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ABSTRACT

Multi-view video summarization (MVS) lacks researchers attention due to their
major challenges of inter-view correlations and overlapping of cameras. Most of
the prior MVS works are offline, relying on only summary, needing extra com-
munication bandwidth and transmission time with no focus on uncertain environ-
ments. Different from the existing methods, we propose edge intelligence based
MVS and spatio-temporal features based activity recognition for IoT environ-
ments. We segment the multi-view videos on each slave device over edge into
shots using light-weight CNN object detection model and compute mutual infor-
mation among them to generate summary. Our system does not rely on summary
only but encode and transmit it to a master device with neural computing stick
(NCS) for intelligently computing inter-view correlations and efficiently recogniz-
ing activities, thereby saving computation resources, communication bandwidth,
and transmission time. Experiments report an increase of 0.4 in F-measure score
on MVS Office dataset as well as 0.2% and 2% increase in activity recognition
accuracy over UCF-50 and YouTube 11 datasets, respectively, with lower stor-
age and transmission time compared to state-of-the-art. The time complexity is
decreased from 1.23 to 0.45 secs for a single frame processing, thereby generat-
ing 0.75 secs faster MVS. Furthermore, we made a new dataset by synthetically
adding fog to an MVS dataset to show the adaptability of our system for both
certain and uncertain surveillance environments.

1 INTRODUCTION

Surveillance cameras installed indoor and outdoor at offices, public places, and roads generate huge
amount of video data on daily basis. This gigantic volume of data has two big issues: first one is
storage consumption and second is huge computational complexity for its purposeful usage (Xu
et al., 2019). Video summarization aims at these problems by condensing the data size via extract-
ing key information from lengthy videos and suppressing the redundant frames. A video summary
generated from a single camera is called single-view video summarization (SVS) (Mahasseni et al.,
2017). On the other hand, a summary generated from a camera network is known as MVS (Panda
et al., 2016a). SVS is intensively researched with applications to various domains including surveil-
lance (Wang et al., 2017), sports (Tejero-de Pablos et al., 2018), and news videos (Wang et al.,
2018). In contrast, MVS is not studied deeply because of several challenges such as computing
inter- and intra-view correlations, overlapping regions among connected cameras, and variation in
light conditions among different views. The basic flow of MVS includes input acquisition, pre-
processing, feature extraction, post-processing, and summary generation. The mainstream MVS
methods follow traditional machine learning approaches such as clustering along with low-level
features extracted from entire frame with no focus on specific targets in surveillance.

The most important part of MVS is considering different objects in surveillance that can be useful
for summary generation. However, the existing techniques do not focus on objects such as persons
and vehicles while generating summary. Thus, the final summary may miss some important frames
having persons or vehicles that need to be considered for MVS. Furthermore, all the existing tech-
niques rely only on MVS with no further steps for analysis of the generated summary. For instance,
the generated summary can be used for indexing, browsing, and activity recognition. The existing
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methods are functional only in certain environments with no focus on uncertain scenarios (Min
et al., 2019), making them inadequate in real-world environments. Finally, all the existing meth-
ods process data on local/online servers or personal computers with huge computation power. It
requires extra processing time, power of transmission, and does not guarantee quick responsive ac-
tion for any abnormal situations, if not handled on the edge. To ensure proper and quick responsive
arrangements, activity recognition at edge is a necessary requirement of the current technological
era. Activity recognition literature is mature, but with no focus on processing over the edge. Al-
most all the existing techniques classify activities over high computational local or cloud servers.
Classifying activity on edge is an important task of surveillance in smart cities. Therefore, to tackle
these challenges effectively, we present a novel framework applicable in both certain and uncertain
environments for MVS and activity recognition over the edge.

