choices of ak are considered

ak ≡ 0.3, ak ≡ 0.7 and ak = k−1
k+3 .

The 3rd choice of ak corresponds to FISTA [10]. For the numerical example, we let K ∈ R640×2048

and µ = 1, f is the measurement of an 128-sparse signal. The results are shown in Figure 1 (b) & (d),

• ||K||2/10: The inertial scheme works only for ak ≡ 0.3, which is due to that fact that the
trajectory of {zk}k∈N is a spiral for γ = ||K||2/10. As a result, the direction zk − zk−1 is not
pointing towards z?, hence unable to provide satisfactory acceleration.
• γ = ||K||2 +0.1: All choices of ak work since {zk}k∈N eventually forms a straight line. Among

these four choices of ak, ak ≡ 0.7 is the fastest, while ak = k−1
k+3 eventually is the slowest.

It should be noted that, though ADMM is faster under γ = ||K||2/10 than γ = ||K||2 + 0.1, our main
focus here is to show how the trajectory of {zk}k∈N affects the outcome of inertial acceleration.

The above comparisons, particularly for γ = ||K||2
10 imply, that the trajectory of {zk}k∈N is crucial

for the acceleration outcome of the inertial scheme (3). Since the trajectory of {zk}k∈N depends on
the properties of R, J and choice of γ, this implies that the right scheme that can achieve uniform
acceleration despite R, J and γ should be able to adapt itself to the trajectory of the method. More
discussions on the failure of inertial can be found in Section A of the supplementary material.
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4 A3DMM: adaptive acceleration for ADMM
The previous section shows the trajectory of {zk}k∈N eventually settles onto a regular path i.e. either
straight line or spiral. In this section, we exploit this regularity to design adaptive acceleration for
ADMM, which is called “A3DMM”; See Algorithm 1.

The update of z̄k in (3) can be viewed as a special case of the following extrapolation
z̄k = E(zk, zk−1, · · · , zk−q−1), (5)

for the choice of q = 0. The idea is: given {zk−j}q+1
j=0, define vj

def
= zj − zj−1 and predict the future

iterates by considering how the past directions vk−1, . . . , vk−q approximate the latest direction vk.
In particular, define Vk−1

def
= [vk−1, · · · , vk−q] ∈ Rn×q, and let ck

def
= argminc∈Rq ||Vk−1c− vk||2 =

||
∑q
j=1 cjvk−j − vk||

2. The idea is then that Vkck ≈ vk+1 and so, z̄k,1
def
= zk + Vkc ≈ zk+1. By

iterating this s times, we obtain z̄k,s ≈ zk+s.
More precisely, given c ∈ Rq, define the mapping H by H(c) =

[
c1:q−1 Idq−1

cq 01,q−1

]
∈ Rq×q. Let

Ck = H(ck), note that Vk = Vk−1Ck. Define V̄k,0
def
= Vk and for s ≥ 1, define V̄k,s

def
= V̄k,s−1Ck

def
=

VkC
s
k where Csk is the power of Ck. Let (C)(:,1) be the first column of matrix C, then

z̄k,s = zk +
∑s
i=1(V̄k,i)(:,1) = zk +

∑s
i=1 Vk(Cik)(:,1) = zk + Vk

(∑s
i=1 C

i
k

)
(:,1)

, (6)

which is the desired trajectory following extrapolation. Now define the extrapolation

Es,q(zk, · · · , zk−q−1)
def
= Vk

(∑s
i=1 C

i
k

)
(:,1)

parameterized by s, q, we obtain the following trajectory following adaptive acceleration for ADMM.

Algorithm 1: A3DMM - Adaptive Acceleration for ADMM
Initial: Let s ≥ 1, q ≥ 1 be integers. Let z̄0 = z0 ∈ Rp and V0 = 0 ∈ Rp×q .
Repeat:
• For k ≥ 1: yk = argminy∈Rm J(y) + γ

2
||By + 1

γ (z̄k−1 − γb)||2,
ψk = z̄k−1 + γ(Byk − b),
xk = argminx∈Rn R(x) + γ

2
||Ax− 1

γ (z̄k−1 − 2ψk)||2,
zk = ψk + γAxk,

vk = zk − zk−1 and Vk = [vk, Vk−1(:, 1 : q − 1)].

• If mod(k, q + 1) = 0: Compute ck and Ck, if ρ(Ck) < 1:
z̄k = zk + akEs,q(zk, · · · , zk−q−1).

Until: ||vk|| ≤ tol.

Remark 4.1.
• The extra computational cost of A3DMM is very small, which is about nq2 for computing the

pseudoinverse of Vk−1. And the value of q usually is taken very small, e.g. q ≤ 10.
• The reason we change the order of updates in Algorithm 1 is that the update of yk requires only
z̄k, doing so we only need to extrapolate zk which requires the minimal computational overhead.
Moreover, the extrapolation can also be applied to xk, yk, ψk under proper adaptation.
• A3DMM carries out q + 1 standard ADMM iterations to set up the extrapolation step Es,q. As
Es,q contains the sum of the powers of Ck, it is guaranteed to be convergent when ρ(Ck) < 1.
Therefore, we only apply Es,q when the spectral radius ρ(Ck) < 1 is true. In this case, there is a
closed form expression for Es,q when s = +∞; See Eq. (8).
• The purpose of adding ak in front of Es,q(zk, · · · , zk−q−1) is so that we can control the value

of ak to ensure the convergence of the algorithm; See below the discussion.

