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Abstract
Goal recognition is the problem of inferring the correct goal
towards which an agent executes a plan, given a set of goal
hypotheses, a domain model, and a (possibly noisy) sam-
ple of the plan being executed. This is a key problem in
both cooperative and competitive agent interactions and re-
cent approaches have produced fast and accurate goal recog-
nition algorithms. In this paper, we leverage advances in
operator-counting heuristics computed using linear programs
over constraints derived from classical planning problems to
solve goal recognition problems. Our approach uses addi-
tional operator-counting constraints derived from the obser-
vations to efficiently infer the correct goal, and serves as basis
for a number of further methods with additional constraints.

Introduction
Agents that act autonomously on behalf of a human user
must choose goals independently of user input and gener-
ate plans to achieve such goals (Meneguzzi 2009). When
such agents have complex sets goals and require interac-
tion with multiple agents that are not under the user’s con-
trol, the resulting plans are likely to be equally complex
and non-obvious for human users to interpret (Chakraborti
et al. 2018). In such environments, the ability to accu-
rately and quickly identify the goals and plans of all in-
volved agents is key to provide meaningful explanation
for the observed behavior. Goal recognition is the prob-
lem of inferring one or more goals from a set of hypothe-
ses that best account for a sequence of observations, given
a fixed initial state, a goal state, and a behavior model
of the agent under observation. Recent approaches to goal
recognition based on classical planning domains have lever-
aged data-structures and heuristic information used to im-
prove planner efficiency to develop increasingly accurate
and faster goal recognition algorithms (Martı́n et al. 2015;
Pereira et al. 2017). Specifically, Pereira et al. (2017) use
heuristics based on planning landmarks (Hoffmann et al.
2004) to accurately and efficiently recognize goals in a
wide range of domains with various degrees of observabil-
ity and noise. This approach, however, does not deal with
noise explicitly, relying on the implicit necessity of land-
marks in valid plans for goal hypotheses to achieve com-
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petitive accuracy with other methods (Sohrabi et al. 2016;
Ramı́rez and Geffner 2010), while increasing the number of
recognized goals (spread).

Thus, goal recognition under partial observability (i.e.,
missing observations) in the presence of noisy observation
is a difficult problem to address while achieving both rea-
sonable recognition time (i.e., a few seconds), high accuracy
and low spread. In this paper, we address these limitations
by leveraging recent advances on operator-counting heuris-
tics (Pommerening et al. 2014; van den Briel et al. 2007).
Operator-counting heuristics provide a unifying framework
for a variety of sources of information from planning heuris-
tics (Hoffmann et al. 2004) that provide both an estimate of
the total cost of a goal from any given state and and indica-
tion of the actual operators likely to be in such plans. This
information proves to be effective at differentiating between
goal hypotheses in goal recognition.

Our contributions are threefold. First, we develop three,
increasingly more accurate goal recognition approaches
using operator-counting heuristics.Second, we empirically
show that these heuristics are very effective at goal recogni-
tion, overcoming existing approaches in almost all domains
in terms of accuracy while diminishing the spread of rec-
ognized goals. Such approaches are substantially more ef-
fective for noisy settings. Third, we discuss a broad class
of operator-counting heuristics for goal recognition that can
use additional constraints to provide even finer handling of
noise and missing observations.

Background
We review the key background for the approaches we de-
velop in this paper. First, the recognition settings we as-
sume for our approach follows the standard formalization of
goal recognition as planningSecond, while there is substan-
tial literature on linear programming heuristic unified on the
operator-counting framework, we focus on the specific types
of operator-counting constraints we actually use in our ex-
perimentation.

Planning and Goal Recognition
Planning aims to find a sequence of actions that transforms
an initial state into a goal state. Next, we formally define
each of these elements.



Definition 1 (Predicates and State). A predicate is denoted
by an n-ary predicate symbol p applied to a sequence of zero
or more terms (τ1, τ2, ..., τn) – terms are either constants
or variables. We refer to grounded predicates that repre-
sent logical values according to some interpretation as facts,
which are divided into two types: positive and negated facts,
as well as constants for truth (>) and falsehood (⊥). A state
S is a finite set of positive facts f that follows the closed
world assumption so that if f ∈ S, then f is true in S.
We assume a simple inference relation |= such that S |= f
iff f ∈ S, S 6|= f iff f 6∈ S, and S |= f1 ∧ ... ∧ fn iff
{f1, ..., fn} ⊆ S.

Definition 2 (Operator and Action). An operator a is rep-
resented by a triple 〈name(a), pre(a), eff(a)〉: name(a) rep-
resents the description or signature of a; pre(a) describes
the preconditions of a, a set of predicates that must exist in
the current state for a to be executed; eff(a) represents the
effects of a. These effects are divided into eff(a)+ (i.e., an
add-list of positive predicates) and eff(a)− (i.e., a delete-list
of negated predicates). An action is a ground operator in-
stantiated over its free variables.

Definition 3 (Planning Domain). A planning domain defi-
nition Ξ is represented by a pair 〈Σ,A〉, which specifies the
knowledge of the domain, and consists of a finite set of facts
Σ (e.g., environment properties) and a finite set of actions
A.

Definition 4 (Planning Instance). A planning instance Π is
represented by a triple 〈Ξ, I, G〉, where Ξ = 〈Σ,A〉 is the
domain definition; I ⊆ Σ is the initial state specification,
which is defined by specifying values for all facts in the ini-
tial state; and G ⊆ Σ is the goal state specification, which
represents a desired state to be achieved.

Definition 5 (Plan). An s-plan π for a planning instance
Π = 〈Ξ, I, G〉 is a sequence of actions 〈a1, a2, ..., an〉 that
modifies a state s into a state S |= G in which the goal state
G holds by the successive execution of actions in π starting
from s. An I-plan is just called a plan. A plan π∗ with length
|π∗| is optimal if there exists no other plan π′ for Π such that
|π′| < |π∗|.