Figure 1: Input and output flow of our proposed framework. (a) Video frames (both certain and
uncertain environment) from resource constrained devices. (b) Annotate frames by detecting objects
of interest, apply keyframes selection mechanism, generate summary, encode and transmit it to
master device. (c) Decode generated summary, perform features extraction, and forward it to activity
prediction model at master device to get the output class with probability score.

The problems aimed in this paper are different from the schemes presented in existing literature.
We integrated two different domains including MVS and activity recognition under the umbrella
of a unified framework in an IoT environment. We presented interconnected resource constrained
IoT devices working together to achieve several targets i.e., object detection, summary generation,
and activity recognition as shown in Figure 1. The overall framework consists of numerous slaves
and a master resource constrained device connected through a common wireless sensor network
(WSN). The slave devices are equipped with a camera to capture multi-view video data, segment it
into shots, generate summary, encode a sequence of keyframes, and transmit it to the master device.
The master device is equipped with an INTEL Movidius NCS to classify the ongoing activity in
the acquired sequence. INTEL Movidius is a modular and deep learning accelerator in a standard
USB 3.0 stick. It has a Vision Processing Unit (VPU) that is functional with ultra-low power and
better performance. It enables activity recognition with significantly lower power, storage, and
computational cost. Further, a widely used concept of temporal point processing (Xiao et al., 2019)
is utilized for activity classification, ensuring an effective recognition model. While addressing the
problems in MVS and activity recognition over resource constrained devices, we made the following
contributions.

• Employing an algorithm for MVS on resource constrained devices, reducing the time com-
plexity compared to existing approaches with higher accuracy. The generated summary is
further utilized to recognize the underlying activity of all the views through an auto-encoder
and learned spatio-temporal features followed by different variants of SVM classifiers to
demonstrate the efficiency and effectiveness of our proposed framework.
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• Adding uncertainties such as fog to an outdoor MVS benchmark dataset to demonstrate the
working of proposed framework in any type of scenario and introduce a new trend in MVS
literature for researchers.
• The presented framework has high-level adaptability with special care for the capacity

and traffic of WSN. It has many flavors with tradeoff among transmission time, quality
of keyframes, and accuracy of activity recognition model with computationally different
classifiers.

In the subsequent sections, Section 2 provides a literature review and Section 3 explains the pre-
sented framework in detail. In Section 4, experimental results for MVS and activity recognition are
given, and Section 5 concludes the overall paper with future directions.

2 RELATED WORK

This section is mainly divided into two sub-sections, covering the representative studies of MVS and
activity recognition related to our work. The literature of MVS was initiated almost a decade ago in
2010 by (Fu et al., 2010; Li & Merialdo, 2010) with the first MVS indoor dataset. The employed
MVS methods are computationally complex but they are not suitable for resource constrained de-
vices. In contrast to MVS, activity recognition is a richer research field with a variety of techniques
focusing on different applications.

2.1 MULTI-VIEW VIDEO SUMMARIZATION LITERATURE

Majority of the MVS methods are based on handcrafted-features integrated with traditional machine
learning approaches for final summary generation. The initial MVS schemes (Fu et al., 2010; Li
& Merialdo, 2010) utilized features such as SIFT descriptors, Gaussian and Laplacian difference,
and motion features followed by statistical learning approaches such as K-means or other clustering
techniques for summary generation. The next trend of MVS (Muramatsu et al., 2014; Ou et al.,
2014b) used the same features by adding pre- or post-processing like background subtraction along
with supervised learning such as SVM or unsupervised learning. The final summary in this trend
is either uniform length or of length provided by user. The next MVS trend (Kuanar et al., 2015;
Ou et al., 2014a) utilized mid-level features, motion-based shot boundary detection, spatiotemporal
graphs, and low-level features such as color and edge histograms. The final summary is generated
through the same statistical learning-based techniques. A breakthrough in MVS field is noticed
after the usage of learned features in prerequisite steps for generating summaries. This trend is
followed in 2016 (Panda et al., 2016a), where BVLC CaffeNet (Jia et al., 2014) and Spatiotemporal
C3D (Tran et al., 2015) features are used for sparse coding and video representation, respectively.
Besides clustering, template matching and sparse representative selection over learned embedding
are used for generating final summaries. Panda et al. (Panda & Roy-Chowdhury, 2017) also used
C3D features for video representation by computing inter- and intra-view similarities through sparse
coefficients and summary generation using clustering.