4.1 Convergence of A3DMM
To discuss the convergence of A3DMM, we shall treat the algorithm as a perturbation of the original
ADMM. If the perturbation error is absolutely summable, then we obtain the convergence of A3DMM.
More precisely, let εk ∈ Rn whose value takes

εk =

{
0 : mod(k, p) 6= 0 or mod(k, p) = 0 & ρ(Ck) ≥ 1,

akEs,q(zk, · · · , zk−q−1) : mod(k, p) = 0 & ρ(Ck) < 1.
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Suppose the fixed-point formulation of ADMM can be written as zk = F(zk−1) for some F (see
Section B.2 of the appendix for details). Then Algorithm 1 can be written as

zk = F(zk−1 + εk−1). (7)
Owing to (7), we can obtain the following convergence for Algorithm 1 which is based on the classic
convergence result of inexact Krasnosel’skiı̆-Mann fixed-point iteration [4, Proposition 5.34].
Proposition 4.2. For problem (PADMM) and Algorithm 1, suppose that the conditions (A.1)-(A.3)
are true. If moreover,

∑
k ||εk|| < +∞, zk → z? ∈ fix(F)

def
= {z ∈ Rp : z = F(z)} and (xk, yk, ψk)

converges to (x?, y?, ψ?) which is a saddle point of L(x, y;ψ).

On-line updating rule The summability condition
∑
k ||εk|| < +∞ in general cannot be guaran-

teed. However, it can be enforced by a simple online updating rule. Let a ∈ [0, 1] and b, δ > 0, then
ak can be determined by ak = min

{
a, b/(k1+δ||zk − zk−1||)

}
.

Inexact A3DMM Observe that in A3DMM, when A,B are non-trivial, in general there are no
closed form solutions for xk and yk. Take xk for example, suppose it is computed approximately,
then in zk there will be another approximation error ε′k, and consequently

zk = F(zk−1 + εk−1 + γε′k−1).

If there holds
∑
k ||ε′k−1|| < +∞, Proposition 4.2 remains true for the above perturbation form.

4.2 Acceleration guarantee for A3DMM
We have so far alluded to the idea that the extrapolated point z̄k,s defined in (6) (which depends only
on {zk−j}qj=0) is an approximation to zk+s. In this section, we make precise this statement.

Relationship to MPE and RRE We first show that z̄k,∞ is (almost) equivalent to MPE. Recall that
given a square matrixC, if its Neumann series is convergent, then there holds (Id−C)−1 =

∑+∞
i=0 C

i.
Now for the summation of the power of Ck in (6), when s = +∞, we have∑+∞

i=1 C
i
k = Ck

∑+∞
i=0 C

i
k = Ck(Id− Ck)−1 = (Id− Ck)−1 − Id.

Back to (6), then we get

z̄k,∞
def
= zk + Vk

(
(Id− Ck)−1 − Id

)
(:,1)

= zk − vk + Vk
(
(Id− Ck)−1

)
(:,1)

= zk−1 + Vk
(
(Id− Ck)−1

)
(:,1)

= 1
1−

∑s
i=1 ck,i

(
zk −

∑q−1
j=1 ck,jzk−j

)
,

(8)

which turns out to be MPE, with the slight difference of taking the weighted sum of {zj}kj=k−q+1

as opposed to the weighted sum of {zj}k−1
j=k−q (See appendix for more details of MPE). Note that if

the coefficients c is computed in the following way: b ∈ argmina∈Rq+1,
∑

j aj=1||
∑q
j=0 ajvk−j || and

b0 6= 0 and define cj
def
= −bj/b0 for j = 1, . . . , q. Then (1 −

∑q
i=1 ci)

−1 = b0
b0+

∑q
j=1 bj

= b0, and

z̄k,∞ =
∑q−1
j=0 bjzk−j is precisely the RRE update (again with the slight difference of summing over

iterates shifted by one iteration).

Acceleration guarantee for A3DMM Let {zk}k∈N be a sequence in Rn and let vk
def
= zk − zk−1.

Assume that vk = Mvk−1 for some M ∈ Rn×n. Denote λ(M) the spectrum of M . The following
proposition provides control on the extrapolation error for z̄k,s from (6).

Proposition 4.3. Define the coefficient fitting error by εk
def
= minc∈Rq ||Vk−1c− vk||.