A goal recognition problem aims to select the correct goal
of an agent among a set of possible goals using as evidence
a sequence of observations. These observations might be ac-
tions executed by the agent or noise observation which are
part of a valid plan but are not executed by the agent.

Definition 6 (Observation Sequence). An observation se-
quence O = 〈o1, o2, ..., on〉 is said to be satisfied by a plan
π = 〈a1, a2, ..., am〉, if there is a monotonic function f that
maps the observation indices j = 1, ..., n into action indices
i = 1, ..., n, such that af(j) = oj .

Definition 7 (Goal Recognition Problem). A goal recog-
nition problem is a tuple TGR = 〈Ξ, I,G, O〉, where: Ξ =
〈Σ,A〉 is a planning domain definition; I is the initial state;
G is the set of possible goals, which include a correct hidden
goalG∗ (i.e.,G∗ ∈ G); andO = 〈o1, o2, ..., on〉 is an obser-
vation sequence of executed actions, with each observation
oi ∈ A, and the corresponding action being part of a valid

plan π (from Definition 5) that transitions I intoG∗ through
the sequential execution of actions in π.

Definition 8 (Solution to a Goal Recognition Problem). A
solution to a goal recognition problem TGR = 〈Ξ, I,G, O〉
is a nonempty subset of the set of possible goals G ⊆ G
such that ∀G ∈ G there exists a plan πG generated from a
planning instance 〈Ξ, I, G〉 and πG is consistent with O.

Operator-Counting Heuristics
Recent work on linear programming (LP) based heuristics
has generated a number of informative and efficient heuris-
tics for optimal-cost planning (van den Briel et al. 2007;
Pommerening et al. 2014; Bonet 2013). These heuristics rely
on constraints from different sources of information that ev-
ery plan π (Definition 5) must satisfy. All operator-counting
constraints contain variables of the form Ya for each opera-
tor a such that setting Ya to the number of occurrences of a
in π satisfies the constraints. In this paper we adopt the for-
malism and definitions of Pommerening et al. for LP-based
heuristics1.

Definition 9 (Operator-Counting Constraints). Let Π be
a planning instance with operator set A and let s be one
of tis states. Let Y be a set of non-negative real-valued and
integer variables, including an integer variable Ya for each
operator a ∈ A along with any number of additional vari-
ables. The variables Ya are called operator-counting vari-
ables. If π is an s-plan, we denote the number of occurrences
of operator a ∈ A in π with Yπa . A set of linear inequalities
over Y is called an operator counting constraint for s if for
every s-plan there exists a feasible solution with Ya = Yπa
for all a ∈ A. A constraint set for s is a set of operator-
counting constraints for s where the only common variables
between constraints are the operator-counting constraints.

Definition 10 (Operator-Counting Integer-Linear Pro-
gram). The operator-counting integer program IPC for
constraint set C aims to minimise∑

a∈A
cost(a)Ya subject to C

where operator-counting linear program LPC is the LP -
relaxation of IPC .

Definition 11 (IP and LP Heuristic). Let Π be a planning
instance, and let C be a function that maps states s of Π to
constraint sets for s. The IP heuristic hIPC (s) is the objec-
tive value of the integer program IPC(s). The LP heuristic
hLPC (s) is the objective value of the linear program LPC(s).
Infeasible IPs/LPs are treated as having∞ objective value.

While the framework from Pommerening et al. 2013 uni-
fies many types of constraints for operator-counting heuris-
tics, we rely on three types of constraints for our goal recog-
nition approaches: landmarks, state-equations, and post-hoc
optimization. Planning landmarks consist of actions (alter-
natively state-formulas) that must be executed (alternatively

1The only difference between their formalism and ours is that
we refer to operators/actions with an a/A variable name to differ-
entiate it from the observations o/O



made true) in any valid plan for a particular goal (Hoffmann
et al. 2004). Thus, landmarks are necessary conditions for
all valid plans towards a goal, and, as such, provide the basis
for a number of admissible heuristics (Karpas and Domsh-
lak 2009) and as conditions to strengthen existing heuris-
tics (Bonet 2013). Importantly, planning landmarks form the
basis for the current state-of-the-art goal recognition algo-
rithms (Pereira et al. 2017; Pereira and Meneguzzi 2018).
Disjunctive action landmarks (Zhu and Givan 2003) for a
state s are sets of actions such that at least one action in
the set must be true for any s-plan, and make for a natural
operator-counting constraint.
Definition 12 (Landmark Constraints). Let L ⊆ A be a
disjunctive action landmark for state s of task Π. The land-
mark constraint clms,L for L is:∑

a∈L
Ya ≥ 1

Net change constraints generalize Bonet’s (2013) state
equation heuristic, which itself relate the planning instance
in question with Petri nets that represent the transitions of
state variables induced by the actions, and such that tokens
in this task represent net changes to the states of the problem.

Finally, Post-hoc optimization constraints (Pommerening
et al. 2013) use the fact that certain heuristics can rule out the
necessity of certain operators from plans (and thus from the
heuristic estimate). For example, Pattern Database (PDBs)
heuristics (Culberson and Schaeffer 1998) create projections
of the planning task into a subset of state variables (with this
subset being the pattern), such that the heuristic can parti-
tion operators into two sets of each pattern, one that changes
variables in the pattern (i.e., contributes towards transitions)
and the other than does not (i.e., is non-contributing).
Definition 13 (Post-hoc Optimization Constraint). Let Π
be a planning task with operator set A, let h be an admissi-
ble heuristic for Π, and let N ⊆ A be a set of operators that
are noncontributing in that h is still admissible in a modified
planning task where the cost of all operators in N is set to
0.

Then the post-hoc optimization constraint cPHs,h,N for h,N ,
and state s of Π consists of the inequality.∑

a∈A\N

cost(a)Ya ≥ h(s)

Goal Recognition using Operator Counts
We now bring together the operator-counting constraints
into three operator-counting heuristics suitable for goal
recognition, ranging from the simplest way to employ op-
erator counts to compute the overlap between counts and
observed actions, to modifying the constraints used by the
operator counts to enforce solutions that agree with such ob-
servations,and finally accounting for possible noise by com-
paring heuristic values.