2.2 ACTIVITY RECOGNITION LITERATURE

The recent success of deep learning based methods in activity recognition achieved high-level ac-
curacies. These methods extract features from final layers of various deep learning models and
apply sequential learning for activity recognition (Ramasinghe & Rodrigo, 2015; Liu et al., 2016).
For instance, (Ullah et al., 2017) used features extracted from a pre-trained AlexNet, followed
by bi-directional LSTM for human action recognition with better results. Following this, (Ullah
et al., 2018) explored optical flow convolutional features with multi-layer LSTM for activity recog-
nition. Their approach outperformed (Ullah et al., 2019) and other state-of-the-art, however, its huge
running time restricts its adoptability in real-world surveillance networks. Similar to the previous
methods, (Simonyan & Zisserman, 2014) used different types of CNN architectures and configura-
tions for human action representation, considering both stationary and non-stationary environments.
Till date, the activity recognition methods do not perform computation over resource constrained
devices with significant accuracy. Thus, to tackle this problem effectively, we optimized VGG-19
model (Simonyan & Zisserman, 2014) to make it functional over resource constrained devices with
details given in Section 3.
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3 PROPOSED FRAMEWORK

The overall framework is divided into two major modules based on the functionalities of the resource
constrained devices. The first module is related to multi-view video acquisition, shot segmentation,
and summary generation. The second module performs computationally expensive processes in-
volving deep features extraction, features comparison and encoding, and activity prediction. The
whole framework contains a number of resource constrained devices (master and slave) connected
to a WSN in IoT. This section provides details of the proposed system with major steps are given in
appendix section A and visualized in Figure 2.

Figure 2: The conceptual diagram of our proposed framework, where slave devices with camera
capture multi-view video data, apply shot segmentation, extract keyframes, encode and transmit
them to master device for computing inter-view correlations and activity recognition.

3.1 OBJECTS OF INTEREST DETECTION FOR SHOT SEGMENTATION

Surveillance analysts are usually interested in activities of humans and vehicles; thus we consider
them as objects of our interest. For this purpose, a tiny version of YOLO CNN model [25] is
employed, which is much faster and has higher accuracy compared to other detectors. This tiny
object detector works well in normal scenarios but it has poor performance when videos contain
fog. To overcome this limitation, we used the pre-trained weights of YOLO tiny model and retrained
them over foggy data as show in experimental results section 3. Fog is applied on the entire image
globally without targeting our objects of interest only. Adding fog globally has an advantage of
better learning, because in real-life surveillance scenarios, the fog is always observed throughout
the image. The foggy data is generated from the COCO dataset (Redmon & Farhadi, 2018) by
adding synthetic fog to all the images using MATLAB script with different levels of fog, ranging
from 0 to 255. We conducted experiments with different values of fog parameter (fp) as shown in
experimental section and selected fp = 220 as optimal. The process of foggy data creation is given
in Algorithm A in appendix section.
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Training data for object detection specifically in foggy/normal environment has an additional advan-
tage of reliability. Most of the available multi-view datasets are related to indoor such as Office and
Bl-7f. Thus, we conducted experiments on the available multi-view outdoor datasets only, such as
Road (Fu et al., 2010; Li & Merialdo, 2010). The trained model is used over each slave device for
object detection. The attached camera of device transmits frames to our customized object detection
model. The frames having persons or vehicles with confidence score greater than 0.9 are stored and
considered for further steps while the remaining frames are discarded.