(i) For s ∈ N, we have
||z̄k,s − z?|| ≤ ||zk+s − z?||+Bsεk. (9)

where Bs
def
=
∑s
`=1 ||M `|||

∑s−`
i=0(Cik)(1,1)|. If ρ(M) < 1 and ρ(Ck) < 1, then

∑
i ck,i 6= 1 and

Bs is uniformly bounded in s. For s = +∞, B∞
def
= |1−

∑
i ck,i|

−1∑∞
`=1 ||M ||

`

(ii) Suppose that M is diagonalizable. Let (λj)j denote its distinct eigenvalues ordered such that
|λj | ≥ |λj+1| and |λ1| = ρ(M) < 1. Suppose that |λq| > |λq+1|.
• Asymptotic bound (fixed q and as k → +∞): εk = O(|λq+1|k).
• Non-asymptotic bound (fixed q and k): Suppose λ(M) is real-valued and contained in

[α, β] with −1 < α < β < 1. Then, let K def
= 2||z0 − z?||||(Id−M)

1
2 || and η = 1−α

1−β
εk

1−
∑

i ck,i
≤ Kβk−q

(√η−1√
η+1

)q
. (10)
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Remark 4.4.
• From Theorem 2.2(ii), when R and J are both polyhedral, we have a perfect local linearisation

with the corresponding linearisation matrix being normal and hence, the conditions of Proposition
4.3 holds for all k large enough. The first bound (i) shows that the extrapolated point z̄k,s moves
along the true trajectory as s increases, up to the fitting error εk. Although z̄k,∞ is essentially
an MPE update which is known to satisfy error bound (10) (see [27]), this proposition offers
a further interpretation of these extrapolation methods in terms of following the “sequence
trajectory”, and combined with our local analysis of ADMM, provides justification of these
methods for the acceleration of non-smooth optimisation problems.
• Proposition 4.3 (ii) shows that extrapolation improves the convergence rate from O(|λ1|k) to
O(|λq+1|k), and the nonasymptotic bound shows that the improvement of extrapolation is
optimal in the sense of Nesterov [21]. Recalling the form of the eigenvalues ofM from Theorem
2.2, in the case of two nonsmooth polyhedral terms, we must have |λ2j−1| = |λ2j | > |λ2j+1|
for all j ≥ 1. Hence, no acceleartion can be guaranteed or observed when q = 1, while the
choice of q = 2 provides guaranteed acceleration.

Extension of A3DMM to variants of ADMM is provided in Section B of the supplementary material.

5 Numerical experiments
Below we present numerical experiments on affine constrained minimisation (e.g. Basis Pursuit)
and LASSO problems to demonstrate the performance of A3DMM. Extra comparisons can be found
in the supplementary material Section C. In the numerical comparison below, we mainly compare
with the original ADMM and its inertial version (3) with fixed ak ≡ 0.3. For the proposed A3DMM,
two settings are considered: (q, s) = (6, 100) and (q, s) = (6,+∞). MATLAB source codes for
reproducing the results can be found at: https://github.com/jliang993/A3DMM.
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Figure 2: Performance comparisons and {θk}k∈N of ADMM for affine constrained problem.

Affine constrained minimisation Consider the following constrained problem, given ◦
x

min
x∈Rn

R(x) such that Kx = K
◦
x. (11)

Denote the set Ω
def
= {x ∈ Rn : Kx = K

◦
x} and ιΩ its indicator function. Then (11) can be written as

min
x,y∈Rn

R(x) + ιΩ(y) such that x− y = 0, (12)

which is special case of (PADMM) with A = Id, B = −Id and b = 0. Here K is generated from the
standard Gaussian ensemble, and the following three choices of R are considered:

`1-norm (m,n) = (640, 2048), ◦
x is 128-sparse;

`1,2-norm (m,n) = (640, 2048), ◦
x has 32 non-zero blocks of size 4;

Nuclear norm (m,n) = (1448, 64× 64), ◦
x has rank of 4.
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The property of {θk}k∈N is shown in Figure 2 (a)-(c). Note that the indicator function ιΩ(y) in (12)
is polyhedral since Ω is an affine subspace,
• As `1-norm is polyhedral, we have in Figure 2(a) that θk is converging to a constant which

complies with Theorem 2.2(ii).
• Since `1,2-norm and nuclear norm are no longer polyhedral functions, we have that θk eventually

oscillates in a range, meaning that the trajectory of {zk}k∈N is an elliptical spiral.
Comparisons of the four schemes are shown below in Figure 2 (d)-(f):
• Since both functions in (12) are non-smooth, the eventual trajectory of {zk}k∈N for ADMM is

spiral. Inertial ADMM fails to provide acceleration locally.
• A3DMM is faster than both ADMM and inertial ADMM. For the two different settings of

A3DMM, their performances are very close.
LASSO We consider again the LASSO problem (4) with three datasets from LIBSVM2. The
numerical experiments are provided below in Figure 3.

It can be observed that the proposed A3DMM is significantly faster than the other schemes, especially
for s = +∞. Between ADMM and inertial ADMM, the inertial technique can provided consistent
acceleration for all three examples since θk → 0; See first row of Figure 3. For Figure 3 (a), the
oscillation after k = 2000 is due to machine error.
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Figure 3: Performance comparisons for LASSO problem.

6 Conclusions
In this article, by analyzing the trajectory of the fixed point sequences associated to ADMM and
extrapolating along the trajectory, we provide an alternative derivation of these methods. Furthermore,
our local linear analysis allows for the application of previous results on extrapolation methods, and
hence provides guaranteed (local) acceleration.
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