Computing Observation Overlap Count
We start with a basic operator-counting heuristic h(s), which
we define to be the LP-heuristic of Def. 11 where C com-

Algorithm 1 Goal Recognition using the Operator Counts.
Input: Ξ planning domain definition, I initial state, G set of can-
didate goals, and O observations.
Output: Recognized goal(s).
1: function OPCOUNTRECOGNIZE(Ξ, I,G, O)
2: Hits ← Initialize empty dictionary
3: for all G ∈ G do . Compute overlap for G
4: HitsG ← 0
5: Y ← GENERATECONSTRAINTS(Ξ, I, G)
6: Y ← COMPUTEOPERATORCOUNTS(Y)
7: for all o ∈ O do
8: if Yo > 0 then
9: HitsG ← HitsG + 1

10: Yo ← Yo − 1
11: return all G s.t G ∈ G ∧HitsG = maxGHitsG

prises the constraints generated by Landmarks (Def. 12),
post-hoc optimization (Def. 13), and net change constraints
as described by Pommerening et al. (2014). This heuristic,
computed following Def. 11, yields two important bits of
information for our first technique, first, it generates the ac-
tual operator counts Ya for all a ∈ A from Def. 10, whose
minimization comprises the objective function h(s).

The heuristic values h(s) of each goal candidate G ∈ G
tells us about the optimal distance between the initial state
I and G, while the operator counts indicate possible oper-
ators in a valid plan from I to G. We can use these counts
to account for the observations O by computing the overlap
between operators with counts greater than one and opera-
tors observed for recognition. Algorithm 1 shows how we
can use the operator counts directly in a goal recognition
technique. In order to rank the goal hypotheses we keep a
dictionary of Hits (Line 2) to store the overlap, or count the
times operators counts hit observed actions. The algorithm
then iterates over all goal hypotheses (Lines 3-10) comput-
ing the operator counts for each hypothesisG and comparing
these counts with the actual observations (Lines 7–10). We
recognize goals by choosing the hypotheses whose operator
counts hit the most observations (Line 11).

Enforcing Observation Constraints
The technique of Algorithm 1 is conceptually similar to the
Goal Completion heuristic of Pereira et al. (2017) in that it
tries to compare heuristically computed information with the
observations. However, this initial approach has a number of
shortcomings in relation to their technique. First, while the
landmarks themselves are enforced by the LP used to com-
pute the operator counts (and thus observations that corre-
spond to landmarks count as hits), the overlap computation
loses the ordering of the landmarks that the Goal Completion
heuristic uses to account for missing observations. Second,
a solution to a set of operator-constraints, i.e., a set of opera-
tors with non-negative counts may not be a feasible plan for
a planning instance. Thus, these counts may not correspond
to the plan that generated the observations.

While operator-counting heuristics on their own are fast
and informative enough to help guide search when dealing
with millions of nodes, goal recognition problems often re-



Algorithm 2 Goal Recognition using Observation-
Constrained Operator Counts.
Input: Ξ planning domain definition, I initial state, G set of can-
didate goals, and O observations.
Output: Recognized goal(s).
1: function OPCOUNTOBSRECOGNIZE(Ξ, I,G, O)
2: for all G ∈ G do . Compute hc(I) for G
3: Y ← GENERATECONSTRAINTS(Ξ, I, G)
4: for all o ∈ O do
5: Y ← Y ∪ (Yo > 1)

6: Y ← COMPUTEOPERATORCOUNTS(Y)
7: HG ←

∑
a∈A Ya

8: return all G s.t G ∈ G ∧HG = minGHG

quire the disambiguation of a dozen or less goal hypothe-
ses. Such goal hypotheses are often very similar so that the
operator-counting heuristic value (i.e., the objective function
over the operator counts) for each goal hypothesis is very
similar, especially if the goals are more or less equidistant
from the initial state.

Thus, we refine the technique of Observation Overlap
by introducing additional constraints into the LP used to
compute operator counts. Specifically, we force the opera-
tor counting heuristic to only consider operator counts that
include every single observation o ∈ O. The resulting LP
heuristic (which we call hC) then minimizes the cost of the
operator counts for plans that necessarily agree with all ob-
servations. We summarize this Observation Constraint En-
forcement approach in Algorithm 2. This technique is sim-
ilar to that of Algorithm 1 in that it iterates over all goals
computing a heuristic value. However, instead of computing
observation hits by looking at individual counts, it generates
the constraints for the operator-counting heuristic (Line 3)
and adds constraints to ensure that the count of the opera-
tors corresponding to each observation is greater than one
(Lines 4–5). Finally, we choose the goal hypotheses that
minimize the operator count heuristic distance from the ini-
tial state (Line 8).

Enforcement Delta
Although enforcing constraints to ensure that the LP heuris-
tic computes only plans that do contain all observations
helps us overcome the limitations of computing the overlap
of the operator counts, this approach has a major shortcom-
ing: it considers all observations as valid operators gener-
ated by the observed agent. Therefore, the heuristic resulting
from the minimization of the LP might overestimate the ac-
tual length of the plan for the goal hypothesis due to noise.
This may happen for one of two reasons: either the noise
is simply a sub-optimal operator in a valid plan, or it is an
operator that is completely unrelated to the plan that gener-
ated the observations. In both cases, the resulting heuristic
value may prevent the algorithm from selecting the actual
goal from among the goal hypotheses. This overestimation,
however, has an important property in relation to the basic
operator counting heuristic, which is that hC always domi-
nates the operator counting heuristic h, in Proposition 1.