3.2 KEYFRAMES SELECTION MECHANISM

A summary is generated from the segmented frames with objects, because events occur due to their
interaction. Therefore, we considered those shots that can possibly contain events such as sitting
on a chair and entering a room etc. in MVS datasets. These events are possible only due to human
presence. Due to this reason, we segmented those shots in which humans are detected. The shots
with desired objects are larger in number, containing redundant frames and thus cannot be considered
in the final summary. To avoid the redundancy and provide users a very compact representation, we
compute mutual information between features of consecutive frames. This process is executed over
slave devices, having limited execution resources, thus, we used low-level features intelligently.
Further, instead of using only Euclidean or any other distance measuring method, we compared
mutual information between two consecutive feature vectors to avoid redundancy and obtain better
results. The feature descriptor is acquired from each frame by computing the ORB points (Rublee
et al., 2011). The frames with persons, having exactly the same information, are discarded and
only a single frame is selected from them. The selected frame is considered as a keyframe on the
concerned resource constrained device. The formula used for mutual information is given in Eq. 1.

MI(fp, fn) =

fp∑
i=1

fn∑
j=1

|fp(i)
⋂

fn(j)))|
N

log
N |fp(i)

⋂
fn(j)|

|fp||fn|
(1)

Here fp is the previous frame while fn is the current frame and N is the size of feature vector. The
mutual information is computed using scikit-learn library in Python.

3.3 ACTIVITY RECOGNITION

Human activity recognition is an important task in surveillance video analysis. An activity is a se-
quence of movements in continuous video frames, therefore, it requires extraction of spatiotemporal
features. In our system, the activity needs to be recognized on master device after getting summary
from the slave device. For activity recognition, we used a pre-trained VGG-19 CNN model for
spatial feature representations followed by auto-encoder which captures the temporal features in the
sequence. In contrast to VGG-19, the well-known AlexNet (Krizhevsky et al., 2012) and GoogleNet
(Szegedy et al., 2015) are not effective to capture tiny patterns in visual data because these models
have 1111 and 77 filter size with 4 and 2-pixel stride, respectively. We also made experiments on
MobileNetV2 (Sandler et al., 2018), where we extracted features from final convolution layer, but
the results were not convincing compared to state-of-the-art (see Table 2). VGG-16 model is re-
cently studied for activity recognition problem in (Ullah et al., 2019) and we outperformed their
method over various datasets by investigating VGG-19. It can extract discriminative visual features
because it uses 33 filter in all convolutional layers with fixed 1-pixel stride. This helps in processing
the smallest receptive field to grab the notions of tiny patterns. It has sixteen convolutional and three
fully connected layers where we extract deep features from the final fully connected layer (FC8)
having 11000 dimension. FC7 layer of VGG-19 outputs 4096 dimension representations which re-
sult a large sized feature vector for a single sequence and yield huge processing for encoding of
temporal representations. Thus, it cannot be considered for activity recognition over resource con-
strained devices in real-time scenarios. We are processing 15 fps, therefore, we extract 15000 spatial
frame-level features from one second summarized frames. The features extracted in a single interval
of time are compared to compute inter-view correlations. The features in the same interval from dif-
ferent views, are considered as overlapped and hence a single feature vector is selected from them
for further processing.
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Our feature extraction is performed on Movidius VPU stick, therefore, the original VGG-19 model
is compressed using neural computing stick software development kit (NCSDK). This optimized the
original model of size 574.7 MB to 287.3 MB to Movidiuss compatible graph format. The temporal
changes and sequential patterns in 15000 features are learned using our proposed auto-encoder. Mo-
tivated from the wide usage of auto-encoder network for many applications (Yang et al., 2019), we
utilized it in our framework. Auto-encoder reduces the dimensionality by analyzing patterns in high
dimensional data, therefore, we claim that it can learn the spatio-temporal patterns in deep features
of 15 consecutive frames. We performed several experiments for squeezing 15000 features to low
dimensions to effectively learn the temporal changes. We first encoded 15000 features to 8000, fol-
lowed by its encoding to 1000 features (first setting). This kind of setting is very effective because
its mean square error (MSE) for encoded features is very low, providing precise accuracy. However,
its time complexity is not meeting the needs of embedded devices because the total squeezing has
one extra step of encoding to 8000 features. In another setting, we encoded the 15000 high dimen-
sional features directly to 1000 (second setting). In this setting, the accuracy is slightly compromised
when using linear SVM, however, we met the computational requirements of embedded devices. We
trained our auto-encoders for 40 epochs in which we utilized sparsity regularization with proportion
value of 0.1 and L2 weights regularization to reduce the chance of over-fitting and avoid being stuck
in local minima. To this end, MSE with support of sparsity regularization and L2 regularization is
trained as a cost function of our auto-encoders. In first setting, the MSE decreased to 0.012 after 40
epochs, while in the second setting, it reduced to 0.044. The encoded features are spatiotemporal
representation of an activity, which are passed to SVM classifier for activity recognition. We trained
one versus all multi-class SVM because it trains N-1 (N is the number of total classes) classifiers,
which is efficient for resource restricted devices. All SVMs are examined for activity recognition
problem including linear, quadratic, and cubic SVM.

Figure 3: Sample results from road dataset. (a) Normal input images, (b) fog applied with different
parameters, (c) object detection in foggy images. The detection results are encouraging for object
detection in foggy environment.

3.4 MALLEABILITY OF PROPOSED FRAMEWORK

We designed this framework considering the major limitations of WSNs and IoT devices such as
computational complexity and storage capacities. We also aimed to provide an independent activity
analysis system, which is malleable in both certain and uncertain environments. For this purpose,
we first investigated different MVS and activity recognition methods, and studied the capabilities
of WSNs. Concluding our literature study, the need of an independent system is realized, which
could capture multi-view video data, analyze it, and provide a compact summary with recognized
activities in lengthy surveillance videos. To this end, we made extensive experiments with different
configurations and parameters, which can be interchangeably used according to users requirements
and available resources. For instance, a slave node with extensively limited resources in WSN can
encode its summary with PNG compression before its transmission to master node for activity recog-
nition. With this mechanism, a real-time summary generation and transmission to master node is
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ensured despite the slower connectivity and limited communication bandwidth. Similarly, at master
node, different options can be considered to balance execution time and accuracy of activity recog-
nition. Various classifiers were used for experiments with different computational complexities. In
addition, different experiments were performed for direct feature extraction from a sample summary
as well as encoded features with different configurations for activity recognition. The complete
evaluation details of these configurations are discussed in Section 4.

4 EXPERIMENTAL RESULTS

We divide the experimental evaluation of our proposed framework into three subsections: MVS,
activity recognition, and statistical analysis of data transmission. First, we explain the performance
evaluation of MVS employed on resource constrained devices and compared with state-of-the-art
techniques. Next, we evaluated the activity recognition module that is carried out on master device
with Movidius setup. In the MVS module, we used Raspberry Pi (RPi) for our experiments, but our
work is not limited to only RPi and can be applied to any other device with embedded vision. For
activity recognition, we used MATLAB as a simulation tool and then transformed it to Keras deep
learning framework in Python. The model trained using Keras with Tensorflow in backend can be
converted into Movidius compatible graph format using NCSDK. Currently, we tested our model on
RPi that can be adjustably used over other Movidius-supported devices. Sample results of integrated
framework for an input video from UCF-50 dataset with different views are visualized in Figure 4.

Figure 4: Sample results generated on UCF-50 video captured from two different views. Keyframes
from both input videos are generated and then VGG-19 features are extracted. These features are
compared and the selected single feature vector is encoded into 11000. Final output of activity is
generated by passing this feature vector to trained model that gives probability score along with the
predicted class.