Algorithm 3 Goal Recognition using Heuristic Difference
of Operator Counts.
Input: Ξ planning domain definition, I initial state, G set of can-
didate goals, and O observations.
Output: Recognized goal(s).
1: function DELTARECOGNIZE(Ξ, I,G, O)
2: for all G ∈ G do . Compute hδ(I) for G
3: Y ← GENERATECONSTRAINTS(Ξ, I, G)
4: Y ← COMPUTEOPERATORCOUNTS(Y)
5: HG ←

∑
a∈A Ya

6: for all o ∈ O do
7: Y ← Y ∪ Yo > 0
8: Y ← COMPUTEOPERATORCOUNTS(Y)
9: HC,G ←

∑
a∈A Ya

10: Hδ,G ← HC,G −HG

11: return all G s.t G ∈ G ∧Hδ,G = minGHδ,G

Proposition 1 (hC dominates h). Let h be the operator-
counting heuristic from Defs. 10-11, hC be the over-
constrained heuristic that accounts for all observations o ∈
O, and s a state of Π. Then hC(s) ≥ h(s).

Proof. Let Ch be set of constraints used in h(s), and ChC
be set of constraint used to compute hC(s). Every feasible
solution to ChC is a solution to Ch. This is because to gen-
erate ChC we only add constraints to Ch. Thus, a solution to
ChC has to satisfy all constraints in Ch. Therefore, since we
are solving a minimization problem the value of the solution
for Ch cannot be larger than the solution to ChC .

The intuition here is that the operator-counting heuristic h
estimates the total cost of any optimal plan, regardless of the
observations, while hC estimates a plan following all obser-
vations, including noise, if any. If there is no noise, the sum
of the counts must agree (even if the counts are different),
whereas if there is noise and assuming the noise is evenly
distributed, there will be differences in all counts. Thus, our
last approach consists of computing the difference between
hC and h, and infer that the goal hypothesis for which these
values are closer must be the correct goal. We call the result-
ing heuristic hδ and formalize this approach in Algorithm 3.
Here we compute the LP twice, once with only the basic
operator-counting constraints (Line 4), and once with the
constraints enforcing the observations in the operator counts
(Line 8), using these two values to compute hδ (Line 10).
The algorithm then returns goal hypotheses that minimize
hδ (Line 11).

Experiments and Results
To evaluate the effectiveness of our approaches, we imple-
mented each of the algorithms described earlier and per-
formed the goal recognition process over the large dataset
introduced by Pereira et al. (2017). This dataset contains
thousands of problems for goal and plan recognition un-
der varying levels of observability for a number of tradi-
tional IPC domains (Vallati et al. 2018), including BLOCKS-
WORLD, CAMPUS, DEPOTS, DRIVERLOG, Dockworker
robots (DWR), IPC-GRID, FERRY, Intrusion Detection



(INTRUSION), KITCHEN, LOGISTICS, MICONIC, ROVER,
SATELLITE, SOKOBAN, and Zeno Travel (ZENO). It also
contains over a thousand problems under partial observabil-
ity and noisy observations in the CAMPUS, IPC-GRID, IN-
TRUSION and KITCHEN domains. The baselines of our ex-
perimentation were the original deterministic approach from
Ramı́rez and Geffner (2009) (R&G 2009) and the recent
algorithms from Pereira et al. (2017) (huniq) and Martı́n
et al. (2015) (FG2015)2. We implemented our approaches
using PYTHON 2.7 for the main recognition algorithms
with external calls to a customized version of the FAST-
DOWNWARD (Helmert 2006) planning system to compute
the operator counts. Our customized planner returns not
only the operator counts and can also introduce additional
constraints before running the CPLEX 128 optimization
system. We ran experiments in a single core of a 24 core
Intel R© Xeon R© CPU E5-2620 @2.00Ghz with 48GB of
RAM, with a 2-minute time limit and a 2GB memory limit.

Table 1 shows the results for the partially observable, non-
noisy fragment of the dataset, whereas Table 2 shows the
noisy fragment of the dataset3. For the noisy experiments,
each set of observations contained at least two spurious ac-
tions, which, while valid for the plan, were not actually exe-
cuted by the agent being observed. These results show that,
while not nearly as fast as the huniq approach from Pereira
et al. with a θ = 0 recognition threshold, the accuracy (Acc
%) of our hδ approach is either competitive or superior in
virtually all domains (except for some levels of observabil-
ity in IPC-GRID, DWR and KITCHEN), and, even for the
domains where the accuracy is similar, or lower, the spread
(SinG) of the resulting goals is consistently lower, i.e., the
returned goals are unique for most problems. The accuracy
of our approach, thus, consistently matches or surpasses that
of R&G 2009, with a computational cost that is also often
smaller than FG 2015. Importantly, the cost of all of our ap-
proaches is basically the same within each domain, regard-
less of the level of observability and noise, since our tech-
nique relies on a single call to a planner that computes the
operator counts for a single state and then stops the planner.
We argue that this is attributable to our inefficient imple-
mentation rather than the technique, for the hδ approach, the
overhead of the FAST-DOWNWARD pre-processing step is
paid multiple times. Unlike R&G 2009, that uses a modified
planning heuristic, and FG 2015, that builds a data structure
and explores it at very high computational cost. We note that
the results for noisy observations show the greatest impact of
hδ with an overall higher accuracy and lower spread across
all domains but KITCHEN.

Finally, results for the KITCHEN domain stand out in our
experiments in that our some of our approaches consistently
show underwhelming performance both in noisy and non-
noisy domains. Counter-intuitively, for this particular do-

2We excluded the results of (Sohrabi et al. 2016) from our com-
parison as it timed out for virtually all problems in all domains,
even with a 20-minute timeout.

3Timeout indicates that approach exceeded the two-minute
timeout we set for the experiments, whereas the † symbol indicates
a runtime failure for most problems in the domain.

main, the more observations we have available, the worse
the performance. This seems to be a problem for all other
approaches under noisy conditions, though not under incom-
plete observations. Moreover, since the loss of accuracy with
fuller observability also occurs for the non-noisy setting, we
surmise this to stem from the domain itself, rather than the
algorithm’s ability to handle noise, and defer investigation
of this issue to future work.