4.1 DATASETS

We used five different datasets for experiments where three of them are utilized for object detection
in foggy scenarios and MVS and rest of the them are used to evaluate our activity recognition
method. Office (Fu et al., 2010; Li & Merialdo, 2010) is widely used for performance evaluation
of MVS methods because of its public availability along with the ground truth. It is created by
utilizing four stably-held cameras fitted in an office environment. The cameras have motion with
no synchronization between the captured videos with light variations. Bl-7f (Ou et al., 2014a) is
the most challenging dataset in MVS literature that has 19 different cameras installed at 7th floor of
Taiwan University. The recorded videos contain different events closely related to each other with
maximum overlapping. The installed cameras are synchronized, still, and fixed but with different
light conditions in different views. The ground truth as well as the dataset is publicly available for
research purposes. Road (Fu et al., 2010; Li & Merialdo, 2010) multi-view dataset is captured using
handheld cameras with extreme level of shuddering effects and variable light conditions. Different
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from the above two datasets, it contains persons and vehicles, recorded in an outdoor day light. This
dataset is used for foggy outdoor videos to test our object detection model in uncertain environment.
Results of object detection over Road dataset are given in Figure 3 in uncertain environment. The
activity recognition part of our framework is evaluated using UCF50 (Reddy & Shah, 2013) and
YouTube 11 (Liu et al., 2009) action datasets. UCF50 contains assorted human action videos with
high-level shuddering due to camera motion, difference in viewpoint, and scalability of objects. The
total number of classes are 50 with some actions closely related to each other, effecting the overall
accuracy of classifiers. YouTube dataset, in contrast to UCF50 is less challenging and includes
motion of camera, cluttered background, light variation, and changes in viewpoint. A total of 11
different action videos are available in this dataset.

Table 1: Performance comparison of the proposed framework with state-of-the-art. Office and Bl-7f
datasets are used for comparison. The highest F1 score among all the methods is made bold. P refers
to Precision and R represents Recall score.

Methods Office Bl-7f
Execution
time per

frame (secs)

P R F1
Score P R F1

score
(Fu et al., 2010) 1.00 0.61 0.75 - - - -

(Ou et al., 2014b) 0.41 0.63 0.50 - - - -
(Kuanar et al., 2015) 1.00 0.69 0.81 0.75 0.98 0.85 -

(Ou et al., 2014a) 0.25 0.75 0.40 0.58 0.61 0.6 -
(Panda et al., 2016b) 1.00 0.73 0.81 - - - -
(Panda et al., 2016a) 1.00 0.70 0.81 - - - -

(Panda & Roy-Chowdhury, 2017) 1.00 0.81 0.89 - - - -
(Hussain et al., 2019b) 0.93 0.86 0.90 - - - -
(Hussain et al., 2019a) 0.94 0.89 0.91 - - - 1.23

Proposed 0.94 0.92 0.93 0.85 0.88 0.85 0.45

4.2 MVS EVALUATION

Table 1 shows the MVS results of our implemented framework compared to other state-of-the-art
techniques. We provide objective evaluation for two benchmark datasets in MVS literature i.e.,
Office and Bl-7f. The time complexity of our framework is given in the last column, indicating
the execution time for a RPi device. The better performance of our method compared to existing
methods can be seen from Table 1. On Office dataset, our method achieved the highest F-measure
score compared to all methods under consideration. The most recent methods [38] for MVS on
Office dataset scores 0.90 and 0.91 with higher computational complexity. The method presented in
[38] uses heavy-weight CNN model for spatio-temporal point processing to select video skims. A
gap in computational complexity from a recent MVS method over resource constrained devices is
indicated in Table I where our method generates MVS 0.78 secs faster than (Hussain et al., 2019a).
In case of Bl-7f dataset, we outperformed (Ou et al., 2014a) and have similar F1-score with (Kuanar
et al., 2015), but our framework is functional over resource constrained devices.