Related Work
Our work follows the traditional of goal and plan recog-
nition as planning algorithms as defined by Ramı́rez and
Geffner (2009; 2010). The former work yields higher recog-
nition accuracy in our settings (and hence we chose it as a
baseline), whereas the latter models goal recognition as a
problem of estimating the probability of a goal given the ob-
servations. Such work uses a Bayesian framework to com-
pute the probability of goals given observations by comput-
ing the probability of generating a plan given a goal, which
they accomplish by running a planner multiple times to es-
timate the probability of the plans that either comply or not
with the observations. Recent research on goal recognition
has yielded a number of approaches to deal with partial ob-
servability and noisy observations, of which we single out
three key contributions. First, Martı́n et al. (2015) devel-
oped a goal recognition approach based on constructing a
planning graph and propagating operator costs and the inter-
action among operators to provide an estimate of the prob-
abilities of each goal hypothesis. While their approach pro-
vides probabilistic estimates for each goal, its precision in
inferring the topmost goals is consistently lower than ours,
often ranking multiple goals with equal probabilities (i.e.,
having a large spread). Second, Sohrabi et al. (2016) devel-
oped an approach that also provides a probabilistic interpre-
tation and explicitly deals with noisy observations. Their ap-
proach works through a compilation of the recognition prob-
lem into a planning problem that is processed by a planner
that computes a number of approximately optimal plans to
compute goal probabilities under R&G’s Bayesian frame-
work. Finally, Pereira et al. (2017) develop heuristic goal
recognition approaches using landmark information. This
approach is conceptually closer to ours in that we also com-
pute heuristics, but we aim to overcome the potential spar-
sity of landmarks in each domain by using operator-count
information, as well as explicitly handle noise by introduc-
ing additional constraints in heuristic hC and comparing the
distance to the unconstrained h heuristic.

Conclusion and Discussion
We developed a novel class goal recognition technique
based on operator-counting heuristics from classical plan-
ning (Pommerening et al. 2014) which, themselves rely on
ILP constraints to estimate which operators occur in valid
optimal plans towards a goal. The resulting approaches are
competitive with the state of the art in terms of high accu-
racy and low false positive rate (i.e., the spread of returned
goals), at a moderate computational cost. We show empiri-
cally that the overall accuracy of our best approach is sub-



h hc hδ R&G 2009 FG 2015 huniq
# |G| % Obs |O| Time Acc % S in G Time Acc % S in G Time Acc % S in G Time Acc % S in G Time Acc % S in G Time Acc % S in G

B
L

O
C

K
S

(1
07

6)

20.0

10 1.8 8.896 23.2% 2.17 8.916 45.1% 2.6 17.812 95.1% 7.74 1.235 86.8% 7.84 36.562 65.8% 9.11 0.131 31.6% 1.03
30 4.9 8.877 16.3% 1.54 8.897 67.9% 2.02 17.774 87.8% 2.71 1.698 87.2% 3.56 36.648 78.1% 10.53 0.144 51.4% 1.06
50 7.6 8.874 14.2% 1.37 8.875 79.3% 1.55 17.749 91.5% 1.74 2.497 97.9% 2.63 34.290 81.3% 10.68 0.168 60.1% 1.08
70 11.1 8.382 11.0% 1.32 8.4 93.9% 1.21 16.782 98.4% 1.4 3.704 97.5% 1.83 37.056 89.8% 8.63 0.184 79.1% 1.13

100 14.5 8.208 10.9% 1.12 8.227 100.0% 1.03 16.435 100.0% 1.21 6.123 100% 1.46 40.405 100.0% 1.22 0.238 100% 1.09
C

A
M

P
U

S
(7

5) 2.0

10 1.0 0.631 53.3% 1.0 0.628 60.0% 1.07 1.259 100.0% 1.27 0.084 100% 1.46 0.717 53.3% 1.0 0.027 100% 1.13
30 2.0 0.628 53.3% 1.0 0.631 73.3% 1.2 1.259 100.0% 1.07 0.097 100% 1.33 0.696 80.0% 1.13 0.042 100% 1.13
50 3.0 0.634 40.0% 1.0 0.63 93.3% 1.27 1.264 100.0% 1.0 0.104 100% 1.33 0.676 66.6% 1.26 0.055 93.3% 1.13
70 4.4 0.628 53.3% 1.0 0.629 100.0% 1.07 1.257 100.0% 1.07 0.115 100% 1.26 0.668 86.6% 1.6 0.058 100% 1.0

100 5.5 0.624 60.0% 1.0 0.626 100.0% 1.0 1.25 100.0% 1.07 0.128 100% 1.13 0.631 93.3% 1.53 0.061 100% 1.0

D
E

P
O

T
S

(3
64

)

8.5

10 3.1 5.76 15.5% 1.29 5.715 32.1% 1.54 11.475 53.6% 1.83 1.485 77.3% 3.98 † † † 0.331 32.1% 1.09
30 8.6 5.767 14.3% 1.31 5.693 69.0% 1.64 11.46 64.3% 1.19 2.307 77.3% 2.39 † † † 0.356 47.6% 1.07
50 14.1 5.476 14.3% 1.21 5.438 91.7% 1.33 10.914 85.7% 1.1 3.433 84.5% 1.91 † † † 0.415 71.4% 1.02
70 19.7 5.304 14.3% 1.2 5.252 100.0% 1.08 10.556 94.0% 1.01 5.149 91.6% 1.67 † † † 0.481 84.5% 1.01

100 24.4 5.238 14.3% 1.21 5.205 100.0% 1.0 10.443 100.0% 1.0 7.094 92.8% 1.46 † † † 0.575 100% 1.03

D
R

IV
E

R
L

O
G

(3
64

)

10.5

10 2.6 3.342 32.1% 1.43 3.316 42.9% 1.74 6.658 73.8% 2.43 1.192 96.4% 4.71 79.487 42.8% 1.91 0.284 35.7% 1.10
30 6.9 3.337 28.6% 1.23 3.351 75.0% 1.45 6.688 77.4% 1.55 1.444 92.8% 3.34 60.168 70.2% 3.19 0.284 35.7% 1.10
50 11.1 3.338 28.6% 1.13 3.35 92.9% 1.15 6.688 91.7% 1.17 1.608 94.1% 2.88 64.427 79.7% 4.59 0.290 64.2% 1.14
70 15.6 3.304 28.6% 1.18 3.308 97.6% 1.12 6.612 95.2% 1.11 1.925 89.2% 2.46 75.084 82.1% 4.10 0.298 90.4% 1.14

100 21.7 3.301 28.6% 1.04 3.347 100.0% 1.0 6.648 100.0% 1.04 2.809 89.2% 2.14 96.091 96.4% 1.11 0.305 100% 1.17

D
W

R
(3

64
)

7.3

10 5.7 3.604 38.1% 1.6 3.601 50.0% 1.71 7.205 56.0% 2.19 1.634 83.3% 4.21 66.496 92.8% 6.38 0.491 33.3% 1.05
30 16.0 3.63 36.9% 1.2 3.579 81.0% 1.42 7.209 76.2% 1.46 2.977 80.9% 3.34 54.461 97.6% 6.56 0.518 51.1% 1.05
50 26.2 3.611 36.9% 1.04 3.583 98.8% 1.2 7.194 84.5% 1.15 4.485 72.6% 2.27 56.255 98.8% 6.27 0.533 61.9% 1.04
70 36.8 3.625 36.9% 1.04 3.569 100.0% 1.02 7.194 94.0% 1.04 10.432 70.2% 2.04 65.101 98.8% 6.0 0.540 78.5% 1.03

100 51.9 3.581 35.7% 1.0 3.58 100.0% 1.0 7.161 100.0% 1.0 25.091 67.8% 1.67 86.459 100.0% 1.0 0.559 100% 1.01

IP
C

-G
R

ID
(6

73
)

9.0

10 2.9 3.811 9.8% 1.0 3.828 18.9% 1.01 7.639 90.8% 1.88 1.084 96.1% 2.45 Timeout - - 0.220 62.7% 2.34
30 7.8 3.871 9.2% 1.0 3.867 49.7% 1.2 7.738 94.1% 1.25 1.475 97.3% 1.42 Timeout - - 0.234 83.6% 1.66
50 12.7 3.821 9.8% 1.0 3.82 79.1% 1.03 7.641 96.7% 1.07 1.932 100% 1.15 Timeout - - 0.245 90.1% 1.18
70 17.9 3.902 9.2% 1.0 3.878 96.1% 1.03 7.78 94.1% 1.05 2.556 100% 1.05 Timeout - - 0.253 97.3% 1.11

100 24.8 3.62 9.8% 1.0 3.637 98.4% 1.0 7.257 96.7% 1.0 3.868 100% 1.0 Timeout - - 0.261 100% 1.0

F
E

R
R

Y
(3

64
)

7.5

10 2.9 2.683 39.3% 1.65 2.686 72.6% 2.05 5.369 100.0% 3.17 0.511 98.8% 3.36 6.659 91.6% 6.65 0.068 58.3% 1.17
30 7.6 2.693 39.3% 1.31 2.686 94.0% 1.48 5.379 100.0% 1.56 0.677 100% 1.76 6.801 100.0% 7.57 0.073 83.3% 1.05
50 12.3 2.673 39.3% 1.17 2.671 97.6% 1.2 5.344 100.0% 1.29 0.794 100% 1.41 8.296 100.0% 7.57 0.084 91.6% 1.01
70 17.3 2.661 39.3% 1.12 2.673 100.0% 1.08 5.334 100.0% 1.1 1.202 98.8% 1.14 10.649 100.0% 7.32 0.092 100% 1.0

100 24.2 2.695 39.3% 1.11 2.708 100.0% 1.07 5.403 100.0% 1.07 1.693 100% 1.07 13.625 100.0% 1.07 0.099 100% 1.0

IN
T

R
U

S
IO

N
(4

65
)

15.0

10 1.9 4.701 10.5% 1.25 4.713 27.6% 1.81 9.414 100.0% 2.52 0.724 100% 2.53 0.475 89.5% 3.18 0.077 64.7% 1.23
30 4.5 4.511 9.5% 1.12 4.518 80.0% 1.4 9.029 100.0% 1.11 0.804 100% 1.11 0.476 90.5% 1.88 0.083 85.7% 1.02
50 6.7 4.421 9.5% 1.09 4.424 94.3% 1.12 8.845 100.0% 1.02 0.888 100% 1.02 0.496 94.3% 1.45 0.089 94.2% 1.04
70 9.5 4.458 10.5% 1.09 4.453 97.1% 1.13 8.911 100.0% 1.0 1.012 100% 1.0 0.637 99.1% 1.05 0.093 94.2% 1.0

100 13.1 4.419 8.9% 1.13 4.413 100.0% 1.0 8.832 100.0% 1.0 1.257 100% 1.0 0.828 100.0% 1.04 0.098 100% 1.0

K
IT

C
H

E
N

(7
5) 2.0

10 1.3 0.801 53.3% 1.0 0.807 53.3% 1.0 1.608 100.0% 1.87 0.085 100% 1.86 0.373 100.0% 1.86 0.002 100% 1.33
30 3.5 0.789 26.7% 1.0 0.785 33.3% 1.07 1.574 100.0% 1.33 0.097 100% 1.33 0.360 100.0% 1.33 0.003 100% 1.33
50 4.0 0.792 46.7% 1.0 0.802 53.3% 1.07 1.594 93.3% 1.33 0.104 100% 1.46 0.392 100.0% 1.33 0.006 100% 1.33
70 5.0 0.795 46.7% 1.0 0.787 66.7% 1.13 1.582 80.0% 1.0 0.115 100% 1.26 0.378 100.0% 1.20 0.006 100% 1.46