4.3 ACTIVITY RECOGNITION EVALUATION

The activity recognition module of our system is evaluated using two benchmark action datasets
including UCF-50 and YouTube 11. The comparison using an overall accuracy metric with state-of-
the-art techniques is given in Table 2. We conducted different experiments for activity recognition
using original VGG-19 features, encoded features with S1, and encoded features with S2 along with
variants of SVM including linear, quadratic, and cubic SVM. S1 in Table 2 represents the first setting,
where the sequential features are encoded into 8000, followed by 1000 from 15000 features of a
single sequence. S2 presents the second setting of directly encoding 15000 features to a 1000 feature
vector. These different settings can be alternatively used for different scenarios, considering both
accuracy and complexity. On UCF50 dataset, trajectories analysis (Peng et al., 2016), hierarchical
clustering (Liu et al., 2016), ML-LSTM (Ullah et al., 2018), and deep auto-encoder with CNN
(Ullah et al., 2019) achieved 92.3%, 93.2%, 94.9%, and 96.4% accuracy, repetitively. On the other
hand, our S1 and S2 with cubic SVM achieved 96.2% and 93.8% overall accuracy, respectively. On
YouTube 11 action dataset, the single stream CNN (Ramasinghe & Rodrigo, 2015), hierarchical
clustering (Liu et al., 2016), DB-LSTM (Ullah et al., 2017), ML-LSTM (Ullah et al., 2018), and
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Table 2: Detailed comparative analysis of various settings of the proposed activity recognition
against recent activity recognition methods.

Method Features/Learning Overall accuracy
(%)

UCF-50 YouTube
actions

Single stream CNN

(Ramasinghe & Rodrigo, 2015) A CNN network for
motion and static information in a stream - 93.1

Trajectories
analysis (Peng et al., 2016)

Bag of visual words
and their fusion 92.3 -

Hierarchical
clustering (Liu et al., 2016)

Hierarchical
clustering multi-task learning 93.2 89.7

DB-
LSTM (Ullah et al., 2017)

AlexNet,
bi-directional LSTM - 92.84

ML-LSTM (Ullah et al., 2018) Optical flow
convolutional features, LSTM 94.9 95.8

Deep
auto-encoder and CNN (Ullah et al., 2019)

VGG-16,
deep auto-encoder 96.4 96.21

MobileNetV2
(Linear SVM)

Final layer features
(1x1000) 33.3 35.6

Proposed
(Linear SVM) VGG-19 (1x15000) 92.6 93.9

S1 (1x1000) 86.4 84.6
S2 (1x1000) 80.8 90.6

Proposed
(Quadratic SVM) VGG-19 (1x15000) 94.9 98.5

S1 (1x1000) 92.2 89.1
S2 (1x1000) 94.4 94.7

Proposed
(Cubic SVM) VGG-19 (1x15000) 96.6 98.7

S1 (1x1000) 96.2 91.3
S2 (1x1000) 96.1 95.6

auto-encoder with CNN (Ullah et al., 2019) achieved 93.1%, 89.7%, 92.84%, 95.8%, and 96.21%
accuracy, respectively. On the other hand, the proposed method with full VGG-19 features and
cubic SVM reached 98.7% accuracy, S1 reached 89.1% on quadratic and 91.3% on cubic SVM,
and S 2 achieved 94.7% and 95.6% on quadratic and cubic SVM, respectively. From the above
comparisons, it can be observed that the accuracy of our different settings are either higher or similar
to the state-of-the-art. However, in terms of computational complexity, the existing methods are
designed for high processing GPUs but our system is functional over resource constrained devices.
The performance of our settings with linear SVM is under 80% but with quadric SVM, it touches
the milestone of 90%. Therefore, it can be considered as state-of-the-art results for processing over
embedded devices with low cost VPU stick. Finally, the experiments performed over MobileNetV2
give lower accuracy on both the datasets. Thus, light-weight MobileNetV2 is not a suitable option
for consideration in real-time surveillance for activity recognition.