100 7.4 0.805 46.7% 1.0 0.812 73.3% 1.27 1.617 60.0% 1.0 0.119 100% 1.26 0.483 100.0% 1.40 0.007 100% 1.0

L
O

G
IS

T
IC

S
(6

73
)

10.5

10 2.9 3.668 28.1% 1.47 3.658 54.9% 1.66 7.326 90.2% 2.27 1.201 99.3% 2.98 † † † 0.563 55.5% 1.24
30 8.2 3.416 27.5% 1.07 3.416 75.8% 1.08 6.832 90.2% 1.2 1.798 98.6% 1.39 † † † 0.571 76.4% 1.20
50 13.4 3.417 28.1% 1.01 3.409 91.5% 1.05 6.826 90.8% 1.03 2.545 98.6% 1.29 † † † 0.599 86.2% 1.10
70 18.9 3.799 28.1% 0.96 3.8 91.5% 0.95 7.599 92.2% 0.99 3.460 100% 1.13 † † † 0.608 96.7% 1.05

100 26.5 3.786 31.1% 0.97 3.77 93.4% 0.93 7.556 93.4% 0.93 4.887 100% 1.0 † † † 0.615 100% 1.0

M
IC

O
N

IC
(3

64
)

6.0

10 3.9 2.617 39.3% 1.32 2.616 69.0% 1.4 5.233 100.0% 2.12 0.838 100% 3.26 † † † 0.321 54.7% 1.26
30 11.1 2.612 39.3% 1.14 2.614 95.2% 1.24 5.226 100.0% 1.19 1.196 100% 1.58 † † † 0.326 90.1% 1.08
50 18.1 2.614 39.3% 1.13 2.61 100.0% 1.1 5.224 100.0% 1.1 1.722 100% 1.28 † † † 0.339 96.4% 1.01
70 25.3 3.941 39.3% 1.06 3.941 100.0% 1.0 7.882 100.0% 1.01 2.504 100% 1.03 † † † 0.344 100% 1.0

100 35.6 4.116 39.3% 1.07 4.048 100.0% 1.0 8.164 100.0% 1.0 5.105 100% 1.0 † † † 0.356 100% 1.0

R
O

V
E

R
(3

64
)

6.0

10 3.0 3.993 52.4% 2.26 4.023 69.0% 1.58 8.016 92.9% 2.39 0.704 98.8% 2.85 † † † 0.310 51.1% 1.10
30 7.9 3.952 48.8% 1.68 3.916 90.5% 1.27 7.868 84.5% 1.14 1.029 100% 1.66 † † † 0.323 69.1% 1.07
50 12.7 3.79 50.0% 1.43 3.781 100.0% 1.13 7.571 97.6% 1.11 1.355 100% 1.29 † † † 0.331 85.7% 1.01
70 17.9 3.763 52.4% 1.32 3.79 100.0% 1.02 7.553 97.6% 1.0 1.796 100% 1.07 † † † 0.345 91.6% 1.0

100 24.9 3.772 53.6% 1.21 3.776 100.0% 1.0 7.548 100.0% 1.0 2.292 100% 1.07 † † † 0.356 100% 1.0

S
A

T
E

L
L

IT
E

(3
64

)

6.5

10 2.1 3.922 30.9% 1.67 3.902 64.3% 2.21 7.824 91.7% 2.7 1.049 97.6% 3.41 14.821 89.3% 4.86 0.431 47.6% 1.21
30 5.4 3.928 28.6% 1.51 3.892 91.7% 1.73 7.82 91.7% 1.65 1.182 97.6% 2.40 32.172 86.9% 4.21 0.442 69.1% 1.14
50 8.7 3.956 32.1% 1.29 3.928 95.2% 1.26 7.884 95.2% 1.27 1.398 97.6% 1.69 51.567 88.1% 3.65 0.458 80.9% 1.10
70 12.2 3.904 32.1% 1.19 3.929 100.0% 1.08 7.833 96.4% 1.07 1.884 96.4% 1.52 75.363 92.8% 2.89 0.460 94.1% 1.03

100 16.8 3.955 32.1% 1.14 3.903 100.0% 1.04 7.858 96.4% 1.04 2.107 96.4% 1.33 113.381 100.0% 2.57 0.475 100% 1.07

S
O

K
O

B
A

N
(3

64
)

7.3

10 3.1 5.883 22.6% 1.19 5.851 64.3% 1.27 11.734 67.9% 1.27 3.025 69.1% 4.02 461.701 67.8% 2.98 0.523 51.1% 1.85
30 8.7 5.854 19.1% 1.08 5.73 89.3% 1.02 11.584 85.7% 1.06 4.429 89.2% 4.10 370.412 83.3% 3.14 0.531 55.9% 1.21
50 14.1 5.911 21.4% 1.04 5.71 96.4% 1.02 11.621 90.5% 1.0 7.553 89.2% 4.16 358.028 82.1% 2.27 0.540 69.1% 1.20
70 19.8 5.897 22.6% 1.08 5.653 100.0% 1.01 11.55 96.4% 1.01 9.112 89.2% 4.17 353.721 85.7% 1.84 0.554 86.9% 1.08

100 35.5 5.849 25.0% 1.07 5.572 100.0% 1.0 11.421 100.0% 1.0 12.008 89.2% 4.53 353.183 85.7% 1.03 0.562 100% 1.0

Z
E

N
O

(3
64

)

7.5

10 2.6 5.474 34.5% 1.33 5.45 58.3% 1.68 10.924 82.1% 2.62 1.834 96.4% 3.41 93.917 66.6% 1.63 0.491 36.9% 1.04
30 6.7 5.424 33.3% 1.24 5.449 86.9% 1.35 10.873 89.3% 1.57 2.528 88.1% 2.11 88.285 78.6% 2.27 0.504 60.7% 1.02
50 10.8 5.005 33.3% 1.2 5.003 95.2% 1.1 10.008 91.7% 1.1 3.071 92.8% 1.41 105.814 91.6% 2.56 0.516 76.1% 1.0
70 15.2 4.377 35.7% 1.17 4.321 100.0% 1.0 8.698 100.0% 1.0 3.986 96.4% 1.13 125.652 94.1% 2.58 0.522 90.4% 1.0

100 21.1 4.378 35.7% 1.18 4.297 100.0% 1.0 8.675 100.0% 1.0 4.815 100% 1.07 168.674 100.0% 1.0 0.530 100% 1.0
Average 3.927 30.6% 1.202 3.908 82.7% 1.25 11.761 92.4% 1.440 2.697 94.7% 2.110 7.834 63.0% 3.464 0.311 79.7% 1.122

Table 1: Goal recognition experiments at various levels of observability.

h hc hδ R&G 2009 FG 2015 huniq

# |G| % Obs |O| Time Acc % S in G Time Acc % S in G Time Acc % S in G Time Acc % S in G Time Acc % S in G Time Acc % S in G

C
A

M
P

U
S

(5
16

)

2

25 3.1 0.627 53.5% 1.0 0.629 83.0% 1.24 1.256 87.6% 1.12 0.073 88.3% 1.27 0.713 79.8% 1.33 0.030 82.1% 1.13
50 4.5 0.634 53.5% 1.0 0.634 91.5% 1.19 1.268 92.3% 1.06 0.076 89.9% 1.26 0.666 90.6% 1.67 0.031 78.2% 1.02
75 6.4 0.625 53.5% 1.0 0.625 95.3% 1.19 1.25 94.6% 1.09 0.079 90.6% 1.27 0.655 94.6% 1.79 0.034 73.6% 1.0

100 7.5 0.619 53.5% 1.0 0.62 95.3% 1.22 1.239 94.6% 1.04 0.084 89.1% 1.22 0.644 97.7% 1.81 0.037 72.1% 1.0

IP
C

-G
R

ID
(3

00
)

8.3

25 4.1 3.421 13.3% 1.0 3.406 30.0% 1.02 6.827 86.7% 1.49 0.537 71.1% 2.65 0.494 43.3% 2.31 0.102 30.0% 1.11
50 7.6 3.392 13.3% 1.0 3.384 68.9% 1.1 6.776 96.7% 1.14 0.649 95.5% 1.28 0.511 81.1% 1.78 0.116 64.4% 1.03
75 11.5 3.399 13.3% 1.0 3.392 98.9% 1.01 6.791 97.8% 1.07 0.712 100% 1.01 0.654 93.3% 1.10 0.124 87.7% 1.03
100 16.9 3.403 13.3% 1.0 3.41 100.0% 1.0 6.813 100.0% 1.0 0.805 100% 1.0 0.885 100.0% 1.06 0.136 100% 1.0

IN
T

R
U

S
IO

N
(3

00
)

16.6

25 3.6 4.422 10.0% 1.24 4.433 26.7% 1.71 8.855 71.1% 2.7 0.462 12.2% 7.55 Timeout - - 0.208 53.3% 1.72
50 6.7 4.457 10.0% 1.12 4.468 75.6% 1.41 8.925 96.7% 1.33 0.469 4.4% 8.06 Timeout - - 0.212 83.3% 1.33
75 10.2 4.396 10.0% 1.07 4.394 90.0% 1.11 8.79 100.0% 1.01 0.475 6.6% 7.88 Timeout - - 0.224 94.4% 1.08

100 15.1 4.451 10.0% 1.03 4.44 100.0% 1.0 8.891 100.0% 1.0 0.476 10.0% 7.76 Timeout - - 0.239 100% 1.0

K
IT

C
H

E
N

(1
50

)

2.0

25 2.5 0.678 0.0% 0.0 0.812 46.7% 1.0 1.49 73.3% 1.69 0.139 71.1% 1.57 0.381 53.3% 1.33 0.081 88.8% 2.55
50 4.8 0.681 0.0% 0.0 0.809 51.1% 1.04 1.49 55.6% 1.33 0.135 57.7% 1.42 0.410 51.1% 1.22 0.084 64.4% 1.71
75 7.3 0.682 0.0% 0.0 0.819 48.9% 1.02 1.501 53.3% 1.33 0.138 57.7% 1.31 0.426 53.3% 1.20 0.090 57.7% 1.66

100 11.0 0.683 0.0% 0.0 0.811 73.3% 1.27 1.494 53.3% 1.13 0.144 60.0% 1.46 0.538 73.3% 1.26 0.093 66.6% 1.13
Average 2.286 19.2% 0.779 2.318 73.5% 1.158 4.604 84.6% 1.283 0.341 62.8% 2.998 30.436 76.0% 1.488 0.115 74.8% 1.281

Table 2: Goal recognition experiments with noisy observations at various levels of observability.



stantially superior to the state-of-the-art over a large dataset.
Importantly, the values of the operator-counting constraints
we compute for each of the heuristics can be used as expla-
nations for recognized goals.

The techniques described in this paper use a set of simple
additional constraints in the ILP formulation to achieve sub-
stantial performance, so we expect substantial future work
towards further goal recognition approaches and heuris-
tics that explore more refined constraints to improve accu-
racy and reduce spread, as well as deriving a probabilis-
tic approach using operator-counting information. Exam-
ples of such work include using the constraints to force
the LP to generate the counterfactual operator-counts (i.e.,
non-compliant with the observations) used by the R&G ap-
proach, or, given an estimate of the noise, relax the observa-
tion constraints to allow a number of observations to not be
included in the resulting operator-counts.
Acknowledgements: This study was financed in part by
the Coordenação de Aperfeiçoamento de Pessoal de Nivel
Superior – Brasil (CAPES) - Finance Code 001. Felipe
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Röger, and Malte Helmert. Getting the Most Out of Pattern
Databases for Classical Planning. IJCAI, 2013.

[Pommerening et al. 2014] Florian Pommerening, Gabriele
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