4.4 STATISTICAL EVALUATION OF WSN

Wireless networks have constrained resources of bandwidth and communication cost. It is therefore
not a feasible solution to transmit huge-sized surveillance videos to cloud or local servers due to
limited transmission and storage of data. Also, searching for an event in long videos manually is a
tiresome task. This section provides statistical details about saving storage capacity, bandwidth, and
transmission time as illustrated in Figure 5.

4.4.1 STORAGE CAPACITY

To the best of our knowledge, there is no specific dataset available to confirm the efficiency and
effectiveness of our framework in terms of bandwidth, transmission time, and storage capacity.
Thus, we considered an example video to generate keyframes, encode and transmit them to the
master device for recognizing activities. We then compared all the mentioned parameters as given
in Figure 5. The frames in the example video are considered as non-compressed with ideal situation
of transmission. First, we calculate the total number of pixels by multiplying height (h) of the frame
with width (w), no of pixels = hw. In office video, h = 480 and w = 640, resulting in 307,200, which
is multiplied by the depth of the frame i.e., 8. Finally, we divided the obtained number by 8 to get the
size of the frame in bytes and is further converted to MB. The size of a single frame from this video
is 0.29 MB. Similarly, to calculate the size of the office video-0, multiply the size of each frame
by the number of frames inside it. This video has 26,940 frames, and multiplying it with size of
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each frame, we get 7892.57. It can be observed that there is a huge difference of storage, indicating
the effectiveness of our system in terms of saving storage capacity. Saving storage directly refers to
preservation of communication bandwidth because the bandwidth consumed by data is the same as
their size.

4.4.2 TRANSMISSION TIME

The transmission time in our framework is saved in two ways: 1) in low-bandwidth networks: en-
code the keyframes with PNG compression, and 2) transmit only important frames over IoT network
saving huge time. Suppose an ideal situation in the network to transmit a frame in the WSN from
slave to master device. Assume the distance as 0.3 km and speed as 200,000 km/s with data rate
of 32 Mbps. To receive the data from slave (source), the data will take 3 types of times: 1) getting
frame on WSN, 2) transmitting the data through the network, 3) loading data from router/hub to the
master (destination) device. The time denoted as t1 in Eq. 2 is transmission time from source to
network router. Transmission time t2 in Eq. 3 is considered as the time taken by network to transmit
data from source router to destination. The transmission time from destination router to the master
device is the same as t1. The overall transmission time is the sum of t1, t2, and t3, where t1 and t3
are same. The calculated transmission time for overall frames, keyframes, and encoded keyframes
is 4137.98, 4.45, 1.13 seconds, respectively, as given in Figure 5.

t1 =
data size

data rate
(2)

t2 =
distance from slave to master device

transmission speed
(3)

Figure 5: Transmission time and storage size comparison of transmitting and storing overall video
(Office-0 video) versus keyframes and encoded keyframes. A huge difference of saving transmission
time and storage capacity can be observed among all these possible settings.

5 CONCLUSION

In this paper, we integrated MVS and activity recognition under an umbrella of a unified framework.
A complete setup including slaves and a master resource constrained device working independently
in an IoT is presented. The hardware requirements include slave devices equipped with camera
and wireless sensors, a master device with Intel Movidius NCS for running optimized deep learning
models on the edge. The slave devices capture multi-view video data, detect objects, extract features,
compute mutual information, and finally generate summary. The generated summary is received at
master device with optimized trained model for activity recognition. The MVS algorithm as well
activity recognition models presented in this paper outperform state-of-the-art.

In future, we have intention to extend this work by deeply investigating multi-view action recogni-
tion algorithms with different parameters and configurations in resource constrained environments.
Further, we want to explore spiking neural networks used for various tasks [40, 41] in our framework
for spatio-temporal features extraction advanced to activity recognition.
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